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The dot intracule D(x) of a system gives the Wigner quasi-probability of finding two of its

electrons with u�v = x, where u and v are the interelectronic distance vectors in position and

momentum space, respectively. In this paper, we discuss D(x) and show that its Fourier transform

d(k) can be obtained in closed form for any system whose wavefunction is expanded in a

Gaussian basis set. We then invoke Parseval’s theorem to transform our intracule-based

correlation energy method into a d(k)-based model that requires, at most, a one-dimensional

quadrature.

I. Introduction

In principle, the Schrödinger equation1 provides a complete

description of the non-relativistic electronic structure of atoms

and molecules. Unfortunately, it is almost always too complex

to solve exactly and systematic approximations are necessary.

In the most famous of these, the Hartree–Fock method,2,3 the

wave function is approximated by a single determinant of one-

electron functions and the difference between the resulting

energy and the exact Schrödinger eigenvalue is defined4 as the

correlation energy Ec. This quantity is very difficult to calcu-

late, even for small systems, and a wide range of approximate

methods have been devised. Wavefunction-based schemes,5

such as configuration interaction, perturbation theory and

coupled-cluster methods, estimate Ec from the molecular

orbitals and their energies; DFT methods6 estimate it from

the electron density. More recently, however, we have pro-

posed that it may also be possible to extract Ec from intracules.

The Position intracule P(u)7,8 and Momentum intracule

M(v)9,10 were introduced long ago and give the probability

density for finding two electrons with separation u = |r1 � r2|

in position space or v = |p1 � p2| in momentum space.

However, neither is well suited to the estimation of correlation

energies and the reason for this, first clearly enunciated by

Rassolov,11 is that the correlation contribution from a pair of

electrons depends on both their relative position and their

relative momentum.

In an attempt to obtain such ‘‘phase-space’’ information, we

turned to the reduced Wigner distribution12,13 and we showed

how this can be manipulated to form the Omega intracule

O(u,v,o),14 which can be interpreted as the joint quasi-prob-

ability density for u, v and o, the angle between the vectors u

and v. Appropriate integration of O(u,v,o) yields the lower

intracules,15 including the bivariate Wigner intracule W(u,v)

and Lambda intracule L(s,o), and the univariate P(u), M(v)

and U(o) intracules, as well as the Action intracule A(s) and

the Dot intracule D(x), where s = uv and x = u�v.
Each intracule is normalized16 to the number of pairs of

electrons and so, for example,

Z 1
�1

DðxÞdx ¼ nðn� 1Þ
2

ð1:1Þ

where n is the number of electrons in the system. Moreover, if

the underlying wavefunction is expanded in a basis of one-

electron functions, the Dot intracule is given by16

DðxÞ ¼
X
abcd

Gabcd ½abcd�D ð1:2Þ

where Gabcd is a two-particle density matrix element and

[abcd]D is the Dot integral over the four basis functions with

indices a, b, c and d. In section II of this paper, we show how

D(x) and its Fourier transform can be computed efficiently

and, in section III, we discuss their physical interpretation

using several simple examples.

We have conjectured15 that the correlation energy Ec is a

universal functional of the Omega intracule and, in particular,

that one can write

Ec =
R
N

0

R
N

0

R p
0O(u,v,o)G(u,v,o)dodvdu (1.3)

where G(u,v,o) is a correlation kernel. By extending this

conjecture, each of the lower intracules can be combined with

a suitable kernel to yield a correlation model. Of these, the

Wigner intracule ansatz

Ec =
R
N

0

R
N

0 W(u,v)G(u,v)dudv (1.4)

has been the most popular to date and has been studied

numerically in several papers.15,17–22 In sections IV and V of

the present paper, however, the Dot intracule ansatz

Ec =
R
N

�ND(x)G(x)dx (1.5)

and related approaches will be our primary concern. All of our

numerical results are based on UHF/6-311G wavefunctions

and we use atomic units throughout.

