NMR structure of the N-terminal domain of E. coli DnaB helicase: implications for structure rearrangements in the helicase hexamer

Johan Weigelt¹, Susan E Brown², Caroline S Miles²†, Nicholas E Dixon² and Gottfried Otting¹*

Background: DnaB is the primary replicative helicase in Escherichia coli. Native DnaB is a hexamer of identical subunits, each consisting of a larger C-terminal domain and a smaller N-terminal domain. Electron-microscopy data show hexamers with C₆ or C₃ symmetry, indicating large domain movements and reversible pairwise association.

Results: The three-dimensional structure of the N-terminal domain of E. coli DnaB was determined by nuclear magnetic resonance (NMR) spectroscopy. Structural similarity was found with the primary dimerisation domain of a topoisomerase, the gyrase A subunit from E. coli. A monomer–dimer equilibrium was observed for the isolated N-terminal domain of DnaB. A dimer model with C₂ symmetry was derived from intermolecular nuclear Overhauser effects, which is consistent with all available NMR data.

Conclusions: The monomer–dimer equilibrium observed for the N-terminal domain of DnaB is likely to be of functional significance for helicase activity, by participating in the switch between C₆ and C₃ symmetry of the helicase hexamer.

Introduction

Helicases are enzymes that separate duplex DNA or RNA into single strands with the help of ATP. They are involved in fundamental reactions involving DNA and RNA, including replication, repair and recombination, as well as transcription and translation [1,2]. Defective helicase genes are increasingly found to be at the basis of inheritable human disease [3]. Recently, crystal structures have been determined for helicases belonging to superfamilies I, II and III [4–7], but their functional mechanism is still poorly understood [8]. All three helicases crystallised as monomers. No structure of an intact hexameric helicase has yet been reported, although crystallisation reports have been published for the plasmid RSF1010 RepA protein [9] and the helicase domain of bacteriophage T7 gene 4 protein (gp4) [10]. Furthermore, the structure of the RNA-binding domain of the hexameric Escherichia coli rho transcription factor has been determined [11,12].

DnaB is the most extensively studied helicase among the hexameric helicases, and it is a key replication protein in E. coli [13]. It is one of about twenty different proteins that constitute the bacterial replisome, a nucleoprotein complex that accomplishes DNA synthesis at replication forks during the duplication of the bacterial chromosome [14]. At replication initiation, DnaB is loaded onto DNA by interactions with both DnaA and DnaC proteins [15–17]. Driven by ATP hydrolysis, the DnaB helicase unwinds duplex DNA into single strands [18]. This allows DNA polymerase III to copy the single-stranded DNA template [19]. As well as binding dNTPs, rNTPs [13] and single-stranded DNA [19], DnaB interacts with other replication proteins including DnaC [20], DnaG primase [18,21] and the τ subunit of DNA polymerase III [22].

Functional DnaB is composed of six identical 52 kDa subunits [23]. Proteolytic studies indicated that each subunit consists of two domains, a smaller N-terminal and a larger C-terminal domain. Both domains are required for helicase function [24,25]. Furthermore, ATPase and DNA-binding activities were found to be located in the C-terminal domain, whereas the smaller N-terminal domain is important for hexamerisation [24,25].

Single crystals have been obtained for DnaB, but they did not diffract satisfactorily (N Dammerova, CSM, NED and DL Ollis, unpublished results). Electron-microscopy (EM) studies of DnaB and related hexameric helicases revealed a symmetric arrangement into a ring structure with a pore diameter of about 3–4 nm [26,27]. Depending on the sample conditions, DnaB hexamer particles were observed with sixfold (C₆) and threefold (C₃) symmetry.

Addresses: ¹Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden and ²Centre for Molecular Structure and Function, Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia.

†Present address: Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, Scotland, UK.

*Corresponding author. E-mail: Gottfried.Otting@mbb.ki.se

Key words: DnaB, helicase, NMR

Received: 28 January 1999
Revisions requested: 25 February 1999
Revisions received: 1 March 1999
Accepted: 5 March 1999
Published: 1 June 1999

Structure June 1999, 7:681–690
http://biomednet.com/elecref/0969212600700681
© Elsevier Science Ltd ISSN 0969-2126
together with species of intermediate appearance [27]. The interconversion between different conformations of the DnaB hexamer has been proposed to be of functional significance [27,29].

