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An efficient and reasonably accurate grid, designated SG-1, is proposed for use in density functional calculations. Defined for 
all atoms from H to Ar, SC&I is recommended as a standard grid, analogous to the various standard basis sets which are used in 
contemporary quantum chemistry. In calculations on systems of moderate size, the differences between SC- I and very large grids 
are of the order of 0.2 kcal/mol, yet SG-1 is sufficiently small to be applied to large systems. 

1. Introduction 

In recent years, the Kohn-Sham (KS) version of 
density functional theory [ 1 ] has gained widespread 
acceptance [ 2-41 as a remarkably cost-effective tool 
for computational quantum chemistry. It is distin- 
guished from conventional ab initio methods by its 
treatment of the exchange and correlation contri- 
butions to the electronic energy, which are expressed 
(approximately) as three-dimensional integrals (over 
all space) of analytic functions [5-l 0] of the alpha 
and beta densities (p,, ps) and, sometimes, of their 
derivatives. In this way, the exchange-correlation 
energy 

&c= s Wx(r),~,h)r Va(rh VP~(‘), ..-I dr 

(1) 
becomes essentially a one-efectron integral, notwith- 
standing the fact that it arises from many-electron 
interactions. There is a price to be paid, however, for 
this extremely convenient simplification - the func- 
tion F is invariably too awkward to permit ( 1) to be 
evaluated in closed form - and, consequently, one 
must resort to three-dimensional numerical integra- 
tion techniques. 

Many KS computer programs [ 1 I-1 61 begin by 

’ Present address: Department of Chemistry, Massey Univer- 
sity, Palmerston North, New Zealand. E-mail address: 
gill~rush.chem.cmu.edu. 

partitioning the multi-center molecular integral ( 1) 
into single-center atomic subintegrals and then com- 
pute each of the latter numerically on an atomic grid. 
We have adopted the partitioning scheme developed 
by Becke in section 3 of ref. [ 171 but we have not 
adopted the “atomic size adjustments” which he rec- 
ommends in his Appendix. Normally, the atomic 
grids consist of points on concentric spheres about 
each atom but little effort appears to have been made 
to standardize, or even to publish in detail, the exact 
atomic grids that various groups use. If the grids are 
sufficiently dense, the computed energy will con- 
verge towards the result for complete integration of 
the expression (1). However, for finite grids, it is 
desirable to have a well-defined specification of the 
points and weights, so that a precise energy is ob- 
tained from a given functional, a given orbital ex- 
pansion basis (if used) and a given grid. The prin- 
cipal purpose of this Letter is to propose and test a 
standard grid (designated SG- 1 ), which has been in- 
corporated into the Q-Chem program [ 161 and into 
a modified version of the GAUSSIAN 92 program 
[ 181. In conjunction with an exchange-correlation 
functional and basis set, such a grid completes the 
specification of a Kohn-Sham theoretical model 
chemistry [ 191. 

Before getting into detail, we should note some in- 
herent limitations of grid-based models. The angular 
portions of any atom-based grid have to be oriented 
relative to Cartesian axes and, therefore, oriented in 
some manner relative to the orientation of the mol- 
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ecule. It follows that specification of a standard grid 
requires specification of a standard orientation of the 
nuclear coordinates. Such a definition, which en- 
sures that the energy does not depend on the user- 
specified orientation, will be presented in the follow- 
ing sections. However, the possibility that the axes 
may switch in some discontinuous manner cannot 
be excluded, so the resulting potential surface may 
possess some discontinuities. This situation is par- 
ticularly probable in molecules with nuclear struc- 
tures at, or close to, high-symmetry configurations. 
Such discontinuities become smaller as the grid be- 
comes larger, but they cannot easily be eliminated. 

A second important general point concerns mol- 
ecules with electrons assigned to symmetry-degen- 
erate molecular orbitals, such as the e orbitals in Cj, 
ammonia. If the integration in ( 1) is carried out ex- 
actly, the resulting energy is invariant to unitary 
transformations within such sets of orbitals. How- 
ever, once a finite grid is used, invariance is lost; to 
achieve a unique result, it is necessary to fix the in- 
dividual orbitals in some well-defined manner. Thus, 
for molecules with non-abelian symmetry, we need 
to specify the electronic, as well as the nuclear, 
orientation. 

