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The dot intracule D(x) of a system gives the Wigner quasi-probability of finding two of its
electrons with u-v = x, where u and v are the interelectronic distance vectors in position and

momentum space, respectively. In this paper, we discuss D(x) and show that its Fourier transform
d(k) can be obtained in closed form for any system whose wavefunction is expanded in a
Gaussian basis set. We then invoke Parseval’s theorem to transform our intracule-based
correlation energy method into a d(k)-based model that requires, at most, a one-dimensional

quadrature.

I. Introduction

In principle, the Schrédinger equation' provides a complete
description of the non-relativistic electronic structure of atoms
and molecules. Unfortunately, it is almost always too complex
to solve exactly and systematic approximations are necessary.
In the most famous of these, the Hartree—Fock method,>? the
wave function is approximated by a single determinant of one-
electron functions and the difference between the resulting
energy and the exact Schrédinger eigenvalue is defined* as the
correlation energy E.. This quantity is very difficult to calcu-
late, even for small systems, and a wide range of approximate
methods have been devised. Wavefunction-based schemes,’
such as configuration interaction, perturbation theory and
coupled-cluster methods, estimate E. from the molecular
orbitals and their energies; DFT methods® estimate it from
the electron density. More recently, however, we have pro-
posed that it may also be possible to extract E. from intracules.

The Position intracule P(u)* and Momentum intracule
M()*!° were introduced long ago and give the probability
density for finding two electrons with separation u = [r; — r;|
in position space or v = [p; — p»| in momentum space.
However, neither is well suited to the estimation of correlation
energies and the reason for this, first clearly enunciated by
Rassolov,'! is that the correlation contribution from a pair of
electrons depends on both their relative position and their
relative momentum.

In an attempt to obtain such “phase-space’ information, we
turned to the reduced Wigner distribution'>'* and we showed
how this can be manipulated to form the Omega intracule
Q(u,v,0),'"* which can be interpreted as the joint quasi-prob-
ability density for u, v and w, the angle between the vectors u
and v. Appropriate integration of Q(u,v,w) yields the lower
intracules,'® including the bivariate Wigner intracule W(u,v)
and Lambda intracule A(s,w), and the univariate P(u), M(v)

Research School of Chemistry, Australian National University,
Canberra, ACT 0200, Australia. E-mail: peter.gill@anu.edu.au
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and Y{w) intracules, as well as the Action intracule A(s) and
the Dot intracule D(x), where s = uv and x = wu-v.

Each intracule is normalized'® to the number of pairs of
electrons and so, for example,

/% D(x)dx:@ (1.1)

o0
where 7 is the number of electrons in the system. Moreover, if
the underlying wavefunction is expanded in a basis of one-
electron functions, the Dot intracule is given by'®

D(x) = I'upealabed), (1.2)
abed
where [',.s 1s a two-particle density matrix element and
[abed)p is the Dot integral over the four basis functions with
indices a, b, ¢ and d. In section II of this paper, we show how
D(x) and its Fourier transform can be computed efficiently
and, in section III, we discuss their physical interpretation
using several simple examples.
We have conjectured!® that the correlation energy E. is a
universal functional of the Omega intracule and, in particular,
that one can write

E. = [¢° [¢° [5Qu,y,0)G(u,y,w)dwdvdu (1.3)

where G(u,v,w) is a correlation kernel. By extending this
conjecture, each of the lower intracules can be combined with
a suitable kernel to yield a correlation model. Of these, the
Wigner intracule ansatz

E. = [§ [§ W(uy)G(u,y)dudy (1.4)

has been the most popular to date and has been studied
numerically in several papers.'>'”?? In sections IV and V of
the present paper, however, the Dot intracule ansatz

E. = [, D(x)G(x)dx (1.5)

and related approaches will be our primary concern. All of our
numerical results are based on UHF/6-311G wavefunctions
and we use atomic units throughout.

