
Chemistry C3102-2006: Polymers Section

Dr. Edie Sevick, Research School of Chemistry, ANU

These notes are meant to supplement the lectures and to provide example problems. Homework

problems will be provided separately As this an evolving draft, there may be some errors. I

would appreciate it if you would provide me with feedback: point out errors, even simple

grammatical errors; indicate which passages are unclear; and importantly, indicate where you

feel there are missing “steps” in derivations.

1.0 The ideal chain: a statistical model
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Figure 1: Schematic of a Freely Jointed
Chain Model (FJC) in 2-dimensions. Unit
“bond” vectors, designated by ai are
placed head to tail consecutively and with-
out orientational bias. The end-to-end
vector of the chain, R, is given by the dot-
ted grey line.

The simplest possible model of a chain is a series of

“bonds” which are linearly and freely joined into a

chain and may intersect itself any number of times.

By freely jointed, we mean that the angle between

any two consecutive bonds is completely free and un-

hindered, unlike consecutive carbon single bonds in

polyethylene where the valence angles are restricted

to around 109◦ and the torsional angles are localised

around three different values. If each bond is denoted

by the vector a, then the end-to-end vector, R of such

a freely jointed chain (FJC) model is

R =

N
∑

i=1

ai. (1)

For a freely fluctuating chain the average or mean end-to-end vector, 〈R〉, will be 0, as the chain

can traverse in the positive and negative directions with equal probability. For example, if we

label the ends of a chain A and B, then for any chain conformation with an end-to-end vector

RAB, there will exist an identical conformation whose end-to-end vector is RBA = −RAB, and

the probability of occurence of these two chains is equivalent. Thus, 〈R〉 does not serve as

a good measure of the chain size as it will be zero irrespective of the number of monomers,

N , in the chain. Another measure is the mean of the square of the end-to-end distance, or

simply the “mean square end-to-end distance”, denoted by 〈R2〉 ≡ 〈R ·R〉. This is not a vector

quantity, but rather a scalar - it is the magnitude of the end-to-end vector. For consistency in

dimensions, we will refer to the size of the polymer as R, where R = 〈R · R〉1/2. Because R is

the mean magnitude of the vector, it is not zero but rather a finite number.

We can derive a simple formula from eq. 1 for the mean square end-to-end distance, R2, as

R2 = 〈R2〉 =

N
∑

i

N
∑

j

〈ai · aj〉. (2)

We can rewrite the sums as

R2 =

N
∑

i=1

〈ai · ai〉 + 2

N
∑

i

N
∑

j>i

〈ai · aj〉. (3)
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You can understand this equation as the sum of all elements in a two dimensional matrix of

elements ai · aj : the first term is the sum of all elements on the diagonal and the second sum

is the sum of the rest of the matrix terms, noting that the sum of terms above the diagonal is

equal to the sum of terms below the diagonal. Remember that the dot product of two vectors

x and y, or the projection of x onto y, is simply the product of the magnitudes of the vectors

times the cosine of the angle between the vectors: x · y ≡| x || y | cos θ. Thus, eq. 3 is

R2 =

N
∑

i=1

a2 + 2

N
∑

i=1

N
∑

j>i

〈ai · aj〉 (4)

or

R2 = Na2 + 2

N
∑

i=1

N
∑

j>i

〈ai · aj〉. (5)

Let’s focus upon eq. 5. For a FJC chain, we said that consecutive bonds are completely

uncorrelated; that is, the bonds can adopt any angle θ with equivalent probability. This means

that 〈ai · aj〉 ≡ a2〈cos θij〉. And as the angle between ai and aj can take on any angle in the

range −π < θij ≤ π with equal probability, then 〈cos θij〉 =
∫ π

−π
cos θijdθij = 0. Thus, for a

freely jointed chain

R2 = Na2. (6)

This is an important result as it tells you that the size of a FJC scales as the square root of the

number of monomers, R ∼
√

N . The symbol ∼ should be read as “scales as” and eliminates

the need to include constants, as for example, the size of the bond, a.