For both nuclei and electrons, therefore, some ar- 
bitrary but well-defined choices of orientation have 
to be imposed. These are specified in Appendices A 
and B. 

2. Euler-Maclsurin-Lebedev grids 

Suppose that we wish to devise a quadrature for- 
mula to approximate 

I= F(r)dr 
s 

m L 2n 

= 
us 

r2sin19F(r,8,@)d@dfidr. (2) 
000 

Traditionally, and for simplicity, the radial and an- 
gular integrations are separated by employing prod- 
uct quadrature formulae, i.e. 

Ix E w; y wyF(r,, I?~, I$~) , 
i-1 j=l 

in which N’ and N* are the numbers of radial and 
angular points, respectively, and the w: and w? are 
radial and angular weights, respectively. Although it 
is inefftcient [ 20 ] to continue in this way to separate 
the two angular integrations, i.e. 

I= ? wl? w!~:, wjeFtri, % @k) , (4) 
r=l j= I 

the even greater simplicity of (4) has led Murray, 
Handy and Laming (MHL) to recommend it [ 2 I 1. 
We recommend (3) for routine work but will use (4) 
to obtain “benchmarks” for very large grids. 

The inner sum in (3) corresponds to quadrature 
on the surface of a sphere and the most sophisticated 
results in this area are those obtained by Lebedev 
[22] and Konyaev [ 231 whose grids have octahe- 
dral and icosahedral symmetry, respectively. We 
prefer the Lebedev grids because they are better 
suited to the treatment of Cartesian basis functions 
in molecular systems with abelian symmetry. A grid 
of degree 1 exactly integrates all spherical harmonics 
of degree I or less and, thus, is a two-dimensional an- 
alogue of the more familiar Gauss-Legendre grid in 
one dimension [ 241. Lebedev has published grids 
up to 1=29 and we will be particularly interested in 
the I= 3, 9, 15, 23 and 29 grids which have NR= 6, 
38, 86, 194 and 302 points, respectively. 

Given (~7, tYj, $j) values from Lebedev, we now 
address the problem of selecting w: and r, values, i.e. 
we seek a quadrature formula of the form 

m 

I r2G(r)drz 5 w:G(r,) , 

,=I 
0 

(5) 

where, for convenience, we will assume that G is 
bounded at r= 0 and decays at least exponentially for 
large r. A number of solutions to this have been pro- 
posed by previous authors [ 12-14,17,25] but, in 
preference to these, we have adopted the Euler- 
Maclaurin scheme [ 2 1 ] recently introduced by Mur- 
ray, Handy and Laming but based on much earlier 
work [26] by Handy and Boys. In this scheme, one 
uses 

w:=2R3(N’+ l)i’(N’+ 1 -i)-' , (6) 

ri=Ri2(N’+1-i)-2, (7) 

where R, which we term the “atomic radius”, is a 
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measure of the radial extent of the atom in question. 
We will refer to an atomic grid which uses an N’- 

point Euler-Maclaurin grid in conjunction with an 
Na-point Lebedev grid as EML-( N’, NR) or simply 
(N’, NQ). For example, in some of our earlier pa- 
pers [27-291 we have employed (50,194), and have 
found it uniformly satisfactory for calculation of mo- 
lecular energies and properties. We will refer to an 
atomic grid which uses an N’-point Euler-Maclaurin 
radial grid in conjunction with an N’-point Le- 
gendre theta grid and an N@-point even-spaced phi 
grid [21] as MHL-(N’, N’, N@) or simply (N’, N’, 
N@). We have chosen to base our standard grid on 
an EML and, therefore, our first task is to determine 
which EML yields acceptably small grid errors for 
some energies of chemical interest. 

Of course, we must first define what we mean by 
an “acceptably small” grid error. We will regard a 
grid error as acceptable if it is ~0.2 kcal/mol or 
~300 uhartree for a medium-sized molecule since 
this is significantly smaller than the accuracy typi- 
cally achieved by contemporary quantum chemical 
procedures. We note, however, that any grid’s error 
will inevitably rise as one treats larger and larger 
molecules. 

