Homework #1: In addition to solving the two requird integrals, I will expand this to show how you
can use Maple to mathematically "probe".

First let me plot the integrand:
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Here you see that the function that you are to integrate is maximum at roughly 1 and quickly fall to
near zero before x=3. I can find that maximum very easily by
defining a function f(x) which is the derivative of the integrand with respect to x.
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f:=x—>diff(x2' exp( > ),x)
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Now I can plot the deriative of the integrand and show that where f(x)=0, there is an extremum
(either a minimum or maximum).

plot(f(x),x=0..5)
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I can solve for the value of x at which the f(x)=0, or the integrand is maximum

Ssolve(f(x)=0);
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But this returns the trivial result, so I need to specify that [ am loking for the solution between 1/2
and 2

fsolve(f(x)=0,x=0.5..2);,
0.8164965809 3)

Now let me do the first integral, which corresponds to the total area under the curve of in figure 1:

—3. 57
int| x*- exp 2 , x=0.00 [;
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Now if [ want a numerical result

evalf(% );
0.2412004182 ®))

Now let me do the second integral, which corresponds to the area under the curve up to x=1:

—3- ¥
int| x*- exp 7 ,x=0.1|;
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0.1467402620 (7)

Erf refers to the error function and it looks like this:
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evalf(% );

plot(erf(y), y=—2.2),
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Now it ends up that the integrand is an unnormalised probability distribution that we will be dealing
with. Let us call P(x) the
normalised distribution.

ex, (_—3')62)
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P=x— x" 3
int(xz- exp( =N xz),xZO ..inﬁnily)
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plot(P(x),x=0.3);
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evalf(P(x));
4145929794 12 o ~1:500000000,2 ) )