This journal is © the Owner Societies 2008
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II. The Dot intracule and its Fourier transform

The Omega intracule is formed'® from the reduced two-
particle density matrix by

1

Qu,v,0) =—— [py(r,r +q,r +u+q,r+u)
(2m)
x eV (u — |u))o(v — [v))d(w — 0,,) drdg dvdu
(2.6)
and the Dot intracule is given similarly by
1

D(x) =——5 [py(r,r +q.r +u+q,r+u)

(2m) (2.7)

¢5(x —u-v)drdgdvdu

This 12-dimensional integral can be simplified by substituting
the Dirac identity

é(z) = ! / " o dk (2.8)

= .

and integrating over v and ¢ to obtain

1
D(x) == [ py(r,r+ku,r +u+ ku,r + u)
2n (2.9)

" dk dr du

Thus, we can obtain the Dot intracule as the Fourier trans-
form

1 [ .
D(x) = — ikx 2.1
(x) Zn[x d(k)e™ dk (2.10)
of the f~-Dot function
dk) = [pa(rr + kuy + u + kuy + wydr du  (2.11)

We note that the normalization of D(x) implies that d(0) =
n(n — 1)/2. If the wavefunction is expanded in a one-electron
basis, eqn (2.11) becomes

d(k) = Z Fabcd[adeLl

abed

(2.12)

where the f~-Dot integrals [abcd], are four-centre overlap
integrals that can, in some cases, be found in closed form.
For example, if the basis functions are s-type Gaussians, we
obtain

], = fe—x|r—A\2e—[)‘\r+ku—8\2e—,‘\r+u+ka—C|2€—5|r+u—D\2 drdu

[sss5
3 exp [—“2 Pz:égf)(f;fk;fz A
(e+)B+0 @2+ m+y”

(2.13)

where 4, u, n, P, Q and R are the usual functions of the
exponents and centers.?® Integrals of higher angular momen-
tum can be generated by differentiating [ssss], with respect to
the Cartesian coordinates of the basis function centres, as first
suggested by Boys.?*

We have modified a development version of the Q-cHEM 3.1
package® to use (2.12), together with (2.13) and its higher
analogues up to [ppppls, to construct the f~Dot function for

arbitrary molecules with s and p basis functions. We are
currently extending our implementation to include d and f
functions and this will allow us to explore the effects of
polarization functions. We will report a systematic investiga-
tion of basis set effects elsewhere®® but we do not expect that
the neglect of polarization functions in the present work will
alter our qualitative conclusions.

If one requires the Dot intracule, there are two ways to
proceed. The first method is to use (1.2) and obtain the
required Dot integrals from the Fourier transforms

3

i
[sss5]) =———————5
[+ ) B+
u2P2+(n+k)P-Q—/le2 _ .
L o0 exp[ 4&2u2+(11+k)2 R+ lkx:| dk
3/2
Ml ke 40
(2.14)
In the concentric special case (i.e. P = Q = R = 0), the
integral (2.14) is
TCZe—iV/x
[ssss]p, = 75 ki (¢) (2.15)

422+ 8) (B + )]

where K; is a modified Bessel function of the second kind?’
and ¢ = 2Aulx|. However, in the general case, we have not
been able to solve it in closed form and have turned instead to
numerical methods. For large x, the evaluation of (2.14) by
standard quadrature becomes problematic because the inte-
grand oscillates rapidly but we found that the Evans-Chung
method of optimal contour integration®® can be employed to
overcome this obstacle. For very large x, it should be possible
to use the asymptotic form?® of (2.14).

A second, more efficient method for forming the Dot
intracule is to form the f~Dot function and then perform the
Fourier transform (2.10). To obtain the results in the next
section, we used Q-CHEM to compute d(k) on a grid of k points
and then performed the inverse transform using the
NINTEGRATE module in the MATHEMATICA package.®

Table 1 summarizes some of the properties of the [ssss],
integral that follow from (2.13) and the properties of the [ssss]p
integral that then follow by the Fourier transform theory.*!