Before proceeding further, it is necessary to spec- 
ify the atomic radii R which we use. We described 
these briefly in an earlier paper [ 301 but we have not 
previously listed them explicitly. We define the 
atomic radius of an atom to correspond to the max- 
imum of the radial probability function 47tr*$?*( r) of 
the valence atomic orbital p(r) given by Slater’s well- 
known rules [ 311. The atomic radii which follow 
from this definition are given in table 1 for the atoms 

H to Ar. 
Of a wide variety of chemical problems which we 

have examined, we have found that the (trans)-n- 
butane to iso-butane and (trans, trans)-n-pentane to 

Table 1 
Atomic radii (bohr) used in the SG-1 grid 

neo-pentane isomerization energies are particularly 
sensitive tests of the deficiencies of a grid and we shall 
confine our attention, in the first instance, to these 
rather demanding test cases. Their difficulty stems 
from the fact that, although the pairs of isomers are 
different in shape (n-pentane, for example, is more 
or less linear while neo-pentane is globular), the den- 
sity-functional isomerization energies are only of the 
order of 1 kcal/mol and can easily be swamped by 
grid error. (We note that the experimental isomer- 
ization energies are roughly 4 and 2 kcal/mol, re- 
spectively. However although our DFT isomeriza- 
tion energies are clearly not in good agreement with 
experiment, this is not relevant to the concerns of 
this Letter.) We have used a modified version of 
GAUSSIAN 92 to compute the isomerization ener- 
gies using the fully self-consistent B-LYP/6-3 1 G* 
procedure [ 27-30,321 at HF/6-3 lG* geometries and 
we list them, for various grids, in tables 2 and 3. 

In a recent study [ 33 ] of benzene using our B-LYP 
procedure, Handy et al. showed that a MHL- (96,32, 
64) grid yielded a grid error of -C 10m7 hat-tree for 
this molecule. On this basis, we will use this grid as 
a “benchmark” against which to compare smaller 
grids. In this way, we find from tables 2 and 3 that 
(40, 194) and (50, 194) are the smallest grids yield- 
ing an acceptable error for the butane and pentane 
isomerizations, respectively, while, at the other end 
of the spectrum, we find that (30, 86) gives iso- 
merization energies which are too large by more than 
a factor of two. We also note that, whereas the radial 
quadrature converges fairly smoothly, convergence 
of the angular quadrature is much more jagged: such 
behavior is commonly observed. 

atom 
radius 

atom 
radius 

atom 
radius 

H He 
1.0000 0.5882 

N 0 
1.0256 0.8791 

Al Si 
2.5714 2.1687 

Li 
3.0769 

F 
0.7692 

P 
1.8750 

Be 
2.0513 

NC 
0.6838 

S 
1.6514 

B 
1.5385 

Na 
4.0909 

Cl 
1.4754 

C 
I .2308 

Mg 
3.1579 

Ar 
1.3333 
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Table 2 
lsomerization energy ‘) of iso-butane-n-butane using various grids 

N’ ND= 86 N*= 110 NO= 146 

30 1595 1405 1629 
40 1011 938 1168 
50 903 856 1117 
60 878 839 1109 
70 877 838 1106 
96 

‘) In phartree at the B-LYP/6-3 lG*//HF/6-3 I G* level of theory. 

ND= 194 ND= 302 N6=32,N+=64 

1130 1052 
742 706 
692 664 
686 661 
687 662 

660 

Table 3 
Isomerization energy ‘) of neo-pentane An-pentane using various grids 

N’ ND= 86 ND= 1 IO N”= 146 N*= 194 Nn=302 Nb=32, Nk64 

30 1925 1637 2931 2386 2258 
40 2153 1117 1798 1231 1062 
50 2041 1015 1546 1040 870 
60 2053 926 1475 1020 858 
70 2081 947 1501 1038 859 
96 758 

‘) In phartree at the B-LYP/6-3 lG’//HF/6-3 lG* level of theory. 

3. The standard SG-1 grid 

Having seen that EML- (50, 194) can yield quan- 
titatively reliable results even for a diffkult problem 
such as the pentane isomerization, it would not be 
unreasonable to propose this as the standard grid and 
proceed to test it. However, EMG( 50, 194) is rather 
large (roughly an order of magnitude larger, for ex- 
ample, than the default grid in the DGauss program 
[ 141) and it would obviously be desirable, if pos- 
sible, to reduce its size while maintaining its effec- 
tiveness. The critical modification of (3) which we 
will introduce is to allow NR to become dependent 
on i, that is, to use different Lebedev grids on dif- 
ferent concentric spheres, This strategy, which we 
term “grid pruning”, has previously been considered 
[ 2 11, and is motivated by the realization that, as one 
approaches a nucleus from the valence region in a 
molecule, the electron density becomes progressively 
more spherically symmetrical and can therefore be 
treated satisfactorily by progressively less sophisti- 
cated angular grids. 