For a jointed chain whose consecutive bonds are correlated, eq. 5 provides us with a simple

expression for the chain size. Imagine that the chain is not freely jointed (we often refer to

this as a chain which is not fully flexible) and, for simplicity, confined to two dimensions. Let

the angle between any two adjacent bonds i and i + 1 be θi,i+1 = 109◦ + δ, the carbon-carbon

valence angle plus a small angle variation which depends upon the temperature. As you know,

δ is very small in comparison to 109◦ and consequently 〈ai · ai+1〉 = a2 × cos(109◦) 6= 0. The

average angle between the bonds i and i + 2 will also be fairly fixed by the valence angles;

however the fluctuations in the θi,i+2 will roughly twice that of θi,i+1, but still a small angle.

However, the fluctuations in the angle between bond i and i + m, θi,i+m, become greater as m

becomes larger, until at a sufficiently large m, these fluctuations far exceed those in the valence

angle. In other words, the orientational correlation between bonds is “lost” or “forgotten” for

bonds which are widely separated along the backbone of the chain. We say that in the limit of

large m, 〈ai ·ai±m〉 = 0. The “plus or minus” indicates that our argument is independent of the

direction along the chain, and depends only upon the number of bonds, m − 1, separating the

bonds. Thus, the distance along the backbone over which the bonds are correlated is simply the

distance that is spanned by 2m consecutive bonds, where m is the smallest number for which

〈ai · ai±m〉 = 0. This distance over which a 2- or 3-dimensional chain is inflexible or “stiff” is

characterised by the persistence length, `p, and is defined by

`p ≡ a +
1

a

N
∑

j>i

〈ai · aj〉. (7)
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Here you see that for the FJC, the persistence length is simply the length of a single bond, a.

As the orientational correlation persists over larger and larger number of consecutive bonds, the

persistence length increases. In the mathematical limit where there is absolutely no fluctuations

in the valence angle, δ = 0, then a 2-dimensional chain will be completely rigid (i.e., a rigid rod)

over its entire contour length, Na, and the persistence length and contour length are identical.

The persistence length of the chain is determined by the chemistry of the individual chemical

monomers as well as how these monomers interact with surrounding small solvent molecules.

The persistence length of polystyrene is roughly a nanometre and corresponds to the length

of 4 to 5 backbone bonds. In contrast, ds-DNA has a persistence length on the order of 50

nanometres, corresponding to about 150 base pairs.

When the definition of the persistence length, eq. 7, is inserted into eq. 5, an important

conclusion results. Rearranging eq. 7 leads to
∑N

j>i〈ai · aj〉 = (`p − a)a. Replacing the second

sum of the LHS of eq. 5 yields

R2 = Na2 + 2

N
∑

i=1

(`p − a)a, (8)

and as the argument of the sum (i.e. (` − a)a) is a constant, this reduces to

R2 = Na2(2
`p

a
− 1) (9)

Eq. 9 conveys much information. It shows that for the general model of a jointed chain with

orientational correlation, R2 ∼ Na2, as the term in the brackets is a constant depending upon

the persistence length. This is important as we can now say that the FJC model, as well as its

more general model that takes account orientational correlation, R2 ∼ Na2. However for the

FJC, R2 = Na2 where N is the number of bonds and a is the magnitude of each bond.

More importantly, we can show that any ideal chain has a size which can be described using

a formula very similar to R2 = Na2, whether the chain is freely jointed or is a jointed chain with

orientational correlation. We can demonstrate this by defining Nstat and astat as the number

and size of statistical units within the chain and representing the chain of N bonds of size a by

these statistical quantities. The size of a statistical unit is simply twice the persistence length,

astat = 2`p and as the chain is uncorrelated over the persistence length, we can represent a

series of correlated bonds by a single “statistical” link of size astat. These statistical segments

are linked in a freely jointed manner and consequently, we can say that the size of the chain is

R2 = Nstata
2
stat. The size of a statistical segement, astat, is often referred to as the “Kuhn step

length” and Nstat as the number of Kuhn step lengths in the chain. Often times, we drop the

subscript and simply write R2 = Na2 and assume that we are talking about Kuhn or statistical

units. In this way, we do not need to distinguish between a FJC chain or one with orientational

correlation, only that the chain is ideal.
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EXAMPLE PROBLEMS

• Give examples of specific polymers which are fully flexible, semi-flexible, and

“rigid-rod”-like.