III. Interpretation of D(x) and d(k)

In a system with n, spin-up electrons and ng spin-down
electrons, the Dot intracule D(x) and f-Dot function d(k)
contain n,ng contributions from electrons with antiparallel
spins and n,(n, — 1) + Ingngy — 1) contributions from
electrons with parallel spins. These two types of contribution
are conveniently isolated and illustrated by the helium atom in
its lowest singlet (1S, antiparallel spins) and triplet (*S, parallel
spins) states.

Table 1 Properties of the [ssss]; and [ssss]p integrals

Jak) = [ssssla

Jfak) is a real function
Jdk) = O(lk| ) as [k| — oo
fd(k) is smooth for all real k

Sp(x) = [sssslp

fp(x) is a hermitian function
/" p(x) is discontinuous at x = 0
fo(x) = O(e ™) as x| > o

3448 | Phys. Chem. Chem. Phys., 2008, 10, 3447-3453
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D(x)

"

-10

Fig. 1 D(x) for 'S (—) and S (- --) states of He atom.

Fig. 1 shows D(x) for both states. The intracules are even
functions and the discontinuity of D"(x) at x = 0 is visible. In
the singlet state, the most likely value of x is zero. Because x is
the dot product of u = r; — r, and v = p; — p», this shows that
the electrons are likely to be close together or moving rela-
tively slowly or orbiting each other.'* In the triplet state,
however, we observe a marked reduction around x = 0 and
a significant broadening of the intracule. We attribute this to
the effects of antisymmetry, which creates a Fermi hole around
each electron and substantially reduces the probability of
small u values compared with the singlet. Consequently, small
values of x are also less likely.

Fig. 2 shows d(k) for both states. The functions are even and
their £~ decay is slower than the exponential decay of their
respective intracules. As one would expect, the f~Dot function,
which is narrower for the triplet than for the singlet, provides a
complementary perspective to the Dot intracule. The dip in the
triplet’s intracule causes d(k) to become negative for k = 1.

Fig. 3 shows how D(x) evolves in larger atoms. As we move
from helium to neon, the intracule broadens and develops a
small dip around x = 0. The broadening arises principally
from the higher v (and therefore x) values that occur in heavier

pEE T

.
B
3

LI
-

v

d(k) for 'S (—) and S (---) states of He atom.

D(x)/D(0)

~
-
~ - L 4 ¥

2 4 6 8
Fig. 3 D(x)/D(0) for He (---), Be (- —-), C (---) and Ne (—).

atoms and the dip reflects the increasing importance of
parallel-spin contributions to the intracule (¢f. triplet helium).

Fig. 4, in which we have defined AD(x) = D(x) — Dne(x),
shows the way in which D(x) is perturbed as the neon atom is
progressively transmuted into HF, H,O, NH; and CH,.
During this alchemy, the four lone pairs are successively
converted into ¢ bonds and the intracule decreases slightly
for x < 4 and increases slightly for larger values of x. This is
consistent with our previous conclusion'* that, whereas elec-
trons in lone pairs tend to move orbitally (i.e. ® ~ m/2 and so
|x| is small), those in o bonds tend to move collinearly
(i.e. o ~ 0 or ® ~ © and so |x]| is large).

Fig. 5 and 6 show the parallel and antiparallel components
of D(x) and d(k) for the He---He dimer at the experimental
internuclear separation of 5.6 a.u. The system hasn, = ng = 2
and therefore two parallel and four antiparallel contributions.
Both of the parallel contributions and two of the antiparallel
contributions arise from distant (i.e. u &~ 5.6) electrons; the
other antiparallel contributions arise from electrons on the
same atom.

Because the parallel electrons are far apart and w-v can
therefore take a wide range of values, the parallel component
of D(x) (the dashed curve in Fig. 5) is very flat. We note,
however, the slight dip near x = 0 that arises from the Fermi

AD(X)

0.1

-0.1

-0.2 F

-0.3

-0.4
Fig. 4 AD(x) for HF (---), H,O (- — -), NH; (--) and CH, (—).
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D(x)

1 1 1 1 X
2 4 6 8

Fig. 5 Parallel (- — —) and antiparallel (—) components of D(x) for
He- - -He.

hole. Because the parallel component of D(x) is flat, the
parallel component of d(k) (the dashed curve in Fig. 6) is
correspondingly sharp. The antiparallel component of D(x)
(the solid curve in Fig. 5) is a sum of a contribution from
distant electrons (which produces the tail of the intracule and
which is almost identical to the parallel component) and close
electrons (which govern its behaviour at small x). The two
contributions that produce the antiparallel component of d(k)
are also clear in the solid curve in Fig. 6.