Given four numbers { cr, , a2, a3, ad} and an atomic 
radius R, the four spheres of radius a,R, a2R, a,R 

and a4R obviously partition an atom into five re- 
gions. Within each of these regions, from innermost 
to outermost, we employ Lebedev grids with 6, 38, 
86, 194 and 86 points, respectively. Since we have 
already defined R, it only remains to choose as for 
each atom. We have selected a values by pruning as 
aggressively as possible subject to the constraint that 
the (50, 194) and SG-1 energies for the normal-val- 
ent hydrides of the atoms from H to Ar differ by only 
a few uhartree. The resulting values, which are given 
in table 4, complete the specification of the SG- 1 grid 
for the atoms H to Ar. 

Table 5 lists the B-LYP/6-3 1G’ total energies af- 
forded by various grids. From inspection of this ta- 
ble, it appears that SG-1 yields the same (within a 
few phartree) energies as EML( 50, 194) for a wide 

Tabie 4 
Partitioning parameters used in the SC- 1 grid 

Atom aI a2 a3 

H-He 0.2500 0.5000 1 .oooo 
Li-Ne 0.1667 0.5000 0.9000 
Na-Ar 0.1000 0.4000 0.8000 

a4 

4.5000 
3.5000 
2.5000 
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Table 5 
Total energies P.b) of various molecules c, using various grids d, 

Molecule (96,32,64) (30,861 (50, 194) SG-I 

H2 
He 
LiH 
BeH, 

BHI 
CH4 
NH, 
Hz0 
HF 
Ne 
NaH 
&Hz 
AIH, 
SiHl 
PH3 
HIS 
HCI 
Ar 
H,O...HOH 

n-C4Wo 
CC4H ,,, 
n-Wu 
neo-&HI 2 
Cd-b 
n-Csw8 

C&NO, 
CeHSCHCHZ 
n-Si,H,o 
i&HI0 
n-SiSH12 
neo-SlSH,2 

p4 

S* 

(Cd 
(Gh) 
CC,“) 
CC,“) 
(Td) 
(Da,) 
CC,,) 

(C2”) 

(Cd 

tc2h) 

CC,“) 

(C,“) 

(Td) 

(Td 

(D4.d 

- I.165182 18 
-2.897845 44 
-8.066115 -48 

- 15.891924 -126 
-26.518159 154 
-40.478861 -154 
-56.518234 60 
-76.388318 119 

- 100.404440 -496 
- 128.879568 -361 
- 162.834957 5800 
-201.221105 -1296 
-244.169203 -1441 
-291.839779 -1312 
-343.104304 -1297 
-399.356295 -1732 
-460.771786 -1416 
-527.496357 -345 
- 152.784870 -561 
- 158.332434 946 
- 158.333094 12 
- 197.617597 325 
- 197.618355 -842 
-232.128657 1155 
-315.473034 1497 
-436.619606 875 
-309.488863 178 

-1163.841584 -7814 
- 1163.842281 -6854 
- 1454.509624 - 7589 
-1454.511858 -7778 
- 1365.375677 - 7590 
-3185.429051 -7739 

0 

-5 
0 

-53 
9 

II 
2 
0 

-26 
-9 

-60 
154 

19 
-37 
-28 

0 
-7 
52 
20 
92 

-191 
-43 

48 
-14 
-85 
192 
276 
259 
420 

-58 
128 

-2 

0 

0 
-52 

9 
9 
3 
0 

-28 
-22 
-63 
152 

18 
-48 
-30 

0 
-8 
52 
17 
92 

-182 
-45 

50 
-11 

-100 
207 
289 
248 
443 

-26 
-3 

‘) Computed at the B-LYP/6-31 G* level of theory. 
b, In hartree for (96,32,64); in phartree relative to (96, 32,64) for others. 
‘) MP2/6-3 IG’geometries for systems with up to one heavy atom; HF/6-31G’ geometries for systems with two or more heavy atoms. 
Q (IV’, ND) is an Euler-Maclaurin-Lebedev grid with N’ radial and N* angular points; (N’, N’, N*) is a Murray-Handy-Laming grid 

with N’ radial, N’ theta and N * phi points. 