Polyethylene is a fully flexible polymer. Chain flexibility results from rotational isomerisation.

That is, while the valence angles are 109◦ plus or minus a small fluctuation, the torsional

angles can rotate and take on three different values, yielding (for a simple butane molecule)

trans, gauche+, and gauche− conformations.

−CH4 − CH4 − CH4−

Polyethylene

DNA is an example of a semi-flexible polymer. Alternatively, you can substitute double or

triple bonds into a fully flexible carbon backbone chains to reduce the backbone flexibility

or increase the persistence length. An obvious construction would be

−CH = CH − CH = CH − CH =

By placing placing double bonds in the backbone, you are restricting flexibility by remov-

ing rotational isomerisation.

Polyacetylene is a ”rigid-rod” like polymer.

−C ≡ C − C ≡ C−

Polyacetylene

The degree of flexibility is characterised by the persistence lengths. The persistence lengths,

from small (flexible) to large (inflexible) are ordered from polyethylene, DNA, to polyacetylene.

Synthetic chemists make stiff or inflexible polymers by incorporating double and triple carbon-

carbon bonds in their backbone, and bulk side groups groups that sterically hinder chain

flexibility. .

“Concatenate” means to “link together”. A concatemer of DNA is made of re-

peated sequences linked end to end. Consider λ-DNA: this is commercially available

“standard” biomolecule that is isolated from the E. Coli bacteriophage lambda. It

is a linear, double-stranded molecule that is 48,502 bp (base pairs) in length. The

molecule also contains 10-16 base single-stranded regions at its ends that are self-

complementary and these serve to circularise the molecule. In its circular form,

λ-DNA can replicate continuously, forming concatemers of the λ-DNA. How does

the size of the linear concatemer scale with the number of λ-DNA sequences?

Assuming that the ds-DNA molecule obeys ideal, or random-walk statistics, the mean square

end-to-end distance varies with the number of monomers, or the number of λ-DNA sequences
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in the concatemer. Let C be the number of λ-DNA sequences in the concatemer, such that a

concatemeter with C = 1 has 48 kbp, C = 2 has 72 kbp, C = 3 has 144 kbp, C = c has 48×c

kbp. Then 〈R2〉 ∼ c

• Consider that the fluctuations in valence angles are zero, δ = 0. What is the

size of the statistical segment of a polyacetylene having N chemical monomers

each of size a? Compare your answer with the size of the statistical segment of a

polyethylene chain with N chemical monomers

The angle between consecutive carbon-carbon bonds in polyacetylene is 180◦ plus some fluctu-

ation, say δ. If you assume δ = 0, i.e. there are no fluctuations in the chain, then the chain is a

rigid rod whose end-to-end distance is the contour length. In this case, the statistical segment

is identical to the contour length of the chain, Na. Realistically, δ 6= 0; that is, there will

always be some fluctuation in the bond angles. You can determine the average magnitude of

this fluctuation by considering the energy penalty of the fluctuation, relative to kBT . As δ can

be small compared to 180◦, this fluctuation contributes negligibly to the overall size of short

polyacetylene chains; however, the longer the chain, the more these fluctuations influence the

size and shape of the chain. As the average magnitude of δ increases, the size of the statistical

segment becomes smaller and the chain is more flexible.

In contrast, polyethylene remains flexible, even if are no fluctuations in the valence angles.

This is because of fluctuations in the torsional angles, or rotational isomersiation.

• • How dilute must a polymer solution be in order that each polymer chain be

non-intersecting?

Figure 2: Schematic of a container of
ideal polymer chains at a semi-dilute con-
centration, i.e., at the highest concen-
tration at which the polymers are iso-
lated single chains and do not interpen-
etrate each other. The size of an iso-
lated, single chain is given by R ∼ a

√
N ,

and the dotted lines identify spheres of
this radius that circumscribe the ideal
chains. Higher concentrations require that
the chains interpenetrate, i.e. the circum-
scribing spheres would intersect.

