
Chemistry C3102-2006: Polymers Section

HOMEWORK #5

Due Tuesday, June 6

1. A polymer brush in good solvent forms a layer of thickness L that scales with number of

monomers, N and grafting density σ as L ∼ aNσ1/3. How does the polymer thickness

scale in poor solvent?

In poor solvent, an isolated chain will collapse to a small sphere of size R ∼ N1/3a. So if

the chains were grafted a distance D apart where D > R, then the surface will be dotted

with “mushrooms” of size R ∼ N1/3a that contain monomer and no solvent. Thus, the

thickness of the polymer will not be homogeneous when the polymer is grafted dilutely on

the surface in the presence of poor solvent. In that case, L = 0 or L = R ∼ N1/3a, and is

independent of the grafting density when σ = (D/a)−2 is in the range 0 < σ < (R/a)−2.

Notice that the highest grafting density at which the molten globules remain isolated,

σ = (R/a)−2, scales as N−2/3 (this you can see by replacing R with the scaling N1/3a) so

that as the chain gets larger, this upper grafting limit gets smaller.

On the other hand, if D < R, then the globules will coalesce so as to form a homogeneous

layer which minimise polymer contact with the solvent. In this case, as each chain is

grafted to the surface within an area D2, and the volume of the collapsed chain is the

number of monomrs times the voluem of each monomer, then the layer thickness is

1 chain

D2 area
× Na3 volume

chain
= L

or

L =
Na3

D2

=
Na3/a2

D2/a2

= aNσ.

That is, under poor solvent conditions the layer thickness depends linearly upon the

grafting density.

2. A researcher suggests a new model for the phase separation of a binary mixture of solvent

(species 1) and solute (species 2). The researcher has written this new solution thery,

“the three-hump model”, in a lengthy manuscript for publication. You are given the job

of reviewing the manuscript and informing the editor of its correctness or incorrectness.

You have not read the researcher’s excessively long description, but one of his figures

(reproduced below) rings “alarm bells”, signalling that the model violates fundamen-

tal thermodynamics. Using only the researchers figure, explain to the editor why this

manuscript should not be published. Describe all incorrrect aspects of this figure.
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Figure 1: ∆Fm, free energy of mixing, versus x1, mole fraction of solvent as predicted from the new
Three-hump Model of Solution Thermodynamics: ∆Fm/RT = sin (6πx1) − 6πx1(1 − x1). Shown is
the model predictions at a given temperature where three phases, whose energy and composition are
given by closed circles, coexist in the unstable concentration range (shaded area). The darker shaded
regions show the metastable region where you can create a solution containing either 1 homogeneously
mixed phase, or 2 partially-mixed phases that exist over short times before they slowly decompose
into the three lowest energy phases via the process of spinodal decomposition.

• It is not possible to have a two component system separate into more than 2 phases.

You can understand this using the phase rule, where F , the number of degrees of

freedom of the system is given by the number of components, C, and phases, P :

F = C −P + 2. So for a two component system, F = 4−P . If we had a one phase,

there would be F = 3 degrees of freedom required to specify the system: these being

temperature, pressure, and mole fraction of solute. If we had two phases, there

would be F = 2 degrees of freedom required to specify the system: these being

temperature and pressure (You don’t need to specify mole fraction as the equal

chemical potentials across phases determines this). For three phases, there would be

only F = 1 degree of freedom, an insufficient number of degrees of freedom OR, you

can note for this specific model that it is impossible to construct a line, tangent to

the ∆Gm curve at three different binodal compositions - which would be necessary

for the co-existence of three phases.

• Completely unstable regions should be marked by regions of the ∆Gm curve that have

negative curvature. Compositions for which ∂2∆Gm/∂x2

1
< 0 will spontaneously de-

mix.

• Metastable regions are compositional regions where ∂2∆Gm/∂x2

1
< 0 and where

compositions will eventually de-mix, but do so using the slower kinetics of nucleation

& growth.

• Unstable regions are usually bounded by metastable regions and not the other way

around as indicated in the shading of the figure.

3. Using Flory-Huggins solution theory for polymer-solvent solutions containing chains of

length N = 100 monomers, and a critical temperature of Tc = 332 K , show (using Maple

for needed efficiency)
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(a) Predictions of ∆Gm/(NRT ) versus φ2, volume fraction of monomer, for T = 275,

300, 325, 332, 350, 400 K.

The Flory-Huggins Solution model is

∆Gm

NRT
= χφ1φ2 + φ1 ln φ1 +

φ2

N ln φ2.

You are not given χ, but you are told that the chains are of length N and Tc = 332K.