In all of our numerical studies, the computed D(x) is a
strictly positive function. On the basis of this empirical
evidence, we conjecture that D(x) is positive (or, equivalently,
that d(k) is a positive-definite function) in all systems.

IV. A correlation model based on D(x)

Given that we can compute D(x) for an arbitrary molecule,
how can we then extract an estimate of the correlation energy
from it? In previous work, we have taken eqn (1.5) as our
starting point and explored various G(x) kernels. A simpler
approach is to base an estimate on the value of the intracule at

dk)
4

ol L 1 k
0.5 1.0 1.5 2.0

Fig. 6 Parallel (- — —) and antiparallel (—) components of d(k) for
He- - -He.

a selected point x. For example, it can be shown'® that x = 0
corresponds to either u = 0, v = 0 or du/dt = 0. Each of these
is a physical situation in which one might expect the electrons
to be strongly correlated and one could guess that D(0), the
quasi-probability density for x=0, may therefore be a useful
indicator of E..

At x = 0, the [ssss]p integral (2.14) takes the simpler form

2 p2 1202
3 | [ exp WPIkPOTO. R
[ssss]p, = S L 3 2—/ [ gtk 7 dk
[+ OB+ 20 (@222 + k)Y
(4.16)

However, we have not been able to solve this in closed form
and we have therefore obtained D(0) from eqn (2.10) by
integrating d(k) numerically.

We have investigated the simple ansatz

EP = ¢,D(0)* 4.17)

where cp and o are parameters and, by approximate fitting to
the known correlation energies of the first 18 atoms, we
obtained ¢p = —90 mE;, and o = 3/4. Table 2 summarizes
the performance of this model for each of the atoms and
molecules in the G1 dataset.*® The second column gives the
exact correlation energy®® of each species. The differences
AEP = EZ" _ EP between the exact correlation energies
and the energies from eqn (4.17) are given in the fifth column
and, for comparison, the differences AEM'? Fexact _
EMP2 between the exact and MP2/6-311G correlation energies
are given in the third column.

The scatterplot of EZ“! against EZ is shown in Fig. 7 and
the mean absolute error (MAE) over the G1 set is 28 mE},.
Examination of the errors in Table 2 reveals that, although the
ansatz performs well for most atoms (Ne, with AEP = 33
mEy, is the worst) and for many of the smallest molecules, it
performs poorly for the larger systems and disilane (AE? =
169 mE;,) and ethane (AE? = 138 mE),) are the extreme
examples of this.

The reason for such failures can be understood by examin-
ing the variation of D(0) in the H, molecule with the bond
length R. Table 3 shows that D(0), and therefore E?, decays
too slowly at large R. In fact, whereas London dispersion
produces EZ* ~ O(R™®), it can be shown that D(0) ~
O(R™"). As a result, in large molecules, D(0) includes spur-
iously large contributions from well-separated electrons.

V. A correlation model based on d(k)

In section II, we showed that it is useful, both theoretically and
numerically, to regard the Dot intracule as the Fourier trans-
form of a more fundamental (and more easily computed)
object (2.11) that we have called the f~Dot function. In view
of this, it is interesting to explore the use of the General
Parseval Relation® to re-cast (1.5) as

E. = [*,d(k)g(k)dk (5.18)

where g(k) is the Fourier transform of G(x). This leads us to
consider a new class of kernel, in k space rather than x space,
and allows us to exploit the fact that we can compute d(k)
analytically and thereby obtain an expression for the
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Table 2 The exact correlation energy (E&*Y), the MP2 error
(AEMP?), the EY error (AEY), and the EP error (AEP), for the atoms
and molecules in the G1 dataset. All values in mE),