In other words, we want to know the highest con-

centration at which the chains do not intersect other

chains. First, we need to decide how to specify con-

centration. There are many ways of specifying con-

centration, but a particularly easy one is the volume

fraction of statistical units within the spherical volume

which contains the chain: φ = Nν/V , where N is the

number of statistical units in the chain, ν is the vol-

ume of a single statistical unit and V is the spherical

volume that circumscribes or encloses the single chain.

Second, the sought concentration is found by adding

as many of these non-intersecting chains as possible

to the solution; or in other words, to let every point

within the solution volume to be a point within a vol-

ume V containing a chain. Thus, the sought solution

volume fraction, φ∗, is simply the volume fraction in-

side the volume circumscribing a single chain, φ. So

to complete the problem, all we need to do is express
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φ in terms of characteristics of an individual chain: N

and a. The volume of a statistical segment is that of a cylinder of length a and diameter d, or

ν ∼ ad2. The spherical volume containing the chain V ∼ R3 where R2 = Na2. Thus

φ∗ = φ =
Nad2

a3N3/2
∼ (

d

a
)2 1√

N
.

Now the ratio a/d varies between 1 and 50. a/d = 1 corresponds to a very flexible chain as the

statistical segment is as short as it can be. a/d ∼ 50 corresponds to a relatively stiff polymer,

such as double stranded DNA. This result is important in that it says that φ∗ decreases as

the size of the chain increases and as the chain becomes more stiff or less flexible. or in other

words, the larger the chain, N , the fewer the number of molecules that will just fill the container

without overlapping.

EXAMPLE PROBLEM
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1.1 How the end-to-end distance represents the size of the chain

So far, we have very loosely related the magnitude of the end-to-end vector of the chain with

the size of the chain. An often-used measure of the size of an odd-shaped or fluctuating object

is the radius of gyration, s. In this section we show that 〈s2〉 = 〈R2〉/6 or simply that the mean

square radius of gyration of an ideal chain is equivalent, to within a small constant, the mean

square end-to-end distance of the chain. Thus 〈R ·R〉 is an appropriate measure of the chain’s

size. The derivation below is optional reading.

The definition of the radius of gyration, s, is the mass-weighted root mean square (rms)

average of the magnitudes of the vectors leading from the center of mass to the points of

mass making up the object. For our fluctuating ideal chain, we can simplify this definition by

assuming that the chain is comprised of N “beads” linked by N −1 statistical segments, where

these beads contain the equally distributed mass of the chain. The center of mass of the chain,

Rcom, is defined as

Rcom =
1

N

N
∑

i=1

ri (10)

where ri is the vector position of the ith bead. The square of the radius of gyration is defined

as

s2 =
1

N

N
∑

i=1

(ri −Rcom)2. (11)

From these two definitions, it is easy to show that 〈s2〉 ∼ 〈R2〉. First, insert eq. 10 into 11,

s2 =
1

N

N
∑

i=1

(ri −
1

N

N
∑

j=1

rj)
2, (12)

and rewrite ri as 1
N

∑N
j=1 ri, to yield

s2 =
1

N

N
∑

i=1

(
1

N

N
∑

j=1

ri −
1

N

N
∑

j=1

rj)
2. (13)

This reduces to

s2 =
1

N2

N
∑

i=1

N
∑

j=1

(ri − rj)
2, (14)

or

s2 =
1

N2

N
∑

i=1

N
∑

j=1

(rij)
2, (15)

where rij ≡ ri − rj is the vector between the ith and jth beads. Eq. 15 is also an alternative

definition of the s2: it is the mass-weighted sum of the magnitudes of the vectors between all

mass points making up the object. As our object is not rigid, but a fluctuating chain, we can

re-express eq. 15 in terms of the mean square radius of gyration and the mean square distances

within the chain

〈s2〉 =
1

N2

N
∑

i=1

N
∑

j=1

〈r2
ij〉. (16)
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Now the final part of the proof is very simple: all we need to do is insert two series identities

into eq. 16 . First 〈r2
ij〉 =| i − j | a2. This is simply restating 〈R2〉 = Na2 for a portion of the

chain spanning beads i to j, rather than the whole chain. The absolute value signs ensure that

the number of segments and the square distance is positive. With this substitution, we find