This is sufficient to determine χ over a range of temperatures. The value of χ at

the critical temperature, where spinodals and binodals merge and above which the

solution is homogeneous, is given by

χc ≡
1

2
+

1

2N +
1√
N

,

or χc ≡ χ(Tc) = 0.605. Then, as

χ(T ) =
B

RT

and

χ(Tc) =
B

RTc
,

then

χ(T ) = χ(Tc) ×
Tc

T
.

Thus, The Flory-Huggins model reduces to:

∆Gm

NRT
=

(

0.605 × Tc

T

)

(1 − φ2)φ2 + (1 − φ2) ln (1 − φ2) +
φ2

N ln φ2.

> G300:=y->0.605*332/300*y*(1-y) + (1-y)*ln(1-y) + y/100*ln(y);

G300 := y 7→ 0.6695333333 y (1 − y) + (1 − y) ln (1 − y) + 1

100
y ln (y)

> G325:=y->0.605*332/325*y*(1-y) + (1-y)*ln(1-y) + y/100*ln(y);

G325 := y 7→ 0.6180307692 y (1 − y) + (1 − y) ln (1 − y) + 1

100
y ln (y)

> G332:=y->0.605*332/332*y*(1-y) + (1-y)*ln(1-y) + y/100*ln(y);

G332 := y 7→ 0.6050000000 y (1 − y) + (1 − y) ln (1 − y) + 1

100
y ln (y)

> G350:=y->0.605*332/350*y*(1-y) + (1-y)*ln(1-y) + y/100*ln(y);

G350 := y 7→ 0.5738857143 y (1 − y) + (1 − y) ln (1 − y) + 1

100
y ln (y)

> G400:=y->0.605*332/400*y*(1-y) + (1-y)*ln(1-y) + y/100*ln(y);

G400 := y 7→ 0.5021500000 y (1 − y) + (1 − y) ln (1 − y) + 1

100
y ln (y)

> plot([G300(y),G325(y), G332(y), G350(y), G400(y)], y=0..1);
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T=300 K

Alternatively, you can express a procedure, which I call g, which takes values of y,
volume fraction of polymer, and T , temperature, and generate a procedural function
that you can plot, derivitize (if that is a word), or solve:

> g:=proc(y, T) description "free energy";

> 0.605*332/T*y*(1-y)+(1-y)*ln(1-y) + y/100*ln(y)

> end proc;

g := proc(yT )description “free energy′′; 332 ∗ .605 ∗ y ∗ (1 − y) ∗ T−1 + (1 − y) ∗ ln(1 − y) + 1/100 ∗ y ∗ ln(y)end proc;

> plot( [g(y, 300),g(y,325), g(y,332), g(y,350), g(y,400)], y=0..1);
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You might not be able to discern easily any inflexion points, but the next exercise

will show that they are definitely there; and indeed you can see them by plotting

over a reduced range of y.

(b) Spinodal compositions for the temperature range, 275K < T < 400K

The spinodal compositions at any T ≤ Tc satisfy

∂2∆Gm/(NRT )

∂φ2

2

= 0.

The easiest way to demonstrate these spinodal composition is to plot the second

derivative of the free energy expression versus composition: spinodal compositions

are found as those compositions where the second derivative curve crosses the com-

position coordinate.
> ddG300:=y->diff(diff(0.605*332/300*y*(1-y) + (1-y)*ln(1-y) + y/100*ln(y),
y), y);

ddG300 := y 7→ −1.339066667 + (1 − y)−1 + 1

100
y−1

> ddG325:=y->diff(diff(0.605*332/325*y*(1-y) + (1-y)*ln(1-y) + y/100*ln(y),
y), y);

ddG325 := y 7→ −1.236061538 + (1 − y)−1 + 1

100
y−1

> ddG332:=y->diff(diff(0.605*332/332*y*(1-y) + (1-y)*ln(1-y) + y/100*ln(y),
y),y);

ddG332 := y 7→ −1.210000000 + (1 − y)−1 + 1

100
y−1

> ddG350:=y->diff(diff(0.605*332/350*y*(1-y) + (1-y)*ln(1-y) + y/100*ln(y),
y),y);

ddG350 := y 7→ −1.147771429 + (1 − y)−1 + 1

100
y−1

> ddG400:=y->diff(diff(0.605*332/400*y*(1-y) + (1-y)*ln(1-y) + y/100*ln(y),y),
y);

ddG400 := y 7→ −1.004300000 + (1 − y)−1 + 1

100
y−1

> plot([ddG300(y),ddG325(y), ddG332(y), ddG350(y), ddG400(y)], y=0..1, h=-1..1);
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You can solve for the spinodal compositions at each temperature:

> solve( ddG300(y)=0, y);

0.03276645143, 0.2279126287

> solve( ddG325(y)=0, y);