Research School of Chemistry, Australian National University,
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w For Part II see ref. 22.
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II. The Dot intracule and its Fourier transform

The Omega intracule is formed15 from the reduced two-

particle density matrix by

Oðu; v;oÞ ¼ 1

ð2pÞ3
R
r2ðr; rþ q; rþ uþ q; rþ uÞ

� eiq�vdðu� jujÞdðv� jvjÞdðo� yuvÞdr dq dvdu
ð2:6Þ

and the Dot intracule is given similarly by

DðxÞ ¼ 1

ð2pÞ3
R
r2ðr; rþ q; rþ uþ q; rþ uÞ

eiq�vdðx� u � vÞdr dqdvdu
ð2:7Þ

This 12-dimensional integral can be simplified by substituting

the Dirac identity

dðzÞ � 1

2p

Z 1
�1

eizk dk ð2:8Þ

and integrating over v and q to obtain

DðxÞ ¼ 1

2p

R
r2ðr; rþ ku; rþ uþ ku; rþ uÞ

eikx dk drdu

ð2:9Þ

Thus, we can obtain the Dot intracule as the Fourier trans-

form

DðxÞ ¼ 1

2p

Z 1
�1

dðkÞeikx dk ð2:10Þ

of the f-Dot function

d(k) =
R
r2(r,r + ku,r + u + ku,r + u)dr du (2.11)

We note that the normalization of D(x) implies that d(0) =

n(n � 1)/2. If the wavefunction is expanded in a one-electron

basis, eqn (2.11) becomes

dðkÞ ¼
X
abcd

Gabcd ½abcd�d ð2:12Þ

where the f-Dot integrals [abcd]d are four-centre overlap

integrals that can, in some cases, be found in closed form.

For example, if the basis functions are s-type Gaussians, we

obtain

½ssss�d ¼
R
e�ajr�Aj

2

e�bjrþku�Bj
2

e�gjrþuþku�Cj
2

e�djrþu�Dj
2

dr du

¼ p3

½ðaþ dÞðbþ gÞ�3=2
exp m2P2þðZþkÞP�Q�l2Q2

4l2m2þðZþkÞ2 � R
h i

½4l2m2 þ ðZþ kÞ2�3=2

ð2:13Þ

where l, m, Z, P, Q and R are the usual functions of the

exponents and centers.23 Integrals of higher angular momen-

tum can be generated by differentiating [ssss]d with respect to

the Cartesian coordinates of the basis function centres, as first

suggested by Boys.24

We have modified a development version of the Q-CHEM 3.1

package25 to use (2.12), together with (2.13) and its higher

analogues up to [pppp]d, to construct the f-Dot function for

arbitrary molecules with s and p basis functions. We are

currently extending our implementation to include d and f

functions and this will allow us to explore the effects of

polarization functions. We will report a systematic investiga-

tion of basis set effects elsewhere26 but we do not expect that

the neglect of polarization functions in the present work will

alter our qualitative conclusions.

If one requires the Dot intracule, there are two ways to

proceed. The first method is to use (1.2) and obtain the

required Dot integrals from the Fourier transforms

½ssss�D ¼
p3

½ðaþ dÞðbþ gÞ�3=2

1

2p

Z 1
�1

exp
m2P2þðZþkÞP�Q�l2Q2

4l2m2þðZþkÞ2 � Rþ ikx
h i

½4l2m2 þ ðZþ kÞ2�3=2
dk

ð2:14Þ

In the concentric special case (i.e. P = Q = R = 0), the

integral (2.14) is

½ssss�D ¼
p2e�iZx

4l2m2½ðaþ dÞðbþ gÞ�3=2
cK1ðcÞ ð2:15Þ

where K1 is a modified Bessel function of the second kind27

and c = 2lm|x|. However, in the general case, we have not

been able to solve it in closed form and have turned instead to

numerical methods. For large x, the evaluation of (2.14) by

standard quadrature becomes problematic because the inte-

grand oscillates rapidly but we found that the Evans-Chung

method of optimal contour integration28 can be employed to

overcome this obstacle. For very large x, it should be possible

to use the asymptotic form29 of (2.14).