Mole- Mole-

cule —EZat AEMP2AEYAED cule —EZt AEMP2AED AEP
H 0 0 0 0 HCO 553 —298 —26 -8
He 42 -29 1 -1 S 597 —458 1 5
H, 41 -23 —1 —1 SiH,(B)) 540 —382 27 44
Li 45 -32 0 10 SiH,('4,) 567  —400 6 20
Be 94 =56 —12 =5 O, 636 —349 —54 —42
LiH 83 —57 7 10 H,CO 586 =319 —12 10
B 121 —-80 -9 1 CH, 518 —293 53 80
BeH 93 —62 5 24 Cl 658 =579 8 0
C 151 —108 0 7 PH, 611 —440 29 30
Li, 124 —82 4 13 SiH; 575 —403 44 58
N 185 —137 14 13 Ar 723 —-628 17 -6
CH 194 —128 -3 7 HCI 707 —605 23 2
(0] 249 —174 5 1 H,S 683 -503 31 17
NH 236 —158 13 10 PH; 652 —464 41 39
CH,(*B;) 208 —135 31 34 SiH, 606 —420 61 76
CH,('4,) 239 —-152 -4 6 F, 757 —433 =75 —69
F 318 =210 —1-15 H,0, 711 —403 =31 -17
OH 309 —194 4—-10 N,H, 641 —-368 33 60
NH, 287 —177 20 8 CH3;0OH 629 —364 38 67
CH; 254 —156 45 39 C,Hg¢ 561 —327 96 138
Ne 391 —243 —2-33 CO, 876 —451 =52 -23
HF 389 -230 —-4-35 CS 867 —575 =33 —18
H,O 371 =215 9—-20 Na, 819 —543 -9 -39
NH; 340 —198 32 8 SiO 879 —530 —48 -36
CHy4 299 —178 60 45 SO 957 —635 =33 -9
Na 396 -265 —-8-13 CIO 1002 —787 —28 -3
Mg 438 -292 —15-15 FCl 1063 —806 —35 —18
LiF 441 -260 -3 -21 HOCI 1045 -792 —14 3
Al 465 —324 —12 -5 CH;Cl 968 —757 58 82
CN 483 —-290 —63 -39 CH3;SH 946 —654 68 100
Si 500 —363 -9 2 NaCl 1101 —872 30 -21
N, 549 —264 —59 —48 Si, 1077 —761 =30 —30
CO 535 —275 —46 -35 P, 1205 —816 —22 26
HCN 515 -257 =23-15 S, 1275 -933 2 10
HCCH 480 —254 14 21 SO, 1334 =791 =76 -7
P 540 —405 -2 8 SiHg 1183 —821 113 169
NO 596 —335 —-64-49 Cl, 1380  —1186 9 10
Mean absolute errors (MAEs)

Atoms only 244 6 8
Molecules only 421 33 34
Atoms and molecules 378 27 28

correlation energy FE. that requires at most a one-dimensional
quadrature.
One of the simplest possible k-space kernels is

glk) = cao(k — ko),

where ¢, and kq are parameters. In this case, eqn (5.18) takes
the simple closed form

Ed = cqd(ko)

(5.19)

(5.20)

This expression is equivalent to the two-parameter formula
given in eqn (10) of ref. 22 where, by fitting to the known
correlation energies of the first 18 atoms, it was found that the
optimal values of the parameters are ¢; = —76.95 mE) and
ko = 0.8474. The differences AE! = E&**' — E? between the
energies from eqn (5.20) and the exact correlation energies for
the atoms and molecules in the G1 dataset are given in the
fourth column of Table 2.