Here, we report the three-dimensional solution structure of the N-terminal domain of DnaB, comprising residues 24–136. Previous nuclear magnetic resonance (NMR) spectroscopy studies on DnaB N-terminal fragments (consisting of residues 1–142 and 1–161) identified the flexible regions of the domain, mapped the structured core to residues 24–136 [30] and delineated the secondary structure [31]. The present NMR structure is the first structure at atomic resolution of a domain from a DnaB helicase. The monomer–dimer equilibrium reported here for the N-terminal DnaB domain in solution supports the presence of an association–dissociation equilibrium for this domain in the DnaB hexamer, as proposed previously from EM data [29].

Results and discussion
Structure of the N-terminal domain of DnaB
The structure of the N-terminal domain of DnaB, DnaB(24–136), was determined in aqueous solution at pH 7.5, 32°C, using protein concentrations of about 2.3 mM. A proportion of the protein was dimeric under these conditions, resulting in an effective rotational correlation time of 10 ns [32]. Three weak intermolecular nuclear Overhauser effects (NOEs) were identified in the course of the analysis. Recording of a two-dimensional (2D) 13C-edited-13C-filtered nuclear Overhauser effect spectroscopy (NOESY) spectrum [33,34] with a 1:1 mixture of unlabelled and uniformly 13C/15N (u-13C/15N) labelled protein was attempted, but the sensitivity of the experiment was insufficient for the detection of the intermolecular NOEs. Consequently, all but three distance restraints were interpreted as arising from a monomer. The relative orientations of the helices in the resulting NMR structure were verified by dipolar coupling constants measured at low concentration (0.1 mM). Thus, only the orientation of the surface sidechains at the dimer interface could be affected by a confusion of intramolecular and intermolecular distance restraints.

The NMR structure of DnaB(24–136) (Figures 1,2) consists of six α helices (Figure 3), with a 3_10 helical segment at the N terminus of helix 2 (residues 44–46). In addition, the structure contains two helical turns, comprising residues 56–58 and 97–99. The hydrophobic core of the protein is centred around the C-terminal end of helix 1, which is completely buried. Charged amino acid sidechains are distributed evenly on the protein surface and are easily accessible to the solvent (Figure 4). The only exceptions are the sidechains of Glu33 and Glu70. Although the sidechain oxygens of Glu70 are still solvent-exposed, their main hydrogen-bonding partners seem to be Ser89 H and Asn93 H_21. The sidechain of Glu33, which is one of the few fully conserved residues among DnaBs (Figure 3), is completely buried. In the NMR structure of DnaB(24–136), Glu33 O_ε hydrogen bonds to H_δ1 of the highly conserved His64. The presence of this hydrogen bond is documented by NOEs between Glu33 C_β H2 and His64 H_δ1, and the downfield shift of the 1H NMR signal of His64 H_δ1 (14.9 ppm). The 1H chemical shifts of the carbon-bound protons H_ε1 and H_δ2 of His64 suggest that the histidine sidechain is uncharged, in agreement with the formation of a hydrogen bond rather than a salt bridge. Buried charged carboxyl groups with hydrogen bonds to histidine sidechains are a common feature of serine proteases and also occur as a structural motif in nonproteolytic proteins [35].

The NMR structure of DnaB(24–136) is well-defined for residues 30–134. The H N resonances of six residues in loop regions and at the N terminus could not be observed (Figure 3), affecting the definition of those segments (Figure 2b). The 23 N-terminal residues of DnaB have previously been found to be highly flexible [30], in agreement with rapid cleavage of the 14 N-terminal residues in proteolysis experiments of full-length DnaB [24]. The linker region between the N- and C-terminal domains of DnaB has a high α-helical propensity in secondary-structure predictions [36], but it was found to be disordered in the DnaB(1–161) fragment studied earlier by NMR [30].