A second, more efficient method for forming the Dot

intracule is to form the f-Dot function and then perform the

Fourier transform (2.10). To obtain the results in the next

section, we used Q-CHEM to compute d(k) on a grid of k points

and then performed the inverse transform using the

NINTEGRATE module in the MATHEMATICA package.30

Table 1 summarizes some of the properties of the [ssss]d
integral that follow from (2.13) and the properties of the [ssss]D
integral that then follow by the Fourier transform theory.31

III. Interpretation of D(x) and d(k)

In a system with na spin-up electrons and nb spin-down

electrons, the Dot intracule D(x) and f-Dot function d(k)

contain nanb contributions from electrons with antiparallel

spins and 1
2
na(na � 1) + 1

2
nb(nb � 1) contributions from

electrons with parallel spins. These two types of contribution

are conveniently isolated and illustrated by the helium atom in

its lowest singlet (1S, antiparallel spins) and triplet (3S, parallel

spins) states.

Table 1 Properties of the [ssss]d and [ssss]D integrals

fd(k) = [ssss]d fD(x) = [ssss]D

fd(k) is a real function fD(x) is a hermitian function
fd(k) = O(|k|�3) as |k| - N f00D(x) is discontinuous at x = 0
fd(k) is smooth for all real k fD(x) = O(e�2lm|x|) as |x| - N

3448 | Phys. Chem. Chem. Phys., 2008, 10, 3447–3453 This journal is �c the Owner Societies 2008



Fig. 1 shows D(x) for both states. The intracules are even

functions and the discontinuity of D00(x) at x = 0 is visible. In

the singlet state, the most likely value of x is zero. Because x is

the dot product of u= r1 � r2 and v= p1 � p2, this shows that

the electrons are likely to be close together or moving rela-

tively slowly or orbiting each other.14 In the triplet state,

however, we observe a marked reduction around x = 0 and

a significant broadening of the intracule. We attribute this to

the effects of antisymmetry, which creates a Fermi hole around

each electron and substantially reduces the probability of

small u values compared with the singlet. Consequently, small

values of x are also less likely.

Fig. 2 shows d(k) for both states. The functions are even and

their k�3 decay is slower than the exponential decay of their

respective intracules. As one would expect, the f-Dot function,

which is narrower for the triplet than for the singlet, provides a

complementary perspective to the Dot intracule. The dip in the

triplet’s intracule causes d(k) to become negative for k \ 1.

Fig. 3 shows how D(x) evolves in larger atoms. As we move

from helium to neon, the intracule broadens and develops a

small dip around x = 0. The broadening arises principally

from the higher v (and therefore x) values that occur in heavier

atoms and the dip reflects the increasing importance of

parallel-spin contributions to the intracule (cf. triplet helium).

Fig. 4, in which we have defined DD(x) = D(x) � DNe(x),

shows the way in which D(x) is perturbed as the neon atom is

progressively transmuted into HF, H2O, NH3 and CH4.

During this alchemy, the four lone pairs are successively

converted into s bonds and the intracule decreases slightly

for x t 4 and increases slightly for larger values of x. This is

consistent with our previous conclusion14 that, whereas elec-

trons in lone pairs tend to move orbitally (i.e. o E p/2 and so

|x| is small), those in s bonds tend to move collinearly

(i.e. o E 0 or o E p and so |x| is large).

Fig. 5 and 6 show the parallel and antiparallel components

of D(x) and d(k) for the He� � �He dimer at the experimental

internuclear separation of 5.6 a.u. The system has na = nb = 2

and therefore two parallel and four antiparallel contributions.

Both of the parallel contributions and two of the antiparallel

contributions arise from distant (i.e. u E 5.6) electrons; the

other antiparallel contributions arise from electrons on the

same atom.

Because the parallel electrons are far apart and u�v can

therefore take a wide range of values, the parallel component

of D(x) (the dashed curve in Fig. 5) is very flat. We note,

however, the slight dip near x = 0 that arises from the Fermi

Fig. 1 D(x) for 1S (—) and 3S (� � �) states of He atom.

Fig. 2 d(k) for 1S (—) and 3S (� � �) states of He atom.

Fig. 3 D(x)/D(0) for He (� � �), Be (– – –), C (-�-) and Ne (—).