range of molecular systems. It follows from this that 
SC- 1 yields acceptable grid errors compared with the 
benchmark grid and, hence, that SG-I represents a 
useful compromise between accuracy and expense. It 
is evident that SG-1 generally exhibits larger total 
energy grid errors for molecules containing second- 
row atoms (Na-Ar) but much of this error comes 
from the core region and should not adversely affect 
quantities of chemical interest. For example, the SG- 
1 errors in the isomerization energies of butane and 

pentane are comparable to those of the correspond- 
ing silanes. We also note that, although the SG-1 and 
(30, 86) grids contain similar numbers of significant 
grid points [ 341, SC-1 yields much smaller grid 
errors. 

We will discuss the efficient implementation of the 
SG-1 grid within the Q-Chem program elsewhere 
[ 341. It is our intention to use this grid as our stan- 
dard in the future. 
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Appendix A. The standard nuclear orientation 

The full problem of nuclear orientation is: given 
a molecule specified by nuclear positions, choose a 
unique set of Cartesian axes. We shall not attempt to 
give a complete definition, but limit ourselves to de- 
fining an origin and a set of three perpendicular lines 
through that origin among which Cartesian axes are 
chosen. That is, we do not attempt to define which 
of the three is X, Y or Z in all cases, nor do we always 
define positive versus negative directions. Since the 
standard atomic grids used all have octahedral sym- 
metry about the individual atoms, the final energy is 
invariant to such choices. 

The proposed orientation rules are as follows: 
( 1) The origin is always chosen to lie at the center 

of nuclear positive charge. 
(2) If the three principal moments of positive 

charge (relative to the origin) are unequal, the three 
corresponding principal axes are used as Cartesian 
axes. This deals completely with the general asym- 
metric top molecule. 

(3) For nonlinear molecules with symmetry cor- 
responding to a symmetric (but not spherical) top, 
there will be a unique principal axis, taken to be Z. 
It remains to specify one further axis ( Y). To do this, 
we introduce the concept of a “circular set”, com- 
posed of equivalent atoms lying in a plane perpen- 
dicular to the principal (Z) axis. In general, there 
will be several circular sets. Of these, we select the 
“key circular set” by carrying out the following tests 
successively until any ambiguity is removed: 
(a) Which set is nearest the XY plane? 
(b) Which set has a positive projection on the Zaxis? 
(c) Which set is nearest to the Z axis? 
(d) Which set is comprised of atoms with the lowest 
atomic number? 

The “key atom” is an arbitrary member of the key 
circular set. The YZ plane is chosen to include this 

atom. For molecules with two identical moments of 
positive charge for accidental, rather than symmetry, 
reasons, the same rules may be used, it being noted 
that circular sets may then contain only one atom. 

(4) For molecules with tetrahedral, octahedral or 
icosahedral symmetry (spherical tops), the mo- 
ments of positive charge cannot be used to fix the 
Cartesian axes. For tetrahedral systems (point groups 
T, Td, T,,), we choose the three twofold rotation axes. 
For octahedral systems (point groups 0, Oh), we 
choose the three fourfold axes. Finally, for the ico- 
sahedral groups, we arbitrarily select one of the C, 
axes as the 2 axis and then treat the molecule as a 
symmetric top. 

(5) For linear molecules, the Z axis is chosen to 
lie along the molecular axis. The Y axis is chosen ar- 
bitrarily. For single atoms, no specification is 
necessary. 

Appendix B. The standard electronic orientation 

As noted in section I, complete specification of a 
DFT model requires us to locate the individual com- 
ponents of degenerate molecular orbitals in a unique 
manner. It should be noted that this is also true of 
the complete specification of a Hartree-Fock (HF) 
model: although the HF energy is unaffected by mo- 
lecular orbital orientation, this obviously does not 
apply to the HF wavefunction. We treat the problem 
in two stages: 

Stage 1. If the molecular point group is non-abe- 
lian (so that degeneracies occur), imposition of a grid 
with local octahedral symmetry at each atom may 
lower the symmetry to the grid point group (a 
subgroup of the molecular point group). Table B. 1 
lists these relations. For many of the molecular point 
groups, the grid lifts the degeneracies and the Kohn- 
Sham orbitals are automatically classified according 
to the irreducible representations of the grid point 
group. In the remaining cases (which include grid- 
less computations such as HF), it is necessary to pro- 
ceed to the next stage. 