Sequence conservation of DnaB N-terminal domains
A sequence comparison between DnaB N-terminal domains from different organisms shows only four completely conserved residues (Figure 3). Yet a conserved...
Figure 2

Different stereo representations of the NMR solution structure of DnaB(24–136). All three representations show the structure in the same orientation as in Figure 1. (a) Backbone trace of the conformation closest to the mean structure. (b) Ensemble of 20 conformations, using the backbone atoms of residues 29–134 for superposition. (c) Heavy-atom display of the conformation closest to the mean structure. The protein backbone is drawn as a thick grey line. Hydrophobic sidechains (Ala, Phe, lle, Leu, Met, Pro, Val, Trp) are drawn in yellow, polar sidechains (Asn, Gln, Ser, Thr, Tyr, His) are drawn in magenta, positively (Lys and Arg) and negatively (Asp and Glu) charged sidechains are coloured blue and red, respectively.
three-dimensional structure is indicated by the fact that almost all highly conserved hydrophobic residues are buried (Figure 4), as expected for structurally important residues. The solvent-exposed, but conserved, hydrophobic residues
Pro27, Pro28, Met134 and Ile135 may be important for interactions with either the C-terminal domain or other proteins involved in the replication complex. Pro113 is located in the least well-defined loop of the structure. The conservation of Tyr104, although it is in close proximity to the dimerisation interface (see below), may be of lesser significance, as it is not very solvent-exposed.

Of the four totally conserved residues, only mutations of Asp82 have been studied. The D82N mutation of the Salmonella typhimurium DnaB helicase, which is closely related to the E. coli protein (Figure 3), has been shown to impair helicase function [37]. The function of this residue is unclear, except that its negative charge combined with its location at the N-terminal end of helix 4 probably contributes to the stability of this helix. Similarly, the positive charge of Arg132 may contribute to the stability of helix 6 and/or be involved in protein–protein interactions, as the mutations I135N, I141T and L156P in the linker between the N- and C-terminal domains have been shown to interfere with helicase function [38].

Structure of dimeric DnaB N-terminal domain

A model of dimeric DnaB(24–136) was built on the basis of concentration-dependent chemical shifts (Figure 5), intermolecular NOEs and residual dipolar coupling constants measured in a liquid-crystalline phase. Chemical shift changes preferentially mapped onto a single face of the N-terminal domain, which is comprised of helices 4 and 5 and the connecting loop (Figure 6). Three intermolecular NOEs were identified between Ile84 CγH3 and Ala106 CβH3, between Glu88 CγH2 and Ala103 CβH3, and between Glu88 CγH2 and Ala103 CαH. These NOEs are readily explained by a symmetric dimer and cannot be interpreted as intramolecular NOEs, because the respective protons are too far apart in the monomeric structure.

Figure 7a shows a model of the dimer of DnaB(24–136) that is in agreement with all available data. In particular, it agrees with the residual dipolar 1H–15N coupling constants measured in a liquid-crystalline phase at 0.1 mM and 1.1 mM protein concentration. The dipolar couplings measured at high protein concentration merely corresponded to an increased order parameter compared to the measurements at low protein concentration, resulting in a uniform increase of the dipolar couplings independent of the orientation of the N–H vectors. This observation is readily

Figure 5

Overlay of 15N–1H HSQC spectra of DnaB(24–136) measured under identical conditions at protein concentrations of 0.1 mM (red) and 2 mM (blue). Cross peaks displaying concentration-dependent chemical shifts of at least 5 Hz and/or 10 Hz in the 15N and 1H dimension, respectively, are identified with their assignments. The open circle identifies the amide cross peak of Ala103 visible only at protein concentrations below 0.45 mM.

Figure 6

Surface representation of DnaB(24–136) showing (a) the dimerisation interface and (b) the opposite side of the molecule obtained by a 180° rotation about a vertical axis. Residues for which significant concentration-dependent amide chemical shifts were identified (Figure 5) are coloured in red. Phe102 and Ala103, for which the HN resonances were not observed at high protein concentration, are located in the middle of the dimerisation interface (yellow).
explained by the fact that the long axis of the orientational tensor in the dimer (horizontal in Figure 7a) is close to the corresponding experimentally determined tensor axis in the monomer. Any significant change in direction of the long tensor axis between monomer and dimer would have scaled the dipolar couplings differently for different helices.