Fig. 4 DD(x) for HF (� � �), H2O (– – –), NH3 (-�-) and CH4 (—).
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hole. Because the parallel component of D(x) is flat, the

parallel component of d(k) (the dashed curve in Fig. 6) is

correspondingly sharp. The antiparallel component of D(x)

(the solid curve in Fig. 5) is a sum of a contribution from

distant electrons (which produces the tail of the intracule and

which is almost identical to the parallel component) and close

electrons (which govern its behaviour at small x). The two

contributions that produce the antiparallel component of d(k)

are also clear in the solid curve in Fig. 6.

In all of our numerical studies, the computed D(x) is a

strictly positive function. On the basis of this empirical

evidence, we conjecture that D(x) is positive (or, equivalently,

that d(k) is a positive-definite function32) in all systems.

IV. A correlation model based on D(x)

Given that we can compute D(x) for an arbitrary molecule,

how can we then extract an estimate of the correlation energy

from it? In previous work, we have taken eqn (1.5) as our

starting point and explored various G(x) kernels. A simpler

approach is to base an estimate on the value of the intracule at

a selected point x. For example, it can be shown15 that x = 0

corresponds to either u= 0, v= 0 or du/dt= 0. Each of these

is a physical situation in which one might expect the electrons

to be strongly correlated and one could guess that D(0), the

quasi-probability density for x=0, may therefore be a useful

indicator of Ec.

At x = 0, the [ssss]D integral (2.14) takes the simpler form

½ssss�D ¼
p3

½ðaþ dÞðbþ gÞ�3=2
1

2p

Z 1
�1

exp m2P2þkP�Q�l2Q2

4l2m2þk2 � R
h i

ð4l2m2 þ k2Þ3=2
dk

ð4:16Þ

However, we have not been able to solve this in closed form

and we have therefore obtained D(0) from eqn (2.10) by

integrating d(k) numerically.

We have investigated the simple ansatz

ED
c = cDD(0)a (4.17)

where cD and a are parameters and, by approximate fitting to

the known correlation energies of the first 18 atoms, we

obtained cD = �90 mEh and a = 3/4. Table 2 summarizes

the performance of this model for each of the atoms and

molecules in the G1 dataset.33 The second column gives the

exact correlation energy34 of each species. The differences

DED
c = Eexact

c � ED
c between the exact correlation energies

and the energies from eqn (4.17) are given in the fifth column

and, for comparison, the differences DEMP2
c = Eexact

c �
EMP2
c between the exact and MP2/6-311G correlation energies

are given in the third column.

The scatterplot of Eexact
c against ED

c is shown in Fig. 7 and

the mean absolute error (MAE) over the G1 set is 28 mEh.

Examination of the errors in Table 2 reveals that, although the

ansatz performs well for most atoms (Ne, with DED
c = �33

mEh, is the worst) and for many of the smallest molecules, it

performs poorly for the larger systems and disilane (DED
c =

169 mEh) and ethane (DED
c = 138 mEh) are the extreme

examples of this.

The reason for such failures can be understood by examin-

ing the variation of D(0) in the H2 molecule with the bond

length R. Table 3 shows that D(0), and therefore ED
c , decays

too slowly at large R. In fact, whereas London dispersion

produces Eexact
c B O(R�6), it can be shown that D(0) B

O(R�1). As a result, in large molecules, D(0) includes spur-

iously large contributions from well-separated electrons.

V. A correlation model based on d(k)

In section II, we showed that it is useful, both theoretically and

numerically, to regard the Dot intracule as the Fourier trans-

form of a more fundamental (and more easily computed)

object (2.11) that we have called the f-Dot function. In view

of this, it is interesting to explore the use of the General

Parseval Relation35 to re-cast (1.5) as

Ec =
R
N

�Nd(k)g(k)dk (5.18)

where g(k) is the Fourier transform of G(x). This leads us to

consider a new class of kernel, in k space rather than x space,

and allows us to exploit the fact that we can compute d(k)

analytically and thereby obtain an expression for the

Fig. 5 Parallel (– – –) and antiparallel (—) components of D(x) for

He� � �He.

Fig. 6 Parallel (– – –) and antiparallel (—) components of d(k) for

He� � �He.
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correlation energy Ec that requires at most a one-dimensional

quadrature.

