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The Kawasaki identity and the Fluctuation Theorem
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In this paper we show that the Fluctuation Theorem of Evans and SfarlésEvans, D. J. Searles,
Phys. Rev. B50, 1645(1994] implies that the Kawasaki functiofexp(—£,)) is unity for all time

t. We confirm this relationship using experimental data obtained using optical tweezers, and show
that the Kawasaki function is a valuable diagnostic tool.2@4 American Institute of Physics.
[DOI: 10.1063/1.1802211

In 1993 the first quantitative description of entropy pro-tion of the Kawasaki function from unity provides an imme-
duction in finite systems was given by the Fluctuation Theo-diate indicator to the effectiveness of the phase-space sam-
rem (FT) of Evanset all In the decade since, a great deal of pling and to the quality of the results.
research has been carried out on various forms of th& T, First we show that the Kl follows directly from the FT,
including two recent experimen?s".Combined, this research Eg. (1), and the definition of an ensemble average. The en-
demonstrates that the FT is correct and that it places thermsemble average of the Kawasaki function can be written as
dynamic constraints on the operation of nanomachines. In its .
most general form, the theorem provides an analytic expres- (exp(—Qt)>=f P(A)exp(—A)dA, 4
sion for the probability that the dissipative flux flows in the —o
direction opposite to that required by the second law of ther- . . . .
modynamics. The argument of the theorem is the dissipatioWhereP(A) 's the normalized probability density of observ-

function ;. In the case of thermostated dissipative systemsmg a trajectory of duratiort with dissipation production

the ensemble average of the dissipation functifp) is the Q=A. Substituting the FT, Eq1), for P(A)exp(-A) gives
time integral of the irreversible entropy production rate. The o
FT relates the probability of observing a process of duration  (&XP(— €)= f_mp( —A)dA. (5
t with Q,=A=dA, P(Q,=A), to that of a process with the
same magnitude of dissipation change, but of opposite sigriA change of variable plus the normalization condition of
P(A) shows that
P(Q=—-A)

WZGXK—A). (1)

o)

(exr(—Qt)>=j:P(—A)dA=f _P(B)dB=1. (6)

The theory and experiments also compare an integrated form -
of the FT, the IFT. It predicts the frequency of “negatitg* This proves that if the FT holds, then the Kl is satisfied.

trajectories (similar to “entropy-consuming” trajectori@s  However, the Kl is not a sufficient condition for the FT. To

0,<0 to “positive{),” trajectories (similar to “entropy- illustrate this we present a counter example which obeys the
producing trajectories’ ),>0: KI but does not satisfy the Fluctuation TheoréhConsider
P(0L.<0 a distribution functiorP(A) that is the sum of two Gaussian
(£, ):<exp(—Qt))Q o, 2) distributionsG,(A) and G,(A) which have the same mean
P(Q>0) t but different variances. The normalized distribution function
where the brackets on the right-hand s{&HS) denote an IS
average accumulated only over positfle- trajectories. _1 41
Since the original FT publication, several other versions of PIAI=2G1(A)+ 3Go(A),
the theorem have been shown to exist for various systéms, Y
: . 1|1 (A—p)
and are tabulated in a recent revi€w. P(A)=—|= —
While much research has focused on the FT, the V2m|2 2
Kawasaki functiof? (exp(—€)), which is intimately related 1 (A— )2
to the FT, has rarely been discussed. A proof by Evans and + —exp( - —M) , (7)
Searled® shows that the Kawasaki function obeys the iden- 4 8
tity whereu has been chosen to ensure thep(—A))=1. This
(exp(— Q) =1. (3 ~ oceurs foru=1.508 266. However, notice that the distribu-

tion function P(A) fails to satisfy the FT, Eq(1). That is,
We call this equation the Kawasaki IdentitKl). In this  P(A)#P(—A)exp@), as shown in Fig. 1. As such we can
paper we show that the Kl is a direct result of the FT and thasay that the FT gives a more detailed description of the sys-
the Kawasaki function is a useful diagnostic tool. The deviatems’ properties than the KI. As the Kl is a necessary, but not
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equilibrium distribution and we evaluate the dissipation