Only a single set of resonances was observed, indicating that the dimer is in rapid equilibrium with the monomer. The dissociation constant could not be determined by NMR, as the chemical shift changes were virtually linear over the entire concentration range studied. Analytical ultracentrifugation experiments at pH 6.6 suggested a dissociation constant in the low millimolar range (data not shown). The dimer interface buries about 600 Å² of solvent accessible surface area in a hydrophobic core flanked by polar residues. The amide resonances of Phe102, which is at the centre of the interface, and of Ala103 could not be observed at high protein concentration; however, at low concentration the Ala103 amide resonance could be identified (Figure 5). This indicates that the dimer interface is dynamic in nature, resulting in selective exchange broadening of these amide-proton resonances.

Homology with the primary dimerisation domain of E. coli gyrase A

A search of the Protein Data Bank (PDB) using the program DALI [39] identified the primary dimerisation domain of E. coli gyrase A [40] as the protein most closely related to DnaB(24–136) (Z score 3.1, 2.8 Å root mean square deviation (rmsd) for 73 superimposed Cα atoms). The dimer of this gyrase A domain is shown in Figure 7b. Although the dimer has overall dimensions similar to those of DnaB(24–136), the dimer structures differ largely at the dimer interface, which is more extended in the gyrase. A direct comparison between the monomeric domains of DnaB(24–136) and gyrase A show that structural homologies are almost exclusively in the regions that are remote from the interface (Figure 8). A similar situation has been observed for the corresponding dimerisation domain of yeast type II topoisomerase [41], which has a different dimerisation interface from that of

Figure 7

Dimerisation domains from DnaB and gyrase A. Helices are represented by cylinders and β sheets by ribbons. (a) Model of the symmetric dimer of the N-terminal domain of DnaB. The sidechains of the amino acids involved in intermolecular NOEs (Ile84, Glu88, Ala103 and Ala106) are shown in stick representation, with equal colours for both partners involved in an intermolecular NOE. The totally conserved residue Asp82 is shown in ball-and-stick representation. (b) The primary dimerisation domain of gyrase A [40].

Figure 8

Comparison of the overall fold between (a) the N-terminal domain of E. coli DnaB and (b) the primary dimerisation domain of E. coli gyrase A. Only the protein backbones are shown, omitting the poorly defined N- and C-terminal residues of DnaB (24–136). The orientation of the DnaB domain is the same as that used in Figure 1. The parts of the molecules that were identified as being structurally homologous by the program DALI [39] are colour-coded in the same way as in Figure 1.
gyrase A, with the more remote parts of the domain being conserved [40].

Comparison with electron-microscopy data

EM studies of DnaB show that the hexamer can exist in states with both threefold (C_3) and sixfold (C_6) symmetry [26–28]. Simple structural models proposed for these states (Figure 9) differ by a large displacement of the smaller one of the two domains in each subunit of the hexamer, leading to a trimer of dimers with pairwise-associated small domains in the C_3 state. The small domains are independent from each other in the C_6 state [27], which cannot, by definition, contain symmetrical subunit (or domain) dimers. The NMR structure of DnaB(24–136) shows that the N-terminal domain of DnaB is globular, supporting its identification with the small domain in the hexamer models suggested from EM studies [26,29]. The larger domain in the hexamer models has previously been identified with the C-terminal domain [26], which is supported by shared amino acid sequence motifs with helicase domains that are structurally homologous to hexameric RecA and F1 ATPase [12,42]. Most interestingly, the monomer–dimer equilibrium experimentally observed for the isolated N-terminal domain in solution matches the association–dissociation equilibrium of the small domains in the C_6–C_3 conversion suggested by EM data. The present data provide the first evidence of how the N-terminal domain, by providing a dimerisation interface, might stabilise one form of the DnaB hexamer and participate in its conformational transitions, which may be a prerequisite for helicase activity.