0.05690933409, 0.1421596689

> solve( ddG332(y)=0, y);

0.09090909091, 0.09090909091

Alternatively, you could again resort to formulating procedures, which is much easier

and can yield in a few lines the complete spinodal curve as a function of temperature

> dg:= proc(y, t); diff(g(y,t), y) end proc;

dg := proc(yt) diff (g(y, t), y)end proc;

> dgg:= proc(y,t); diff(dg(y,t), y) end proc;

dgg := proc(yt) diff (dg(y, t), y)end proc;

Here I simply created procedures for calculating the dg ≡ ∂(Gm/NRT )/∂y for values

of polymer volume fraction, y, and temperature, as well as dgg ≡ ∂2(Gm/NRT )/∂y2.

Then I plot the second derivative at T = 300 simply to show that there is indeed 2

inflection or spinodal points.

> plot( dgg(y, 300), y=0.01..0.23);
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Now what we can do is solve for the two values of polymer volume fraction for which

dgg = 0 at arbitrary temperature:

> solve( dgg(y, T) =0, y);

0.5 − 0.001232201533 T + 0.0001369112815
p

13337104.0 − 67064.0 T + 81.0 T2, 0.5 − 0.001232201533 T − 0.0001369112815
p

13337104.0 − 67064.0 T + 81.0 T2

These are the 2 spinodals at any T (which correspond to two roots of a polynomial)

which I can plot as a function of temperature. I will plot only for temperatures up

to Tc as mixtures above Tc are homogenous at all compositions. I simply copy the

maple output into the plot function:
> plot( [.5-0.1232201533e-2*T+0.1369112815e-3*(13337104.-67064.*T+81.*T^2)^(1/2), .5-0.1232201533e-2*T-0.1369112815e-3*(13337104.-67064.*T+81.*T^2

T=300..332);
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And the result is the envelope of spinodals as a function of T . Notice that the

spinodals are low polymer volume fractions.

(c) Binodal compositions for the same temperature range, and

The binodals correspond to where the ∆Gm/(NRT ) versus φ2 curve is tangent to

the line whose compositional intercepts are the chemical potentials. In other words,

if the chemical potentials are given by:

µ1 − µ◦
1

RT
= ∆Gm/(NRT ) + φ2

(∂(∆Gm/(NRT ))

∂φ1

)

(1)

and
µ2 − µ◦

2

RT
= ∆Gm/(NRT ) + φ1

(∂(∆Gm/(NRT ))

∂φ2

)

, (2)

then the spinodal fractions of the two phases, which we denote {φ†
1
, φ†

2
} and {φ‡

1
, φ‡

2
}

are those at which
µ†

1
− µ◦

1

RT
=

µ1 ‡ −µ◦
1

RT
,

and
µ†

2
− µ◦

2

RT
=

µ‡
2
− µ◦

2

RT
.

So, inserting the F-H expression for eq 1 and 2, we get

µ1 − µ◦
1

RT
= χφ2

2
+ ln (1 − φ2) + φ2

(

1 − 1

N
)

and
µ2 − µ◦

2

RT
= χ(1 − φ2)

2 +
1

N ln (φ2) + (1 − φ2)
( 1

N − 1
)

.
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Thus, there are 2 equations, µ†
1

= µ‡
1

and µ†
2

= µ‡
2
, and 2 unknowns, φ†

2
and φ‡

2
to

solve. These equations are:

χφ2†
2

+ ln (1 − φ†
2
) + φ†

2

(

1 − 1

N
)

= χφ2‡
2

+ ln (1 − φ‡
2
) + φ‡

2

(

1 − 1

N
)

χ(1 − φ†
2
)2 +

1

N ln (φ†
2
) + (1 − φ†

2
)
( 1

N − 1
)

= χ(1 − φ‡
2
)2 +

1

N ln (φ‡
2
) + (1 − φ‡

2
)
( 1

N − 1
)

Now χ = 0.605 × 332/T , so these above equations provide for each temperature

T < Tc = 332, the binodals or the compositions of the two phases, φ†
2

and φ‡
2
. These

are also the phase diagram requested below. Note that the binodals are not found

as the polyemr volume fractions which minimise ∆Gm, although these minima are

excellent first guesses in an iterative solution of the above 2 equations.

(d) T -φ2 phase diagram This is the T versus φ†
2

and T versus φ‡
2

plots..

Discuss how these predictions would be altered for a solution of chains of higher molecular

weight.

With higher molecular weight chains, the polymer becomes even more difficult to ho-

mogenously mix. You need to go to even higher temperatures in order to get the chains

to mix homogeneously. That is Tc increases with molecular weight or N . Moreover, the

composition at the critical point , φ2c, is smaller for larger N . See figure in Section 5.3.3
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