025 function of each trajectory as

1 2 2
020 =gy (ko—ka)(rF=15). ®

018 In this equatiorr is the initial position of the particle along
a trajectory and, is the position of the particle along the
same trajectory at timé after the trap strength has been
changed. For a rigorous derivation of E§) from stochastic

; 3 Langevin dynamics, we refer the reader to Retchl® It
0.00 = - should be noted that(),) is a positive definite quantity.
This can be shown by considering E@). In the case of

FIG. 1. From Eq.(7) the distribution functiond?(A) and P(—A)exp@), (ko—k1)<0 (ie., a weak trap going to a strong ti!at}b\en

(A) and(x) respectively, are plotted vs A. The mearR{fA) was chosento (It —I')<<O as the particle is likely to be confined closer to
be 1 =1.508 266 so that the distribution is normalized and the Kawaskaithe center of the optical trap. In the reverse casekif (

Identity is satisfied. Notice that the distributid(—A)exp@) is different — —k.)>0 then we would eXpeC(thz— rg>>0 as the particle

from P(A). In order for the FT to be satisfied, these distributions must behaS enough energy to move further from the center of the

equivalent,P(A)=P(—A)exp@A). - . .. ..
trap. In either case the product yields a positive definite
quantity. In fact, as a consequence of the FT, it is easy to
prove(Q,)>0 for all t.1® For a physical interpretation of Eq.
(8), consider the dimensionless work done as a result of the

diagnostic aid when analyzing trajectories to test the FT.

As the derivation above shows, rare negatiVetrajec- 1 [t 1 [t
tories that are contrary to expectations of the Second Law are kT deSAfVE kT fods[(fv)— (fov)], ©
necessaryfor the Kl to hold. PositiveQ, trajectories fre-
guently contribute to the Kawasaki function, but each contri-wheref is the optical force acting on the particle in the strong
bution is small in magnitude due to the negative sign in therap, f, is the force in the weak trag\f is the difference in
exponential. As the dissipation produced along a trajectoryhe forces and/=dr/dt is the velocity of the particle. The
increases(i.e., becomes more positiyeits contribution to  first term on the RHS is the work accumulated along the
the Kawasaki function decreases exponentially. On the othgparticle’s path of duratiohn. The second term on the RHS is
hand, the infrequent negati¥@; trajectories contribute a hypothetical work: it is the work accumulated over the
rarely to the average, but each contribution is exponentiallgame path in the case where the trap strength is not in-
significant. The exponential rarity of observing negati¥ge- creased. An analogy can be made with the extra work done
trajectories isexactlycompensated by the negative exponen-by a mountain climber due to a snowstorm, i.e., the work
tial in the Kawasaki function. The result is that the Kawasakidone by the climber during his ascent up a snow-covered
function has a constant value of unity for all tintedVithout ~ mountain minus the work that he would have done along the
the occurrence of negati@; trajectories, it is impossible same path without snow. One can show that this extra work
for the Kl to hold. attributed to the increased trap strength, B), reduces to

To demonstrate the Kl in an experiment we consider thehe rigorously derived definition d,, Eq. (8).
time-dependent relaxation of a colloidal particle in an optical ~ The optical trap is formed using a 1 W infrared laser
trap. An optical trap is formed when a transparent, micron{\ =980 nm, Cell Robotics, USAand a 10X (N.A.=1.3)
sized particle, whose index of refraction is greater than thatil-immersion objective lens. The position of a Gusn di-
of the surrounding medium, is located within a focused laseameter latex particléInterfacial Dynamics Co., USAlo-
beam. The refracted rays differ in intensity over the volumecated within the optical trap is determined, with a resolution
of the sphere and exert a sub-pico-Newton force (1 pNof 15 nm, by projecting its image onto a quadrant photodiode
=10 12 N) on the particle, drawing it towards the region of (S4349 Hamamatsu, Japaihe optical trap strength is con-
highest light intensity. The optical trap is harmonic near thetrolled by adjusting the laser intensity, which we achieve in a
focal point, meaning that its contribution to the system’s po-2—3 ms timeframe. Electronic signals from the intensity pho-
tential energy istk(r-r), wherer is the position of the par- todiode are synchronized with that of the quadrant photodi-
ticle relative to the center of the trap akdis the trapping ode at 1 kHz, providing data with electronic markers which
constant or trap strength which can be tuned by adjusting theignal the change in the strength of the optical trap. The data
laser power. In the experiments reported here, the colloidatollection is fully automated enabling thousands of trajecto-
particle is initially localized in a trap of strengty over a  ries to be collected without the presence of an operator.
sufficiently long time so that its position is described by an  Approximately 3000 particles were added locally into a
equilibrium distribution. Att=0 the optical trap strength is 4.0 ml solution of 10 mMTris-HCI +1 mM EDTA, main-
increased discontinuously frok, to k; so that we more tained at apH of 7.5. One particle was optically trapped,
tightly confine or “capture” the particle. isolated from the other particles, used to calibrate the quad-