Interaction with single-stranded DNA, DnaC, magnesium and ATP

Association of DnaB(24–136) with single-stranded DNA (dT16), DnaC, Mg$^{2+}$ and ATP was probed by monitoring the amide chemical shifts of DnaB(24–136) in 15N-heteronuclear single-quantum correlation (15N-HSQC) spectra with and without these compounds. Mg$^{2+}$ showed weak, nonspecific interactions at all sites near negatively charged sidechains. No interactions were observed with ATP, DnaC or with dT16. If the N-terminal domain of DnaB interacts with DnaC, as has been suggested [24], additional stabilising interaction sites must exist in the C-terminal domain, the linker region, or the flexible N-terminal region (residues 1–23).

Biological implications

Helicases are key enzymes in DNA metabolism and defective genes for these proteins are the cause of a number of inherited human diseases. In spite of a large body of biochemical data, their mechanism of action is still not understood.

DnaB is the primary replicative helicase in *E. coli*, unwinding duplex DNA into single strands during replication. DnaB is a hexamer composed of identical subunits, each consisting of a larger C-terminal and a smaller N-terminal domain. Here, we report the solution structure of the N-terminal domain, which is required for helicase activity. This is the first high-resolution structure of a DnaB domain.

Electron microscopy studies of DnaB showed that the hexamer can exist in states with both threefold (C_3) and sixfold (C_6) symmetry. Simple structural models proposed for these states differ by a large displacement of the smaller of the two domains in each subunit of the hexamer in an association–dissociation equilibrium. The globular appearance of the N-terminal domain suggests that it is identical to the small domain in the hexamer models. The putative dimerisation of the small domains in the C_6–C_3 conversion is supported by the monomer–dimer equilibrium experimentally observed for the isolated N-terminal domain in solution. The dimer structure shares similarities with the primary dimerisation domain of type II topoisomerases; this dimerisation domain is thought to function as a gate for the release of double-stranded DNA. The NMR structure of the dimeric N-terminal domain provides a basis for mutational studies to analyse the functional significance of the C_6–C_3 conversion in hexameric DnaB.

Materials and methods

Construction of plasmid pSB955 for the overexpression of DnaB(24–136)

Plasmid pSB955 was generated using a polymerase chain reaction (PCR) strategy with plasmid pCM860 [30] as template. Two primers were designed, the first (5′-GAGAATATACATA TTGAACTGCCCCTC-3′) to insert an NdeI restriction site at a new ATG start codon before codon 24 of dnaB, and the second (5′-CTGCAGATTCT- TACGATATCTCAGGCACAACTGCA-3′) to insert a TAA stop codon followed by an EcoRI restriction site immediately after the serine 136 codon. The PCR reaction mixture (50 μl) contained template plasmid pCM860 (77 ng or 77 pg), both primers (1 μM each), MgSO$_4$ (varying between 2 and 9 mM), all four dNTPs (1 μM each), Vent DNA polymerase

Figure 9

Models of two different hexameric states of the *E. coli* DnaB helicase [29]. The smaller and larger domain are proposed to be identical to the N-terminal and C-terminal domains, respectively. (a) Hexamer with C_6 symmetry. (b) Hexamer with C_3 symmetry and pairwise-associated N-terminal domains. The twofold symmetry suggested by the model for each pair of subunits is not observed experimentally [29]; although the N-terminal domains may associate in a symmetric fashion, the sixfold symmetry of the C-terminal domains is broken in this hexameric state.
(1 unit, New England Biolabs) and manufacturer supplied buffer for Vent DNA polymerase. The thermal cycler was programmed as follows: 94°C for 5 min; 94°C for 30 s, 55°C for 1 min and 72°C for 1 min (32 times); 72°C for 20 min; and 4°C for 5 min. The amplified DNA (371 bp) was concentrated using a Wizard PCR prep (Promega), and purified from a 1.5% agarose gel using a QiAEX II Kit (QIAGEN). The purified DNA was digested with NdeI and EcoRI, and ligated using T4 ligase to the 4642 bp NdeI-EcoRI fragment of pETMCSI [30], which is a derivative of pET-C [43]. Ampicillin-resistant transformants of BL21(DE3) were selected at 37°C and plasmid DNA (4991 bp) was isolated on a small scale using a Bresapect mini-prep (Bresapect). Overproduction of the desired 12 kDa protein at 37°C was confirmed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS–PAGE). The sequence of dnaB from the selected plasmid pSB955 was confirmed by amplification of the DNA using an ABI PRISM dye terminator sequencing kit and subsequent analysis using an Applied Biosystems 373A sequence.