One of the simplest possible k-space kernels is

g(k) = cdd(k � k0), (5.19)

where cd and k0 are parameters. In this case, eqn (5.18) takes

the simple closed form

Ed
c = cdd(k0) (5.20)

This expression is equivalent to the two-parameter formula

given in eqn (10) of ref. 22 where, by fitting to the known

correlation energies of the first 18 atoms, it was found that the

optimal values of the parameters are cd = �76.95 mEh and

k0 = 0.8474. The differences DEd
c = Eexact

c � Ed
c between the

energies from eqn (5.20) and the exact correlation energies for

the atoms and molecules in the G1 dataset are given in the

fourth column of Table 2.

The scatterplot of Ec against E
d
c is shown in Fig. 8 and the

MAE over the G1 set is 27 mEh. Examination of the errors in

Table 2 reveals that, like (4.17), the ansatz (5.20) performs well

for atoms (Ar, with DEd
c = 17 mEh, is worst) and small

molecules, but is less effective in the larger systems. As before,

disilane (DEd
c = 113mEh) and ethane (DEd

c = 96mEh) produce

the largest errors.

As with the first ansatz, part of the reason for such failures

can be traced to the variation of d(k0) in the H2 molecule. The

results in Table 3 show that, unlike D(0), d(k0) decays too

rapidly with R. In fact, it can be shown that d(k0) B O(e�zR
2

),

where z depends on the exponents of the Gaussian basis

functions, and this means that Ed
c is incapable of describing

long-range correlation (e.g. dispersion). Nonetheless, although

d(k0) behaves incorrectly, it seems to approximate R�6 some-

what better than D(0) does.

Finally, we note that while the R-dependent decay beha-

viour of D(0) and d(k0) is very different, the models based

upon these two quantities produce very similar estimates of the

correlation energy. Their overall errors are almost indistin-

guishable and, moreover, there are strong statistical simila-

rities between their errors for individual molecules. Given that

a single point in x space embodies information from all k

values (and vice versa), it is particularly surprising that these

two different models seem to capture the same electron

correlation effects.

Fig. 7 Eexact
c vs. ED

c for the systems in the G1 dataset (mEh).

Table 2 The exact correlation energy (Eexact
c ), the MP2 error

(DEMP2
c ), the Ed

c error (DEd
c), and the ED

c error (DED
c ), for the atoms

and molecules in the G1 dataset. All values in mEh

Mole-
cule �Eexact

c DEMP2
c DEd

c DE
D
c

Mole-
cule �Eexact

c DEMP2
c DEd

c DED
c

H 0 0 0 0 HCO 553 �298 �26 �8
He 42 �29 1 �1 S 597 �458 1 5
H2 41 �23 �1 �1 SiH2(

3B1) 540 �382 27 44
Li 45 �32 0 10 SiH2(

1A1) 567 �400 6 20
Be 94 �56 �12 �5 O2 636 �349 �54 �42
LiH 83 �57 7 10 H2CO 586 �319 �12 10
B 121 �80 �9 1 C2H4 518 �293 53 80
BeH 93 �62 5 24 Cl 658 �579 8 0
C 151 �108 0 7 PH2 611 �440 29 30
Li2 124 �82 4 13 SiH3 575 �403 44 58
N 185 �137 14 13 Ar 723 �628 17 �6
CH 194 �128 �3 7 HCl 707 �605 23 2
O 249 �174 5 1 H2S 683 �503 31 17
NH 236 �158 13 10 PH3 652 �464 41 39
CH2(