〈s2〉 =
1

N2

N
∑

i=1

N
∑

j=1

| i − j | a2, (17)

which we can rewrite as

〈s2〉 =
2a2

N2

N
∑

i=1

N−i
∑

k=1

k (18)

where we have simply summed over j > i and substituted k = j − i. The two series of interest

are
m

∑

k=1

k =
m(m + 1)

2
(19)

and
m

∑

k=1

k2 =
m(m + 1)(2m + 1)

2
. (20)

Inserting the first series identitify for the second sum on the RHS of eq. 18 yields

〈s2〉 =
2a2

N2

N
∑

i=1

(N − i)(N − i + 1)

2
(21)

or, multiplying this out,

〈s2〉 =
a2

N2

N
∑

i=1

(N2 − 2Ni + i2 + N − i). (22)

Applying the both series, eqs. 19 and 20 to each term on the RHS of eq. 22 gives

〈s2〉 =
a2

N2
[N3 − 2N2(N + 1)

2
+

(N(N + 1)(2N + 1)

2
+N2 − N(N + 1)

2
] =

a2

N2
[N3 +N2]. (23)

The result is 〈s2〉 = (N + 1)a2, for a chain of N bonds linking N + 1 beads. So to conclude,

the mean square end-to-end distance, 〈R2〉 ∼ Na2 is proportional to the mean square radius

of gyration, a standard measure of the size of an object.

EXAMPLE PROBLEM

•• What is the radius of gyration of a ds-DNA molecule if its contour length is 20

µm

The contour length of a chain having Nstat number of statistical units, each of size astat is

Nstat × astat. The statistical monomer size is twice the persistence length, astat = 2`p. The

mean square end-to-end distance of the chain is < R2 >= Nstata
2
stat and the radius of gyration
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is < s2 >=< R2 > /6. The persistence length of ds-DNA is 50nm. Thus, the natural size is

given by the radius of gyration, or

< s2 > =
1

6
< R2 >

=
1

6
Nstata

2
stat

=
1

6
(Nstatastat) × astat

=
1

6
(20µm) × 2`p

=
20µm

3
× 50nm,

or < s2 >= 1/3µm2 or
√

< s2 > = 1/
√

3µm

EXAMPLE PROBLEMS
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1.2 Gaussian statistics to describe the probability of finding a chain of a given

end-to-end distance

In Section 1.0, we derived a scaling relationship for the mean size of a single chain. However,

the chain is constantly fluctuating, so we need to know how likely we can expect to observe the

chain possessing this particular size. In other words, we need to know the full distribution of

chain sizes, and not just the mean size. As you will see, the distribution of chain sizes allows

us to make thermodynamic-based predictions of how an ideal chain behaves when stretched or

compressed. In this section, we will derive an expression for the probability distribution of the

square end-to-end distance, R2, of an ideal chain.

First, for simplicity, we will consider a chain in one-dimensional space, only. (After we finish

the derivation, we will extend our result to the usual three-dimensional space, but by limiting

ourselves to one dimension, we greatly reduce the number of equations that we must write.)

One end of the chain is tethered to x = 0, and the equi-sized links point either the right or to the

left, with equivalent probability. The problem is similar to a drunken walker in one dimension:

starting at the origin, the walker takes a random, unit-sized step to the right or to the left. We

want to know the probability that, after N equi-sized steps, the random walker will arrive at

a distance m steps from his starting position. Let n+ be the number of links or “steps” that

move to the right and n− be the number that move to the left, such that N = n+ + n−. There

will be 2N possible trajectories, each of them equally likely but with many of them “arriving”

at the same place m. The arrival destination m = n+ − n−, depends only upon the number of

right-steps and left-steps and NOT the ordering of these steps in the trajectory. Out of the 2N

trajectories, the number of trajectories that are comprised of precisely n+ right-steps and n−

left-steps is N !/(n+!n−!). Since knowing the number of right-steps and left-steps implies that

you know the destination, then the number of trajectories that arrive at destination m is

N !