The particle’s position is recorded as it relaxes to its newant photodiode position detector, and then used to record
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FIG. 3. An example of the IFT and Kawasaki function, constructed from a
FIG. 2. Optical trap strengtk vs. laboratory time, showing the discontinu- well sampled data set. The Kawasaki function is denoted aglitte, the
ous cycling between low trap strength and high trap strengtk; with a LHS of the IFT as(X), and the RHS of the IFT aé+). The Kawasaki
period of 20 sec. A single “trajectory{box) corresponds to the particle function is~1, matching the expected Kawasaki Theorem result. The IFT
positions recorded over a single cycle, centered arden@ when the trap  results are also in good agreement. The optical trap constants were
strength is increased. [K%,k¥]1=[1.55,1.84 pN/um and[k},k¥]=[2.39,3.3Q pN/um. 2100 tra-
jectories were collected.

trajectories as the particle relaxes to its new equilibrium dis-  |n the experiment detailed above and in our previous FT
tribution. Due to the pOSS|b|I|ty of anharmoniCity in the op- experiment§;9 we used the Kawasaki function as a qua“ty
tical trap we evaluated the trap constakgsandk; in both  control tool. The exponential nature of the Kawasaki func-
the x andy coordinates separately yielding trap constantsjon is capable of highlighting numerous errors including
[ko,kg] and[Ki,ki]. By doing so, Eq.(8) changes to be- (but not limited to particle exchange and interference, laser

come power fluctuations and miscalibration of the photodetector.
However when the optical tweezers have been correctly cali-
QO :L(kx_ ) (x2—x2)+ L(ky_ky)(yLyZ)_ brated, and the experimental conditions optimized, good re-
U2kgT O U O 2T TR0 sults are obtained and the Kl holds. Figure 3 shows a result
The optical trapping constanitky, k] and[k},kY] were de-
termined by sampling the particles position at the required 20 20
laser powers for 120 sec at 200 Hz. The data was then ana- 15ty .L 150 ]
lyzed with the equipartition theorerk*=kgT/(x?) and k¥ b e 5 M“"’"J
=kgT/(y?) to determine the trapping constants. We cycled 0ol | ool | |
the strength of the optical trap discontinuously between a v o 82 e b RR Uy B
weak trap strengtpkg,k¥] and a strong trap strengfk’ kY] () 50 samples (b) 100 samples
with a period of 20 sec. An experimental “trajectory” corre- 20
sponds to a trace of the particle’s position over 10 sec in the | v EL L
weak trap (- 10<t<0 sec) and a further 10 sec in the strong ;jg s il i i i i ”‘v“_']
trap (0=t>10 sec) as indicated in Fig. 2. It is essential that 0oL 1 | : 1
. . . . . 0 01 02 03 04 0 01 02 03 04
all trajectories use the same particle as the calibration of the
qguadrant photodiode position detector is sensitive to slight (c) 150 samples (d) 200 samples
differences in particle size and light transmission. Whenever 20 20
an ensemble measure, such as the Kawasaki function, de- 15k 150
pends sensitively upon rare events, considerable care must be ;;g g ‘“’" * ég —
taken when rej.ect'lng data from that er}semple of experi- e e B
ments. If we eliminate one or more trajectories from our
analysis because they are uncharacteristic, then we might (e) 400 samples (f) 800 samples
well be eliminating the “rare” trajectory that contributes sig- 20 20
nificantly to {(exp(—{})). On the other hand, uncontrollable L e e 1.5
experimental errors do occur, such as sharp and large fluc- 3,;2 - ;2
tuation; in the mains volt_age, or a rogue particle displacing 00— 0'_2 ois oy, e 013 o4
the optically trapped particle, among many others that give Time (s) Time (s)
erroneous trajectories. Thus, “uncharacteristic” trajectories
should only be removed when a likely cause is identified. (g) 1500 samples (h) 2000 samples
Further experimental details can be found in Carbetrfl® g6, 4. The Kawasaki function is plotted with various numbers of experi-

and Carberry/ mental trajectories, as indicated.

