The roots (xi) and weights (ai) for n-point quadrature on [0,1] with the weight function ln2x can be seen by entering a value of n (1-26, 30, 35, 40, 45, 50).
The roots (ri) and weights (wi) for n-point quadrature on [0,∞) with the weight function r2 can be found from these using
ri = − R ln xi wi = R3 (ai / xi)
where R is a scale factor indicating the "extent" of the integrand. For DFT calculations, the R value should be comparable to the size of the atom.
See: P.M.W. Gill and S.H. Chien, J. Comput. Chem. 24 (2003) 732-740
i | xi | ai |
---|---|---|
1 | 0.006186914698328 | 0.507510063239781 |
2 | 0.043184964523230 | 0.537737088312751 |
3 | 0.114393297847011 | 0.410158149857278 |
4 | 0.215744326251233 | 0.268682157083323 |
5 | 0.340016375817525 | 0.154453615234289 |
6 | 0.477753066826457 | 0.076896476225321 |
7 | 0.618154004584026 | 0.031926984063151 |
8 | 0.750027750554594 | 0.010257845595189 |
9 | 0.862765515603032 | 0.002178281995578 |
10 | 0.947297511565912 | 0.000199338393338 |