3B1) 208 �135 31 34 SiH4 606 �420 61 76
CH2(

1A1) 239 �152 �4 6 F2 757 �433 �75 �69
F 318 �210 �1 �15 H2O2 711 �403 �31 �17
OH 309 �194 4 �10 N2H4 641 �368 33 60
NH2 287 �177 20 8 CH3OH 629 �364 38 67
CH3 254 �156 45 39 C2H6 561 �327 96 138
Ne 391 �243 �2 �33 CO2 876 �451 �52 �23
HF 389 �230 �4 �35 CS 867 �575 �33 �18
H2O 371 �215 9 �20 Na2 819 �543 �9 �59
NH3 340 �198 32 8 SiO 879 �530 �48 �36
CH4 299 �178 60 45 SO 957 �635 �33 �9
Na 396 �265 �8 �13 ClO 1002 �787 �28 �3
Mg 438 �292 �15 �15 FCl 1063 �806 �35 �18
LiF 441 �260 �3 �21 HOCl 1045 �792 �14 3
Al 465 �324 �12 �5 CH3Cl 968 �757 58 82
CN 483 �290 �63 �39 CH3SH 946 �654 68 100
Si 500 �363 �9 2 NaCl 1101 �872 30 �21
N2 549 �264 �59 �48 Si2 1077 �761 �30 �30
CO 535 �275 �46 �35 P2 1205 �816 �22 �26
HCN 515 �257 �23 �15 S2 1275 �933 2 10
HCCH 480 �254 14 21 SO2 1334 �791 �76 �7
P 540 �405 �2 8 Si2H6 1183 �821 113 169
NO 596 �335 �64 �49 Cl2 1380 �1186 9 10
Mean absolute errors (MAEs)
Atoms only 244 6 8
Molecules only 421 33 34
Atoms and molecules 378 27 28

Table 3 Variation of the correlation energy Eexact
c (mEh, from ref. 36),

D(0) and d(k0), with the bond length R (a.u.) in the H2 molecule

R �Eexact
c D(0) d(k0)

0 42.05 0.3548 0.5549
1 39.40 0.3493 0.5338
2 46.51 0.3367 0.4996
3 40.11 0.2138 0.2404
4 13.50 0.1453 0.0978
5 3.30 0.1127 0.0417
6 0.76 0.0931 0.0181
7 0.19 0.0796 0.0078
8 0.05 0.0696 0.0033
9 0.02 0.0619 0.0014
10 0.01 0.0557 0.0005
Large O(R�6) O(R�1) O(e�zR

2

)
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VI. Reaction energy errors

It is clear from Table 2 that the MAEs of the popular MP2

method are at least an order of magnitude larger than those of

the Ed
c and ED

c models. However, MP2 is a valuable tool in

quantum chemistry because its errors are generally systematic

and tend to cancel between reactants and products in chemical

reactions, particularly for those that are isodesmic (same

number and type of bonds in the reactants and products)

and isogyric (same number of unpaired electrons in the

reactants and products).

In Table 4, we consider a variety of reactions whose MP2,

Ed
c and ED

c correlation energy errors can be derived from the

data in Table 2. Each of the first 47 reactions involves a

homolytic bond fission and is therefore neither isodesmic nor

isogyric. Overall, the accuracies of the three methods are

comparable, with MAEs close to 20 mEh, but MP2 tends to

be least accurate for the smallest systems. The remaining 24

reactions are both isodesmic and isogyric and, as such, are

significantly easier to model accurately. Both MP2 and the

intracule-based approaches are more accurate for these reac-

tions and, on average, the MP2 errors are roughly half as large

as those of the Ed
c and ED

c models.

Fig. 8 Eexact
c vs. Ed

c for the systems in the G1 dataset (mEh).

Table 4 Reaction correlation energy errors DE (mEh) of the MP2, Ed
c and ED

c models

Reaction DEMP2 DEd DED Reaction DEMP2 DEd DED

H2 - H + H 23 1 1 O2 - 2O 0 64 44
LiH - Li + H 25 �6 0 F2 - 2F 13 73 39
BeH - Be + H 7 �17 �29 HOOH - 2OH 15 38 �3
Li2 - Li + Li 18 �4 7 CO2 - CO + O 1 12 �11
CH - C + H 21 3 0 CS - C + S 9 34 30
NH - N + H 20 0 3 SiO - Si + O �7 44 39
CH2(

1A1) - CH + H 24 1 1 SO - S + O 3 39 15
OH - O + H 19 1 11 ClO - Cl + O 33 42 4
NH2 - NH + H 19 �7 2 FCl - F + Cl 17 42 3
CH3 - CH2(

