
Chemistry C3102-2006: Polymers Section

HOMEWORK #4

Due Tuesday, May 30

1. The free energy of a chain in good solvent is estimated in the Flory argument as

F ∼ kBT
(

β
N2

R3
+

3R2

2Na2

)

(a) Explain physically what the first and second terms on the RHS represent and how

these terms contribute to the swelling of the chain in good solvent

The free energy is comprised of two contributions: the internal energy and the

entropy: F = U − T . The first term on the RHS of the given free energy expression

is the internal energy. Castng the internal energy as a virial expansion:

U = V kBT (βη2 + γη3 + . . .)

where η is the density of monomers: η ≡ N/V and β is the second virial coeffcient.

The Flory argument considers only the lowest order term in this expansion, that is,

the two-body or pairwise or monomer-monomer interaction contributes to U as:

U ∼ V kBTβ
(N

V

)2

= kBTβ
(N2

V

)

= kBTβ
(N2

R3

)

.

In good solvent, the monomer-monomer interactions are repulsive, causing the chain

to swell. Indeed, interactions alone would favour very large R so as to decrease the

distance between monomer pairs and increase solvent-monomer interactions. Thus,

a large R will decrease the internal energy contribution, kBTβ N2

R3 where β > 0, and

decrease the contribution o the internal energy contribution to F . Thus, internal

energy favours large R.

The second term of the RHS is the entropy of the chain, assumed to be the entropy

of an ideal chain:

−TS(R) = −T (kB ln (p(R)) = −T (φ −
(3R · R

2Na2

)

where φ is a constant, independent of R. This reduces to

−TS(R) = kBT
3R2

2Na2
.

As this term depends upon R2, larger R decreases the chain’s entropy (and increases

the entropic contribution to F ) and therefore, entropy disfavours large chains.

Thus the internal energy and entropy are in opposition or compete and the balance

is determined β which is, itself, temperature dependent.

(b) The chain will adopt a size, R, that minimises the free energy. This indicates that you

can find the equilibrium chain size by finding an expression for R for which dF/dR =

0, and ensuring that the extremum is a minimum, d2F/dR2 > 0. Demonstrate that

the equilibrium R that you obtain by that exercise is equivalent to the expression

obtained by equating competing energy terms in the Flory expression for F .
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i. Finding R that minimises the free energy, F .

F ∼ kBT
(

β
N2

R3
+

3R2

2Na2

)

dF

dR
∼ kBT

(

−
3βN2

R4
+

3R

Na2

)

In order that dF/dR = 0, then the bracketted derivative terms must be equal

to 0 or:
3βN2

R4
=

3R

Na2

Before we go further, it is useful to compare the units on both sides of the above

equation. On the LHS, the units are 1/length as R is in units of length, a2 is

length squared and N is dimensionless. On the RHS, β is in units of volume or

length cubed so that the RHS is also 1/length. We can however cast β as β ′a3

where β ′ is a dimensionless second virial coefficient. Then

3β ′N2a3

R4
=

3R

Na2

β ′N3a5 = R5

R ∼ N3/5a,

where the last expression is the Flory radius of a solvated chain.

ii. Equating energy terms that are in opposition. As the first term favours

large R and the entropic term disfavours large R, we can achieve the same scaling

behaviour by simply equating the competing energy terms:

β ′N2a3

R3
=

3R2

2Na2

β ′N3a5 =
3

2
R5

R ∼ N3/5a

(c) You are a reviewer of a manuscript that proposes a “correction term” to the Flory

argument. This correction term is claimed to be necessary to more accurately reflect

the entropy of a self-avoiding random walk. The propose, amended Flory argument

is:

F ∼ kBT
(

β
N2

R3
+

3R2

2Na2
Rb

)

The authors make a controversial statement which the editor is asking you to com-

ment on directly:

The value of b is small but can be both positive or negative −1 < b < 1,

depending upon the chemical composition of the solvent.

What do you write to the editor?

The authors are suggesting that the entropy of a good solvent chain differ from that

of an ideal chain by a factor of R−b where −1 < b < 1. Let’s explore what this

means in terms of the size of the chain. The proposed size of the chain will be

R ∼ N3/5−ba.
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This is obtained by minimising the free energy.

