Dr Michael Perkins, Flinders University Reference Texts:

"Stereochemistry of organic compounds" Ernest L. Eliel New York : Wiley & Sons, c1994. Chapter 12 on stereoselective synthesis by Lewis N. Mander.

"Stoichiometric Asymetric Synthesis" by Mark Rizzacasa and Michael Perkins, Sheffield Academic Press 2000

# 10 Minute Problem

- i. Indicate which of the following compounds are chiral and mark any stereocentres
- ii. For the stereocentres bearing 4 different groups assign the configuration as R or S



iii. Give the structures for the enolates A and B and explain the stereochemical outcomes of the following aldol reactions using transition state models



Synthesis of Achiral Compounds

**Reduction Methods** 



Synthesis of Achiral Compounds



Synthesis of Achiral Compounds



Synthesis of Achiral Compounds



#### **Ring Fragmentations**

stereoelectronic control





Reactions of Acyclic Enolates and Related Substrates

**Alkylations:** 



Reactions of Acyclic Enolates and Related Substrates

**Enolate Geometry?** 





| R                                | Base  | Solvent       | <i>E-</i> (O)<br>Enolate | <i>Z</i> -(O)<br>Enolate | Ref.  |
|----------------------------------|-------|---------------|--------------------------|--------------------------|-------|
| –Et                              | LDA   | THF           | 70                       | 30                       | 28    |
| –Et                              | LTMP  | THF           | 84                       | 16                       | 28    |
| –Et                              | LDA   | THF-23 % HMPT | 8                        | 92                       | 29    |
| –Et                              | LHMDS | THF           | 34                       | 66                       | 28    |
| -OCH <sub>3</sub>                | LDA   | THF           | 95                       | 5                        | 28    |
| OCH <sub>2</sub> H <sub>3</sub>  | LDA   | THF           | 94                       | 6                        | 31    |
| OCH <sub>2</sub> H <sub>3</sub>  | LDA   | THF-23 % HMPT | 15                       | 85                       | 31    |
| –O <sup>t</sup> Bu               | LDA   | THF           | 95                       | 5                        | 32,33 |
| -S <sup>t</sup> Bu               | LDA   | THF           | 90                       | 10                       | 34    |
| -NEt <sub>2</sub>                | LDA   | THF           | <3                       | >97                      | 15    |
| C(CH <sub>3</sub> ) <sub>3</sub> | LDA   | THF           | 2                        | 98                       | 28    |
| -C <sub>6</sub> H <sub>5</sub>   | LDA   | THF           | 2                        | 98                       | 28    |







| R                               | Base  | Solvent | <i>E-</i> (O)<br>Enolate | <i>Z</i> -(O)<br>Enolate | Ref.  |
|---------------------------------|-------|---------|--------------------------|--------------------------|-------|
| –Et                             | LDA   | THF     | 70                       | 30                       | 28    |
| –Et                             | LTMP  | THF     | 84                       | 16                       | 28    |
| –Et                             | LHMDS | THF     | 34                       | 66                       | 28    |
| -OCH3                           | LDA   | THF     | 95                       | 5                        | 28    |
| OCH <sub>2</sub> H <sub>3</sub> | LDA   | THF     | 94                       | 6                        | 31    |
| –O <sup>t</sup> Bu              | LDA   | THF     | 95                       | 5                        | 32,33 |
| -S <sup>t</sup> Bu              | LDA   | THF     | 90                       | 10                       | 34    |
| -NEt <sub>2</sub>               | LDA   | THF     | <3                       | >97                      | 15    |
| $C(CH_3)_3$                     | LDA   | THF     | 2                        | 98                       | 28    |
| -C <sub>6</sub> H <sub>5</sub>  | LDA   | THF     | 2                        | 98                       | 28    |



 $(Me_2N)_3P^+-O^--Li^+$ 

| R                               | Base | Solvent       | <i>E-</i> (O)<br>Enolate | <i>Z</i> -(O)<br>Enolate | Ref. |
|---------------------------------|------|---------------|--------------------------|--------------------------|------|
| –Et                             | LDA  | THF           | 70                       | 30                       | 28   |
| –Et                             | LDA  | THF-23 % HMPT | 8                        | 92                       | 29   |
| OCH <sub>2</sub> H <sub>3</sub> | LDA  | THF           | 94                       | 6                        | 31   |
| OCH <sub>2</sub> H <sub>3</sub> | LDA  | THF-23 % HMPT | 15                       | 85                       | 31   |

Alkylation of Acyclic Chiral Enolates







Alkylation of Acyclic Chiral Enolates





### Alkylation of Acyclic Chiral Enolates



# Aldol Reactions

- The quest for efficient methods to construct polyketide natural products has driven the development of stereocontrolled acyclic crossed aldol reactions between aldehydes and ketones.
- These reactions are usually considered to occur *via* closed six membered cyclic Zimmerman-Traxler transition states, in which coordination between the aldehyde carbonyl oxygen and the enolate metal centre occurs.
- First consider the simple case where the enolate is not substituted at the  $\alpha$ -carbon, then reaction with an aldehyde produces one stereocentre (ie. 2 isomers, which are enantiomers if R<sup>1</sup> and R<sup>2</sup> are achiral, but diastereisomers if R<sup>1</sup> or R<sup>2</sup> are chiral, Scheme 4.1).



## Aldol Reactions



### Aldol Reactions



### Ethyl Ketone Aldol Reactions





### Ethyl Ketone Aldol Reactions



### Ethyl Ketone Aldol Reactions