(N+m
2

)!(N−m
2

)!
. (24)

Therefore the probability of the random walker taking N steps and arriving at m is simply the

number of trajectories that arrive at m divided by the total number of trajectories, or

p(m, N) ≡
( N !

(N+m
2

)!(N−m
2

)!

)

/2N . (25)

(This discretised distribution is normalised,i.e.,
∑

(n+,n−) p(m, N) = 1.0 You might also recog-

nise this from the Binomial Theorem

(
1

2
)N

∑

(n+,n−)

N !

n+!n−!
(xn+

yn−

) = (
1

2
)N(x + y)N . (26)

If x = 1 and y = 1, the LHS is simply the sum over all p(m, N), and the RHS is unity.) To

simplify eq. 25, apply Stirling’s formula,

n! ≈
√

2πnn+1/2exp(−n), (27)

to get

p(m, N) = (
2

πN
)

1

2 exp (−m2

2N
). (28)
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Now, for a discrete random walker, the destination does not take on all integer values

between 0 and N : if N is odd, then the walker will arrive at destinations that are only odd

(i.e., m is odd), and if N is even, then m is restricted to take on only even values. However, this

is not captured in the discrete distribution p(m, N), eq 28. To get this into a continuous form,

let ` be the size of a step in 1-dimension, so that the destination is given not by the integer

number, m, but rather the continuous, real distance x where x = m`. Now, the trajectories

counted for a specific value of m in the discrete distribution p(m, N) are now accounted in the

continuous distribution p(x) from x = (m − 1)` to x = (m + 1)`, or p(x)∆x = p(m, N) where

∆x ≡ 2`. Thus, the continuous distribution for one dimension is

p(x) = (2πN`2)−
1

2 exp (− x2

2N`2
). (29)

Having developed this probability distribution in one-dimension, we can now extend this to

three dimensions. Let a single step be comprised of a random step of size ` in each of the x, y,

and z-directions, and the destination be R =
√

x2 + y2 + z2.

p(R) = p(x) × p(y) × p(z)

= (2πN`2)−
1

2 exp (− x2

2N`2
) × (2πN`2)−

1

2 exp (− y2

2N`2
) × (2πN`2)−

1

2 exp (− z2

2N`2
).

The size of a singe step in three dimensions is therefore a =
√

a2 =
√

(±`)2 + (±`)2 + (±`)2 =√
3` , so that the distribution function is

p(R) = (
3

2πNa2
)−

3

2 exp (− 3R2

2Na2
) (30)

This is, of course, a Gaussian distribution, named after the famous mathematician K.F. Gauss

(1777-1855) who studied the distribution of a sum of random numbers. The Gaussian distri-

bution is exact only in the limit of N → ∞; however, it is very accurate for smaller values of

N. In its general form, the normal or Gaussian distribution is

p(x) = (
d

2πσ2
)d/2 exp (−d(x − 〈x〉)2

2σ2
) (31)

where d is the dimension, 〈x〉 is the mean, and σ2 is the variance (or σ is the standard deviation

that characterises the width of the distribution).

EXAMPLE PROBLEMS

• When reporting an experimental result, researchers normally repeat the exper-

iments n times, sum the measurements and take an average. Assuming that the

error in experimental measurement follows a normal distribution, explain why (a)

the error in the sum of measurements is proportional to n1/2 and not n, and (b) the

error in the average scales as n−1/2.AIM: to demonstrate use of Gaussian distribution in collection of

experimental data

(a) Each measurement contains some error. So when you sum up the measurements, you are

also summing up the errors contained within. However, the errors are positive as well as neg-

ative, similar to the steps of a 1-dimensional random walker. The sum of the magnitude of
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errors is analogous to the random walker’s steps, or the destination. So, if the mean destination

or
√

< R2 > scales with number of steps according to N1/2, then analogously, the sum of the

errors scales with the number of measurements according to n1/2. If the error was only negative,

or only positive, then we would expect the sum of the errors to scale with n1.