Protein overproduction and purification

Stain BL21(DE3)pLYS/pSB955 was used to prepare unlabelled, u-15N-labelled, u-13C/15N-labelled and 10%-13C/u-15N-labelled DnaB(24–136). All culture media were supplemented with 50 µg/ml ampicillin and 50 µg/ml chloramphenicol. Cells for production of unlabelled DnaB(24–136) were grown in 250 or 500 ml of LB medium supplemented with 25 µg/ml thymine. Labelled proteins were prepared from cultures of 100 or 250 ml of minimal medium, consisting of 1.5 g/l glucose, 10 mM (NH4)2SO4, 5 mM MgCl2. Interaction with the dT20 single-stranded DNA fragment was probed using identical conditions, both in the presence and absence of 10 mM MgCl2.

Cells were harvested by centrifugation, resuspended in lysis buffer (50 mM TRIS-HCl pH 7.6, 10% w/v sucrose, 100 mM NaCl, 2 mM DTT, 10 mM spermidine-C15, 15 µg/ml lysozyme) and lysed using a French Press. The lysate was clarified by centrifugation, and the proteins in the supernatant were precipitated using 0.4 g/ml ammonium sulfate. The pellets obtained after centrifugation were resuspended in a few millilitres of buffer A (50 mM TRIS-HCl pH 7.6, 20% v/v glycerol, 5 mM MgCl2) and dialysed overnight in the same buffer.

All DnaB(24–136) protein samples were purified at 4°C using anion-exchange (DEAE Fractogel, Merck) and gel-filtration (Sephadex G-50, Pharmacia) chromatography following the procedure in [30], except that the protein was precipitated using 0.4 g/ml ammonium sulfate, and the final washes of buffer D was 20 mM potassium phosphate pH 6.5. DnaB and DnaC were overproduced simultaneously as described previously [23,45], and purified initially by anion-exchange chromatography (DEAE Fractogel) [28]. DnaB was further purified on a hydroxyapatite column (BioRad) [28]. DnaC was eluted in a NaCl gradient from a phosphocel lulose (P11, Whatman) column in a buffer containing 25 mM sodium phosphate pH 7.1, 1 mM DTT, 1 mM EDTA and 20% v/v glycerol.

Overproduction of DnaB(24–136) under control of the phage T7 promoter resulted in good yields of soluble protein, even following growth in minimal media. The yield of pure protein per litre of culture varied from 16 mg for 10%-13C/u-15N-labelled DnaB(24–136), to 45 mg for unlabelled DnaB(24–136).

Protein characterisation

The molecular weight of DnaB(24–136) and the extents of isotopic labelling of the proteins were determined by mass spectrometry. Samples at 0.5–1 g/l were extensively dialysed into 0.1% formic acid in water and analysed on a VG Quattro II mass spectrometer (VG Instruments Ltd) equipped with an electrospray ionisation source and a quadrupole–hexapole–quadrupole mass analyser. The molecular weight of DnaB(24–136) was confirmed to be 12,700 Da (calculated 12,701 Da), indicating that the terminal methionine had been processed in vivo. The extent of labelling of the proteins was determined to be 98% for both the u-15N- and u-13C/15N-labelled DnaB(24–136).

Sequence alignments

Sequences were aligned using a BLASTP (version 2.0) gapless alignment procedure on the NCBI web page (http://www.ncbi.nlm.nih.gov/BLAST/). The program ALSCRIPT (version 2.03) [46] was used to prepare the plot of the sequence alignment.