The scatterplot of E, against EY is shown in Fig. 8 and the
MAE over the G1 set is 27 mE),. Examination of the errors in
Table 2 reveals that, like (4.17), the ansatz (5.20) performs well
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Fig. 7 EZ* ys. EP for the systems in the G1 dataset (mkE),).

for atoms (Ar, with AEf = 17 mE, is worst) and small
molecules, but is less effective in the larger systems. As before,
disilane (AE? = 113 mE,,) and ethane (AEY = 96 mE},) produce
the largest errors.

As with the first ansatz, part of the reason for such failures
can be traced to the variation of d(k) in the H, molecule. The
results in Table 3 show that, unlike D(0), d(ky) decays tgo
rapidly with R. In fact, it can be shown that d(ky) ~ O(e %),
where { depends on the exponents of the Gaussian basis
functions, and this means that E is incapable of describing
long-range correlation (e.g. dispersion). Nonetheless, although
d(ko) behaves incorrectly, it seems to approximate R~° some-
what better than D(0) does.

Finally, we note that while the R-dependent decay beha-
viour of D(0) and d(ko) is very different, the models based
upon these two quantities produce very similar estimates of the
correlation energy. Their overall errors are almost indistin-
guishable and, moreover, there are strong statistical simila-
rities between their errors for individual molecules. Given that
a single point in x space embodies information from all k&
values (and vice versa), it is particularly surprising that these
two different models seem to capture the same electron
correlation effects.

Table 3 Variation of the correlation energy E&* (mE,, from ref. 36),
D(0) and d(ko), with the bond length R (a.u.) in the H, molecule

R —EX D(0) d(ko)

0 42.05 0.3548 0.5549
1 39.40 0.3493 0.5338
2 46.51 0.3367 0.4996
3 40.11 0.2138 0.2404
4 13.50 0.1453 0.0978
5 3.30 0.1127 0.0417
6 0.76 0.0931 0.0181
7 0.19 0.0796 0.0078
8 0.05 0.0696 0.0033
9 0.02 0.0619 0.0014
10 0.01 0.0557 0.0005 ,
Large O(R™%) O(R™") O(e™*%)

This journal is © the Owner Societies 2008
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1400 | v Y VL. Reaction energy errors
1200 | It is clear from Table 2 that the MAEs of the popular MP2
t method are at least an order of magnitude larger than those of
I the E£¢ and E? models. However, MP2 is a valuable tool in
1000 | quantum chemistry because its errors are generally systematic
| and tend to cancel between reactants and products in chemical
5 800f reactions, particularly for those that are isodesmic (same
“Xﬁj’ I number and type of bonds in the reactants and products)
I 600 and isogyric (same number of unpaired electrons in the
I reactants and products).
400 | In Table 4, we consider a variety of reactions whose MP2,
[ E? and EP correlation energy errors can be derived from the
200 [ data in Table 2. Each of the first 47 reactions involves a
i homolytic bond fission and is therefore neither isodesmic nor
ol. isogyric. Overall, the accuracies of the three methods are

comparable, with MAEs close to 20 mE;,, but MP2 tends to
be least accurate for the smallest systems. The remaining 24
reactions are both isodesmic and isogyric and, as such, are
significantly easier to model accurately. Both MP2 and the
intracule-based approaches are more accurate for these reac-
tions and, on average, the MP2 errors are roughly half as large
as those of the EY and EP models.

0 200 400 600 800 1000 1200 1400
—Eg

Fig. 8 EZ™ ys. EY for the systems in the G1 dataset (mEy,).

Table 4 Reaction correlation energy errors AE (mkE)) of the MP2, E? and EP models

Reaction AEMP? AE? AE” Reaction AEMP? AE! AE”
H, - H+H 23 1 1 0, - 20 0 64 44
LiH - Li + H 25 —6 0 F, - 2F 13 73 39
BeH — Be + H 7 —17 =29 HOOH - 20H 15 38 -3
Li, - Li + Li 18 —4 7 CO, - CO +0 1 12 —11
CH->C+H 21 3 0 CS—->C+S 9 34 30
NH - N + H 20 0 3 Si0O — Si + O -7 44 39
CHy('4,) > CH + H 24 1 1 SO -S+ 0 3 39 15
OH - O + H 19 1 11 ClO - Cl+ O 33 42 4
NH, - NH + H 19 -7 2 FCl - F + Cl 17 42 3
CH; - CH,(’B)) + H 22 —14 -5 HOCI - OH + ClI 19 26 -13
HF - F + H 20 4 20 SO, - SO + O —18 48 -1
H,O - OH + H 21 -5 10