Slage 2. When stage 1 is insufficient, the proble- 
matic degeneracies can then be lifted by the impo- 
sition of a small, perturbing quadrupole field. We 
have found that a field with x2, y2 and z* compo- 
nentsof +10-i’, +2x10-“and -3x10-‘0atomic 
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Table B. I [ II ] A.D. Becke, Numol, Intern. J. Quantum Chem. Symp. 23 
Reduction of symmetry by imposition of octahedral grid ( 1989) 1280. 

Abclian grid point group Non-abelian grid point group 

molecular 
point group 

grid 
point group 

molecular 
point group 

grid 
point group 

[ 121 B. Delley, DMol, J. Chem. Phys. 92 (1990) 508. 
[ 131 D.R. Salahub, DeMon, in: Density functional methods in 

chemistry, eds. J.K. Labanowski and J.W. Andzelm 
(Springer, Berlin, 1991). 

[ 141 J. Andzelm and W. Wimmer, DGauss, J. Chem. Phys. 96 
( 1992) 1280. 

C *n+, 
C 2”+,.” 
C 2!l+r,ll 
D *“+I 
D *“+ I.h 
D Z”+ I.* 

C an+,? 
C ‘%n+z,u 
C 4n+z,s 
D4n+z 
D 4n+z,ll 
S &if&d 

C, 
C, 
C, 
C2 
C zv 
C Zh 

C2 
C 2” 
C Lh 

DZ 
DZh 
Ci 

C 4” 
C 4”” 
C 4nh 
D 4” 
D 4”h 
D &Id 
D 4ll+2.d 
s 4” 

T 
Td 
Th 
0 
0, 
I 
Ih 

C m” 
D 
c” 

C, 
C 4” 
C 4s 
D4 
D 4h 
D4d 
Did 
S4 

T 
Td 
Th 
0 
0, 
Cz 
Gh 

C 4” 
D 4h 

Oh 

[ 151 R.D. Amos, I.L. Alberts, J.S. Andrews, S.M. Colwell, N.C. 
Handy, D. Jayatilaka, P.J. Knowles, R. Kobayashi, N. Koga, 
K.E. Laidig, P.E. Maslen, C.W. Murray, J.E. Rice, J. Sanz, 
ED. Simandiras, A.J. Stone and M.-D. Su, Cadpac 5, 
Cambridge (1992). 

[ 161 P.M.W. Gill, B.C. Johnson and CA. Gonzalez, Q-Chem (Q- 
Chem, Inc., Pittsburgh, PA, 1993). 

[ 171 A.D. Becke, J. Chem. Phys. 88 (1988) 2547. 
[ 181 M.J. Frisch, G.W. Trucks, M. Head-Gordon, P.M.W. Gill, 

M.W. Wong, J.B. Foresman, B.G. Johnson, H.B. Schlegel, 
M.A. Robb, ES. Replogle, R. Gomperts, J.L. Andres, K. 
Raghavachari, J.S. Binkley, C. Gonzalez, R.L. Martin, D.J. 
Fox, D.J. DeFrees, J. Baker, J.J.P. Stewart and J.A. Pople, 
GAUSSIAN 92 (Gaussian, Inc., Pittsburgh, PA, 1992). 

[ 191 J.A. Pople, in: Energy, structure and reactivity, eds. D.W. 
Smith and W.B. McRae (Wiley, New York, 197 1). 

[ 201 A.H. Stroud, Approximate calculation of multiple integrals 
(Prentice-Hall, Englewood Cliffs, 197 I ). 

[21]C.W. Murray,N.C. HandyandG.J. Laming, Mol. Phys.78 
(1993) 997. 

units, respectively, yields satisfactory results in most 
cases. The effect of such a field on the molecular to- 
tal energy is negligible and, indeed, is comparable to 
the errors which are introduced by integral cutoffs. 
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