Downloaded 31 Oct 2004 to 150.203.2.85. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



8182 J. Chem. Phys., Vol. 121, No. 17, 1 November 2004 Carberry et al.
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major effect on the value of the Kawasaki function. This is “G. Gallavotti, Physica 263 39 (1999.

. . . 5G. E. Crooks, Phys. Rev. 80, 2721(1999.
particularly evident for the Wang experiménas the prob- 5C. Jarzynski, J. Stat. Phya8, 77 (2000.

ability of observing rare, negativ@; events decreases, more L. Rondoni, T. Tel, and J. Vollmer, Phys. Rev.68, 4679(2000.
. . R 8 . .
trajectories need to be sampled in order to ensure the Ka—D- M. Carberry, J. C. Reid, G. M. Wang, E. M. Sevick, D. J. Searles, and

. . . . . L. D. J. Evans, Phys. Rev. Le82, 140601(2004.
wasaki Identity remains valid. In the long time limit, where 9G_ M. wang, E. M. Sevick, E. Mittag, D. J. Searles, and D. J. Evans, Phys.

the probability of observing these rare, negati¥gtrajecto- Rev. Lett.89, 050601(2002).

. . . 10R. van Zon and E. G. D. Cohen, Phys. Rev6E 046102(2003.
ries approaches 0, the experimental estimates of the Kary' j £ians and b, J Searles. Adv. PH§s, 1529(2002.

wasaki function deviate from 1. 2T, Yamada and K. Kawasaki, Prog. Theor. Ph§8. 1031(1967).

. . . 13
The problem of infrequent sampling can also be illus-,,P- J- Evans and D. J. Searles, Phys. Re#2E5839(1995.
In the limiting case where there is only a weak change in the trap strength

trated using this “capture” experiment. In Fig(a} through and the trajectory is observed over infinite tite « the Kawasaki Iden-
4(hy we show how the experimental estimate of the tity and the FT are equivalent. That is, distributid®&Q,) that obey the
Kawasaki function improves with increasing numbers of Kawasaki Identity must also obey the FT and there is a direct mathemati-

. . . . cal equivalence between the Kawasaki Identity and FT. This is a result of
sampled trajectories. By watching the evolution of the ihe central limit theorem dictating that I °P(Q,) is a Gaussian dis-

Kawasaki function it becomes clear that as more trajectories tribution (see D. J. Evans, D. J. Searles, and L. Rondeohd-mat/
are analyzed the Kawasaki function approaches its expected?312353 for a discussion about this double limiNote P({,) will al-
. ways obey the Kawasaki Identity by virtue of the Liouville equation.
value of unity. However, in the more general case explored here, where the trajectory
In conclusion, we have shown that the Kawasaki Identity time is of finite duration and the change in trap strength is appreciable, the
is a necessary, but not sufficient, condition for the FT to hold. central limit theorem no longer applies aRg(2,) is not Gaussian. Con-

" . . . sequently, a distributioP({);) may satisfy the Kawasaki Identity, but
Additionally, we have shown that the Kawasaki function is need not satisfy the FT, as shown by the example in the text. However, if

useful when analyzing experimental data. It provides an ex- P(Q,) satifies the FT, then the Kawasaki Identity must indeed hold.

cellent indicator to the quality of the results, shows times'J. C. Reid, D. M. Carberry, G. M. Wang, E. M. Sevick, D. J. Searles, and
h the ph ling has b insufficient mg J. Evans, Phys. Rev. B, 016111(2004.

Wi er.e 'e phaseé space sampling has been Insuicient ang, ; Searles, D. J. Evans, Aust. J. Cheubmitted.

also indicates where errors may have occurred. 17D, M. Carberry, Thesis dissertation.
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