(b) To find the average measure, you take the sum of measurements and divide by the number of

measurements. So therefore, the error in the average is the error in the sum of the measurements

(which scales as n1/2 divided by the number of measures, n, More concisely, the error in the

average scales as n1/2/n ≡ n−1/2

• A child builds a lattice “sculpture” by randomly gluing together

ends of 120 identically sized sticks. For his first structure, the sticks

are glued onto paper (i.e. it is two dimensional), but his later sculp-

ture is a 3-dimensional random network. Two thousand children

Canberra-wide complete similar sculptures. Assuming that the sticks

are glued together with arbitrary angle, plot the probabillity dis-

tributions for the end-to-end distance for the 2- and 3-dimensional

structures that result.

AIM: to apply expressions for Gaussian distributions to an experiment

• Consider three linear, freely-jointed chains having the same number

of steps, N , with monomers of the same size a, but in different di-

mensions. One chain is 1-dimensional, another is 2-dimensional, and

the last is in 3-dimensions. Order the chains in terms of increasing

1. mean end-to-end distance, and

2. probability of finding largest end-to-end distance.

Does your answer agree or contravene your intuition?

• Which random walk sequence has a larger mean size: N = 100 steps of ` = 1 in

1-dimension, or N = 50 steps of size ` =
√

(2/3) in each of 3 directions.

The step size in 1-D is a = ` = 1, so the mean square end-to-end distance of the 1-D chain is

Na2 = 100. The step size in 3-D is

a =
√

(3`2) =
√

(3 × (2/3)) =
√

2,

so the mean square end-to-end distance of the 3-D chain is Na2 = 100. Both chains share the

same mean size.
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• Given a Gaussian chain (another name for an ideal chain) of N monomers, each

of size a with one end of the chain tethered at an origin in 3-dimensional space,

what is the probability that you will find the other, free end of the chain located

a distance greater than
√

Na from the tethered chain end ?

The normalised probability distribution is

P (R) = (
3

2πNa2
) exp (− 3R2

2Na2
).

That is, the probability of finding the ends of the chain separated a distance between R and

R+dR is P (R)dR or P (R)d3R. So, to find the probability of observing the end-to-end distance

less than
√

Na, we need to evaluate

I =

∫

√
Na

0

P (R)d3R

Here, d3R represents a differential volume element. As we seek the probability of end-to-end

distances, we want to recast this in terms of scalar distance R. This is simply done by noting

that d3R ≡ d(Volume)= d(4
3
πR3) = 4πR2 × dR. Thus, we need to evaluate

∫

√
Na

0

4πR2P (R)dR,

or inserting the probability distribution

∫

√
Na

0

4πR2(
3

2πNa2
) exp (− 3R2

2Na2
)dR.

Now before turning to Maple, Mathematica, or tables of integrals, it is best to simplify this

expression. I do that by collecting constants outside the integral and making a change in the

integration variable. Rather than R, I will define a new integration variable x ≡ R/(
√

Na).

Substitution of this new integration variable yields (using dx = dR/(
√

Na), and changing the

integration limits from (R = 0, R =
√

Na) to (x = 0, x = 1) )

I = 4π(
3

2πNa2
)3/2

∫ 1

0

x2(Na2)3/2 exp (−3x2

2
)dx

= 4π(
3

2π
)3/2

∫ 1

0

x2 exp (−3x2

2
)dx.

To check to see if this last expression is correct, we should try to integrate x between 0 and ∞:

as the probability distribution is normalised, this should result in unity. So, I type into Maple

the above equation with the appropriate limits:

4*pi * (3/(2*pi))∧(3/2)* int(x∧2 * exp(-3*x∧2/2), x=0..infinity);

and get the answer

π(
1

π
)3/2

√
π,
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which is 1. When you do this, you might get a another product of cancelling factors which,

although the factors are different that shown here, they still reduce to unity. Now I can change

the upper integration limit back to unity to find the probability that the end-to-end distance

will be less than
√

Na. I type into Maple

4*pi * (3/(2*pi))∧(3/2)* int(x∧2 * exp(-3*x∧2/2), x=0..1);

and get

3π
√

3
√

2(
1

π
)3/2(−1

3
exp (−3/2) +

1

18

√
π
√

6erf(
1

2

√
6)).