3B1) + H 22 �14 �5 HOCl - OH + Cl 19 26 �13
HF - F + H 20 4 20 SO2 - SO + O �18 48 �1
H2O - OH + H 21 �5 10
NH3 - NH2 + H 22 �12 0 CH4 + OH - CH3 + H2O 1 �10 �16
CH4 - CH3 +H 22 �15 �6 CH4 + NH2 - CH3 + NH3 0 �3 �6
LiF - Li + F 18 3 16 PH3 + OH - PH2 + H2O 3 �7 �19
HCO - CO + H 23 �20 �27 PH3 + NH2 - PH2 + NH3 3 0 �9
H2CO - HCO + H 21 �14 �18 PH3 + CH3 - PH2 + CH4 3 3 �3
C2H4 - 2CH2(

3B1) 24 9 �12 SiH4 + OH - SiH3 + H2O 3 �12 �28
SiH3 - SiH2(

3B1) + H 21 �17 �14 SiH4 + NH2 - SiH3 + NH3 �4 �5 �18
HCl - Cl + H 26 �15 �2 SiH4 + CH3 - SiH3 + CH4 �4 �2 �12
PH3 - PH2 + H 24 �12 �9 SiH4 + PH2 - SiH3 + PH3 �7 �5 �9
SiH4 - SiH3 + H 17 �17 �18 CH3Cl + OH - CH3OH + Cl 8 �16 �5
N2H4 - 2NH2 15 6 �44 CH3Cl + H2O - CH3OH + HCl 2 �5 7
CH3OH - CH3 + OH 14 11 �38 C2H6 + OH - CH3OH + CH3 1 �17 �22
C2H6 - 2CH3 15 �5 �60 C2H6 + H2O - CH3OH + CH4 0 �7 �6
Na2 - 2Na 12 �7 33 CH3SH + H2O - CH3OH + H2S 1 �8 4
CH3Cl - CH3 + Cl 22 �5 �43 CH3SH+HCl - CH3Cl + H2S �1 �2 �3
Si2 - 2Si 35 11 34 C2H6 + Cl2 - 2CH3Cl 0 12 16
P2 - 2P 6 19 42 C2H6 + HOOH - 2CH3OH 3 11 13
S2 - 2S 17 0 0 CH4 + HOCl - CH3Cl + H2O �2 21 14
Si2H6 - 2SiH3 15 �24 �53 CH4 + HOCl - CH3OH + HCl 1 15 21
Cl2 - 2Cl 28 8 �10 HOCl + HF - ClF + H2O 1 �8 �6
CN - C + N 45 77 59 HOCl + OH - ClO + H2O �16 �10 �16
N2 - 2N �11 86 74 H2CO + CH3 - HCO + CH4 0 1 �12
CO - C + O �7 51 43 HCN + CH3 - CN + CH4 �55 �25 �18
HCN - CH + N �9 33 35 CO2 + CH3 - H2CO + HCO �10 �31 �14
Mean absolute errors (MAEs)
Dissociation reactions 18 21 21
Isodesmic and isogyric reactions 5 10 12
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Overall, the reaction errors of the intracule-based models

are somewhat larger and significantly less systematic than

those of MP2. On the other hand, the cost of computing the

Ed
c correlation energies from eqn (5.20)—roughly the same as a

single Hartree–Fock SCF iteration—is small compared with

MP2.

VII. Conclusions

We have presented an efficient method for computing the Dot

intracule D(x) of an atomic or molecular system and for

computing its Fourier transform, the f-Dot function d(k).

We have shown that the latter can be formed from the reduced

two-particle density matrix and that this can be accomplished

in closed form when the parent wavefunction is expanded in a

Gaussian one-electron basis.

We have argued that both D(x) and d(k) can be used as

starting points in intracule functional models of the electron

correlation energy and we have discussed the numerical results

of two such models. In one of these, the correlation energy

estimate Ed
c is available in closed-form and can be computed

very rapidly.

Acknowledgements

Y.A.B. thanks the Research School of Chemistry for a PhD

scholarship. D.L.C. thanks the ARC (Grant DP0771978) and

the Australian National University for financial support.

P.M.W.G. thanks the APAC Merit Allocation Scheme for a

grant of supercomputer time.