If b < 0, then for the range −1 < b < 0, N8/5a < R < N3/5a. That is the size of

the chain scales more strongly with N than the ideal case. However, the limiting

case of b = −1 does not make sense: R ∼ N8/5a. How can a chain size scale more

strongly than the number of monomers. Clearly, the largest size of a chain is the

number of monomers times the monomer size, Na. The authors suggested range of

values of b include the physical impossibility that the average end-to-end distance is

larger than the contour length of the chain.

if b > 0, then for the range 0 < b < 1, N3/5a < R < N−2/5. that is, the size of the

chain scales less strongly with N than the ideal case. However, the limiting case of

b = 1 does not make physical sense: R ∼ N−2/5a, that is the size decreases with N .

This makes no sense in both good and poor solvent!

2. Contrast the stretching-force law (force, f , versus end-to-end-distance, R) of a chain in

good solvent, ideal solvent, and poor solvent.

(a) In poor solvent. In poor solvent the force required to pull the a strand of chain,

monomer-by-monomer, out of a collapsed (solvent excluding globule) is a constant

as the work that you do to pull the chain out is dictated by the surface tension of

the globule.

f ∼ constant and independent of extension

(b) In ideal solvent. In theta solvent, the force required to extend the ends of the

chain a distance R, is entirely entropic and

f = −kR

where k is a spring constant k ∼ kBT/(Na2).

(c) In good solvent. In good solvent the force required to extend the ends of the chain

will be similar to that of the ideal chain at large values of R where the monomers

of the stretched chain are far apart so that monomer-monomer repulsion does not

contribute; but at smaller R where monomers can be in close distance, monomer-

monomer interactions can contribute. To quantify this contribution, we can write

down the Flory argument:

f = −
dF

dR
= kBT

(3N2a3

R4
−

3R

Na2

)

.

As you see, for large R, the first term is proportional to R−4 will be small in com-

parison to the entropic term, and consequently you can expect that the stretching

at high extensions is Hookean. To quantify that we can recast the above force law

by gathering up N terms, making terms as dimensionless as possible:

f ∼ 3kBT
(

β ′
N2a3

R4
−

R

Na2

)

fa

kBT
∼ β ′

(R0

R

)4

−
Ra

R2

0
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where I have let R0 represent the size of the chain under ideal conditions. Now

clearly, to stretch a chain, R > R0 as the Flory radius is larger than R0. So we need

to consider plotting the equation

fa

kBT
∼ β ′

(

α−4 −
α

√
N

)

That is, we plot the dimensionless force, fa/(kBT ) versus α for α = R/R0 > 1 with

given values of β ′ and N . You see that as you stretch more, that is, as α gets larger,

you recover the purely entropic stretching term.

3. Qualitatively describe what the force of squashing of a chain in poor solvent over dimen-

sions ranging from H ∼ N3/5a to H ∼ a.

In poor solvent, the chain will collapse onto the surface into a monomer-filling, solvent-

excluding globule. Depending upon whether the polymer wets the surface or not (as

quantified by the contact angle), the size of the globule can be between R ∼ N1/3a for

a non-wetting surface, or R ∼ a for polymer-attractive surface where the polymer forms

a pancake. Thus, there will be no polymer squashing until the slit distance is reduced

to R. As we are looking only at slit distances larger than a, we will consider only the

non-wetting surface where the globule size is

R ∼ N1/3a.

The spherical globule is unchanged until H ∼ N1/3a. For slit widths smaller than this,

the globule will be squashed. The work that goes into squashing does not change the

entropy of the chain much, but is expended in creating a solvent/globule surface whose

area increases from the minimal surface area of the original spherical globule. So the

force is identified with the change in surface energy with compression. To quantify this

somewhat, let’s assume when it is squashed, the chain forms a cylinder of diameter D.

The volume of the cylinder is taken up by the monomers

πD2H = Na3,

so that D of the cylinder is determined by the slit distance using D ∼
√

Na3/H. Now

the energy associated with the surface of the cylinder comes in 2 parts: Let γH present

the energy per area of the globule-compressing surfaces and γS the energy per area of the

globule-solvent contact so that

E = 2γHπD2 + γS2πDH

As D depends upon H , we rewrite using

E = 2γHπ
Na3

H
+ γS2π

√

Na3

H
H.

Then the force is f = −dE/dH (and not worrying about constants...), or

f = −γH
Na3

H2
+ γS

√

Na3

H

surface that is in contact with solvent and not the squashing surfaces
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