Figure 3: Error Function, erf(x) ver-
sus x, as plotted by Maple. Note that
for large values of x or −x, the error
function returns x/ | x |.

erf is the error function; it is 1.0 or -1.0, for large positive

or large negative arguments. To see the functional form

of the error function. use the plot facility on Maple or

any other similar program. In Maple you simply type:

plot (erf(x), x = -5 . . 5); to get output shown in figure

(3)

To get a numerical evaluation of this expression con-

taining the error function, you can most simply rerun the

integration within an “evaluate function” call: evalf( 4*pi

* (3/(2*pi))∧(3/2)* int(x∧2 * exp(-3*x∧2/2), x=0..1));

This gives you 1.078316300/
√

π; to get a number I type

into Maple 1.07831630/ \sqrt(3.14159);, or alternatively

I capitalise pi to “Pi”, and get out I = 0.6083750812.

Thus, the probability of finding the ends of the chain

separated a distance less than
√

Na is 0.61. Therefore,

the probability of finding the chain ends located a distance greater than
√

Na is 1.00− 0.61 or

1.0 − I = 0.39 (32)

• What is the probability of observing a chain in three dimensions whose end to

end distance, R is within one standard deviation of the mean end-to-end distance?

AIM: Use of Maple and integrate distributions.

• • • What is the distribution of monomer-monomer distances of an ideal chain of

N monomers whose first and last monomers are joined to form a ring?

First, consider a Gaussian ring chain where the monomers are labelled 1 to N . Let Rmn be the

end-to-end distance between any two arbitrary monomers n and m within the Gaussian ring.

Clearly R1,N ≡ R = 0. Let PN(Rmn;R = 0) be the distribution of end-to end distances Rmn

14



given that the freely jointed chain of N monomers is a ring. We can write an expression from

this distribution in terms of the distribution of linear chains:

PN(Rm,n;R = 0) = Pn−m(Rmn)PN−n+m(Rmn)

where Pn−m(Rmn) is the distribution of distances for a linear chain of n−m monomers and

PN−n+m(Rmn) is the distribution associated with a linear chain of N − n + m monomers. This

equation results from the fact that the sub-components of a Gaussian chain remain Gaussian,

as long as they contain a large number of monomers.

You can then show, by replacing the RHS of the above equation with Gaussian distributions

(remembering that a linear chain of n − m monomers has 〈R2〉 = (n − m)a2 and that a chain

of N − n + m monomers has 〈R2〉 = (N − n + m)a2) that

PN(Rmn;R = 0) = (
3

2πµ2
)d/2 exp (−3R2

mn

2µ2
),

where

µ2 =| m − n | a2(
N − m + n

N
).

That is, for the Gaussian ring, 〈R2
mn〉 = µ2.

EXAMPLE PROBLEMS

Summary

So far, what we’ve done is construct a model of an Ideal chain, focussing upon its size and its

distribution of sizes

• An ideal chain is self-intersecting, lacks interactions with itself and other chains and is

modelled by a series of freely jointed links (referred to as a Freely Jointed Chain or FJC

• The mean size of a FJC follows the scaling relation < R2 >= Na2, where N and a are

the number and size of monomers or links. If there were orientaitional correlation in the

jointed chain, the scaling relation reduces to < R2 >∼ Na2 or < R2 >= (2 `p

a
− 1)Na2.

Alternatively, we can assume that N and a describe statistical monomers and describe

all ideal chains using < R2 >∼ Na2

• The mean square radius of gyration of an ideal chain is < s2 >=< R2 > /6.

• An ideal chain’s end-to-end distance follows a normal or Gaussian distribution. The

spread in the distribution is on the order of the size, reflecting that the ideal chain

fluctuates greatly.
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