Preparation of NMR samples

For the preparation of NMR samples, Pefabloc protease inhibitor (Boehringer) was added to the protein solutions at a concentration of 1 mM. The samples were subsequently ultrafiltered extensively using either an ultrafiltration cell equipped with a YM3 membrane (Amicon) or an Ultrafree-4 centrifugal filter unit equipped with a Biomax-5K membrane (Millipore). The final samples were prepared in 20 mM sodium phosphate buffer containing 1 mM EDTA and 0.02% w/v NaCl in 10% D2O/90% H2O at pH 7.5 or in 100% D2O. Exchange of solvent from H2O to D2O was achieved by lyophilisation.

Residual dipolar couplings [47] were measured in solutions containing 20 mM phosphate buffer at pH 7.5 and a 5% w/v phospholipid mixture of DHPC (dihexanol phosphocholine) and DMPC (dimyristoyl phosphatidylcholine) in a 1:3 molar ratio. The affinity of DnaB(24–136) for Mg2+ was measured with a 0.8 mM sample of DnaB(24–136) in 20 mM sodium phosphate buffer at pH 7.5. The Mg2+ concentration was varied between 0 and 40 mM by addition of MgCl2. Interaction with the dT20 single-stranded DNA fragment was probed using idealised conditions, both in the presence and absence of 10 mM MgCl2.

Affinities of DnaB(24–136) for ATP and DnaC were tested with a 0.3 mM sample of DnaB(24–136) in 10 mM TRIS-HCl buffer at pH 7.0, containing 2 mM DTT, 20 mM NaCl and 1 mM ATP in 10% D2O/90% H2O. A stock solution of DnaC was prepared using the same buffer. DnaC was titrated into the DnaB(24–136) sample and the sample volume was adjusted to about 0.5 ml by ultrafiltration after each addition of DnaC.

NMR data collection

All NMR experiments were conducted at 32°C using Bruker DMX-600 or DRX-500 NMR spectrometers. Unless stated otherwise, measurements were made in 90% H2O/10% D2O. Spectra were processed using NMRPipe (version 1.6) [48] and analysed using ANSIG (version 3.3) [49].

Backbone resonance assignments

All NMR experiments were conducted at 32°C using Bruker DMX-600 or DRX-500 NMR spectrometers. Unless stated otherwise, measurements were made in 90% H2O/10% D2O. Spectra were processed using NMRPipe (version 1.6) [48] and analysed using ANSIG (version 3.3) [49].

Backbone resonance assignments

All NMR experiments were conducted at 32°C using Bruker DMX-600 or DRX-500 NMR spectrometers. Unless stated otherwise, measurements were made in 90% H2O/10% D2O. Spectra were processed using NMRPipe (version 1.6) [48] and analysed using ANSIG (version 3.3) [49].

Backbone resonance assignments

All NMR experiments were conducted at 32°C using Bruker DMX-600 or DRX-500 NMR spectrometers. Unless stated otherwise, measurements were made in 90% H2O/10% D2O. Spectra were processed using NMRPipe (version 1.6) [48] and analysed using ANSIG (version 3.3) [49].

Backbone resonance assignments

All NMR experiments were conducted at 32°C using Bruker DMX-600 or DRX-500 NMR spectrometers. Unless stated otherwise, measurements were made in 90% H2O/10% D2O. Spectra were processed using NMRPipe (version 1.6) [48] and analysed using ANSIG (version 3.3) [49].
MOLMOL was also used to generate all molecular graphics figures. In more than half of the energy-minimised conformers, the program MOLMOL (version 2.6) [70]. A residue was determined to be in a particular regular secondary-structure motif if it was found in that conformation in more than half of the energy-minimised conformers. MOLMOL was also used to generate all molecular graphics figures.