References

1 E. Schrödinger, Ann. Phys., 1926, 79, 361.
2 D. R. Hartree, Proc. Cam. Phil. Soc., 1928, 24, 89.
3 V. Fock, Z. Phys., 1930, 61, 126.
4 E. Wigner, Phys. Rev., 1934, 46, 1002.
5 A. Szabo and N. S. Ostlund,Modern quantum chemistry, McGraw-
Hill, New York, 1989.

6 R. G. Parr and W. Yang, Density-functional theory of atoms and
molecules, Oxford University Press, Oxford, 1989.

7 C. A. Coulson and A. H. Neilson, Proc. Phys. Soc., 1961, 78, 831.

8 A. M. Lee and P. M. W. Gill, Chem. Phys. Lett., 1999, 313

271.
9 K. E. Banyard and C. E. Reed, J. Phys. B, 1978, 11, 2957.
10 N. A. Besley, A. M. Lee and P. M. W. Gill, Mol. Phys., 2002, 100,

1763.
11 V. A. Rassolov, J. Chem. Phys., 1999, 110, 3672.
12 E. Wigner, Phys. Rev., 1932, 40, 749.
13 H. J. Groenewold, Physica, 1946, 12, 405.
14 D. L. Crittenden and P. M. W. Gill, J. Chem. Phys., 2007, 127,

014101.
15 P. M. W. Gill, D. L. Crittenden, D. P. O’Neill and N. A. Besley,

Phys. Chem. Chem. Phys., 2006, 8, 15.
16 P. M. W. Gill, D. P. O’Neill and N. A. Besley, Theor. Chem. Acc.,

2003, 109, 241.
17 P. M. W. Gill and D. P. O’Neill, J. Chem. Phys., 2005, 122

094110.
18 R. Fondermann, M. Hanrath, M. Dolg and D. P. O’Neill, Chem.

Phys. Lett., 2005, 413, 237.
19 N. A. Besley, J. Chem. Phys., 2006, 125, 074101.
20 R. Fondermann, M. Hanrath and M. Dolg, Theor. Chem. Acc.,

2007, 118, 777.
21 E. E. Dumont, D. L. Crittenden and P. M. W. Gill, Phys. Chem.

Chem. Phys., 2007, 9, 5340.
22 D. L. Crittenden, E. E. Dumont and P. M. W. Gill, J. Chem. Phys.,

2007, 127, 141103.
23 N. A. Besley, D. P. O’Neill and P. M. W. Gill, J. Chem. Phys.,

2003, 118, 2033.
24 S. F. Boys, Proc. R. Soc. (London), 1950, A200, 542.
25 Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld,

S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko
and D. P. O’Neill, et al., Phys. Chem. Chem. Phys., 2006, 8, 3172.

26 J. K. Pearson, D. L. Crittenden and P. M. W. Gill, Chem. Phys., to
be submitted.

27 M. Abramowitz and I. E. Stegun, Handbook of mathematical
functions, Dover, New York, 1972.

28 G. A. Evans and K. C. Chung, Int. J. Comput. Math., 1998, 66, 39.
29 R. Wong, Asymptotic approximations of integrals, SIAM, Phila-

delphia, 2001.
30 Wolfram Research, Inc., Mathematica, Champaign, Illinois,

version 6.0 ed., 2007.
31 J. P. Boyd, Chebyshev and Fourier spectral methods, Dover, New

York, 2nd edn., 2000.
32 M. Reed and B. Simon, Methods of modern mathematical physics,

Academic Press, New York, 1975, vol. 2.
33 J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari and L.

A. Curtiss, J. Chem. Phys., 1989, 90, 5622.
34 D. P. O’Neill and P. M. W. Gill, Mol. Phys., 2005, 103, 763.
35 L. Debnath and D. Bhatta, Integral transforms and their applica-

tions, Chapman and Hall, 2nd edn, 2007.
36 W. Kolos, K. Szalewicz and H. J. Monkhorst, J. Chem. Phys.,

1986, 84, 3278.

This journal is �c the Owner Societies 2008 Phys. Chem. Chem. Phys., 2008, 10, 3447–3453 | 3453