NH; - NH, + H 22 -12 0 CH; + OH - CH;3 + H,O 1 -10 —16
CH, » CH; +H 2 -15 -6 CH, + NH, —» CH; + NH; 0 -3 -6
LiF - Li + F 18 3 16 PH; + OH - PH, + H,O 3 =7 -19
HCO - CO + H 23 -20 -27 PH; + NH, —» PH, + NH; 3 0 -9
H,CO - HCO + H 21 —14 —18 PH; + CH; —» PH, + CH, 3 3 -3
C,H, — 2CH,(’B)) 24 9 —-12 SiH, + OH - SiH3 + H,0 3 —12 —28
SiH; — SiH,(°B;) + H 21 -17 —14 SiH, + NH, — SiH; + NH; —4 =5 —18
HCl - Cl + H 26 —15 -2 SiH4 + CH; — SiH; + CHy4 —4 -2 -12
PH; - PH, + H 24 —12 -9 SiH, + PH, — SiH; + PH; =7 -5 -9
SiH; — SiH; + H 17 —17 —18 CH;Cl + OH —» CH;0H + CI 8 —16 -5
N,H; — 2NH, 15 6 —44 CH;Cl + H,O — CH3;0H + HCI 2 -5 7
CH;0H — CH; + OH 14 11 —38 C,Hg + OH — CH;0H + CHj; 1 -17 -22
CQH(, d 2CH3 15 -5 —60 CZH(, + Hzo d CH3OH + CH4 0 -7 —6
Na, —» 2Na 12 =7 33 CH;3SH + H,O —» CH3;0H + H,S 1 -8 4
CH;Cl - CH; + Cl 22 -5 —43 CH;3SH +HCl —» CH;Cl + H,S -1 -2 -3
Si, — 2Si 35 11 34 C,Hg¢ + Cl, —» 2CH;CI1 0 12 16
P, — 2P 6 19 42 C,Hg + HOOH — 2CH;0H 3 11 13
S, —» 28 17 0 0 CH, + HOCI — CH;Cl + H,O -2 21 14
Si,H¢ — 2SiH; 15 —24 —53 CH, + HOCI - CH;OH + HCI 1 15 21
Cl, - 2Cl1 28 8 -10 HOCI + HF — CIF + H,O 1 -8 —6
CN->C+ N 45 77 59 HOCI + OH - CIO + H,O —16 —-10 —16
N, - 2N —11 86 74 H,CO + CH; - HCO + CH,4 0 1 -12
CO-C+0 -7 51 43 HCN + CH; - CN + CH, —55 =25 —18
HCN - CH + N -9 33 35 CO, + CH; - H,CO + HCO —10 -31 —14
Mean absolute errors (MAEs)

Dissociation reactions 18 21 21
Isodesmic and isogyric reactions 5 10 12
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Overall, the reaction errors of the intracule-based models
are somewhat larger and significantly less systematic than
those of MP2. On the other hand, the cost of computing the
E? correlation energies from eqn (5.20)—roughly the same as a
single Hartree-Fock SCF iteration—is small compared with
MP2.

VII. Conclusions

We have presented an efficient method for computing the Dot
intracule D(x) of an atomic or molecular system and for
computing its Fourier transform, the f~-Dot function d(k).
We have shown that the latter can be formed from the reduced
two-particle density matrix and that this can be accomplished
in closed form when the parent wavefunction is expanded in a
Gaussian one-electron basis.

We have argued that both D(x) and d(k) can be used as
starting points in intracule functional models of the electron
correlation energy and we have discussed the numerical results
of two such models. In one of these, the correlation energy
estimate EY is available in closed-form and can be computed
very rapidly.
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