Table 1

Structural statistics for the NMR structure of DnaB(24-136).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assigned NOE cross peaks</td>
<td>2463</td>
</tr>
<tr>
<td>Non-redundant NOE upper-distance limits</td>
<td>1194</td>
</tr>
<tr>
<td>Stereoscopic assignments</td>
<td>67</td>
</tr>
<tr>
<td>Scalar coupling constants</td>
<td>225</td>
</tr>
<tr>
<td>Dihedral-angle restraints</td>
<td>262</td>
</tr>
<tr>
<td>Residual dipolar coupling constants</td>
<td>84</td>
</tr>
<tr>
<td>AMBER energy (kcal/mol)</td>
<td>-4350 ± 90</td>
</tr>
<tr>
<td>Residual NOE-restraint violations (Å)</td>
<td>9.2 ± 0.4</td>
</tr>
<tr>
<td>Sum</td>
<td>0.10 ± 0.00</td>
</tr>
<tr>
<td>Maximum</td>
<td>23.8 ± 2.4</td>
</tr>
<tr>
<td>Rsmd†‡ (Å)</td>
<td>1.9 ± 0.2</td>
</tr>
<tr>
<td>Backbone atoms N, Cα, C’</td>
<td>0.51 ± 0.09</td>
</tr>
<tr>
<td>All heavy atoms</td>
<td>0.95 ± 0.09</td>
</tr>
<tr>
<td>Ramachandran plot appearance†§</td>
<td>90.6</td>
</tr>
<tr>
<td>most favoured regions (%)</td>
<td>8.4</td>
</tr>
<tr>
<td>additionally allowed regions (%)</td>
<td>0.3</td>
</tr>
<tr>
<td>generously allowed regions (%)</td>
<td>0.5</td>
</tr>
<tr>
<td>disallowed regions (%)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

*88 3J(HN,Hα), 74 3J(N,Hα), 30 3J(H±,Hβ), 32 3J(H±,Cα). †To the mean structure. ‡Residues 29-134. §From PROCHECK-NMR [69].

Table 1 shows an overview of the structural statistics. The Ramachandran plot was analyzed using PROCHECK-NMR (version 3.4) [69]. For residues 29-134, all outliers correspond to residues in the segments with a low density of NMR restraints and no ϕ, ψ pair was found in forbidden regions for all twenty final conformers.

Secondary-structure elements and mrms values were calculated using the program MOLMOL (version 2.6) [70]. A residue was determined to be in a particular regular secondary-structure motif if it was found in that conformation in more than half of the energy-minimised conformers. MOLMOL was also used to generate all molecular graphics figures.

Accession numbers

The coordinates of the twenty energy-refined DYANA conformers of the N-terminal domain of Escherichia coli DnaB, together with the complete lists of NMR-derived structural restraints have been deposited in the Brookhaven Protein Data Bank with the accession code 1JWE. The NMR chemical shifts have been deposited at the BioMagResBank (BMRB) under the accession code 4297.

Acknowledgements

We thank Carl Braybrook (Australian National University) for performing the mass spectrometry and Jackie Wilce (University of Sydney) for performing the analytical ultracentrifugation. Financial support from the Australian Research Council, the Australian Department of Industry, Science and Tourism, the Australian National University, the Swedish Natural Science Research Council, and the Erk and Edith Fernström Foundation for Medical Research are gratefully acknowledged.

References

41. Xu, X., Olejniczak, E. T. & Fesik, S. W. (1992). Stereoscopic assignments and motions for FKBP when bound to ascomycin from \(\text{H}^\text{1} \text{H}^\text{125} \text{C}^\text{13} \text{C}^\text{125} \text{N} \) and \(\text{H}^\text{1} \text{H}^\text{125} \text{C}^\text{13} \text{C}^\text{125} \text{N} \) proteins. J. Biol. Chem. 267, 101-104.
43. NMR commun. J. Biomol. NMR. 12, 435-441.
44. Vuister, G. W. & Bax, A. (1993). Quantitative correlation: A new approach for measuring homonuclear three-bond (\(\text{H}^\text{1} \text{H}^\text{1} \text{H}^\text{125} \text{C}^\text{13} \text{C}^\text{125} \text{N} \)) coupling constants in homonuclear- and heteronuclear-enriched proteins. J. Am. Chem. Soc. 115, 7772-7777.