
Chemistry C3102-2006: Polymers Section

HOMEWORK #2

SOLUTIONS

The aim of this short homework is to familiarise the sutdent with the Gaussain proabability

distributions, which are central to the thermodynamics of polymer chains, and important in

many areas of science

Due Tuesday, May 2

We will have a problem solving session on Friday. April 28, 11AM-Noon, to address aspects of

these homework problems.

1. The size of an ideal chain is described by its mean square end-to-end distance, R ∼
√

Na.

Name all assumption made in the ideal chain model and contrast them with assumptions

made in the ideal gas model. Qualitatively describe how the size of the real chain would

differ from the ideal chain if these assumptions were lifted.

The ideal chain model assumes:

• Assumes a linear chain of N statistical monomers, each of size or length a which

have no orientational correlation in their successive placement. Or in other words,

an ideal chain traces the trajectory of a random walker of N steps, each of size a.

• There are no interactions (attractive, repulsive, or volme excluding) between monomers

of the chain such that the chain can self-intersect.

The analogous assumptions on an ideal gas are:

• An ideal gas comprised of N molecules in volume V , where each molecule has no

positional correlation in its container of volume V (equally likely to be at any position

within the container, with no correlation between molecules,

• There are no interactions (attractive, repulsive, o volume excluding) between gas

molecules such that gas molecules can overlap each other.

If you were to lift assumption (1) and consider orientational correlation between successively-

placed (but still inert and intersectable) monomers, then the size of the chain would

increase, but the scaling law would remain unchanged. As explained in section, orienta-

tional correlation effectively increases the size of the statistical monomer, but the chain

can still be modelled as an ideal chain, but one of fewer statistical monomers of larger

size. Let N and a represent the chain of N correlated monomers of size a. Let astat be

the size of a statistical monomer, or the smallest length along the chain backbone over

which there is no orientational correlation and the chain can be considered again, freely

jointed. astat > a. Then, the contour length of the chain is

Na = Nstatastat
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or Nstat = Na/astat Now the size of the correlation chain, Rcorrelated can still be written

using the ideal chain scaling law if we use Nstat and astat.

Rcorrelated ∼
√

Nstatastat

∼
√

Na

astat
astat

∼ R

√

astat

a

and as
√

astat/a > 1, then Rcorrelated > R, i.e., lifting the assumption of no orientational

bias renders a chain with a larger mean end-to-end distance.

If you were to lift the assumption (2) and consider energetic interactions between monomers

of the chain, you would get a change in chain size, as well as a different scaling expression.

The scaling expression that you would get with attractive monomer-monomer interactions,

repulsive monomer-monomer interactions, and excluded volume interactions is the topic

of Chapter 3. Here we can qualitatively understand the size change as

• attractive interactions between monomers bring the monomers closer together,

causing the chain to adopt configurations that are, on average, smaller;

• repulsive interactions push monomers apart, causing the chain to adopt configu-

rations the are, on average, larger;

• excluded volume interactions prevent monomers from overlapping and the chain

from self-intersecting. As chains are more likely to be self-intersecting when in

compact configurations, the removal of excluded volume interactions causes the chain

to increase in size.

2. A child builds a linear “sculpture” by randomly gluing together the ends of 120 identi-

cally sized sticks. For his first sculpture, the sticks are glued end-to-end, randomly onto

paper (i.e., the sculpture is 2-dimensional), but his later sculpture is 3-dimensional. Two

thousand children Canberra-wide complete similar structures.. The probability distribu-

tions for the end-to-end distance for the 2- and 3- dimensional structures are said to be

Gaussian. Provide formula for these distributions, making sure that you clearly state

all assumptions necessary in constructing the Gaussian distribution from the sculpture

exercise. How does the variance in the distribution depend upon the number of sticks in

each sculpture and the total number of sculptures made by the children? AIM: to apply

expressions for Gaussian distributions to an “experiment”

The Gaussian distribution of x, a d-dimensional measure is:

p(x) =
( d

2πσ2

)d/2

exp
(

− d(x − 〈x〉)2

2σ2

)

where 〈x〉 is the mean of x and σ2 is the variance which characterises the breadth of

the distribution. The sculptures can be constructed a large number of ways and the

distributions p2(R), p3(R) characterise the distribution of sculptures in terms of their

end-to-end vector. In both two and three dimensions, we can assume

〈R〉 = 0
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in analogy with a random walker or simply by noting that the first and last sticks are

indistinguishable (and the end to end vector can be measured as R = a or R = −a. (Note

that the error in this assumption goes as n−1/2 where n is the number of experiments or

sculptures (n = 2000). The breadth of the distribution or variance depends upon the

number of sticks in the sculpture, N = 120 (if only 2 sticks were used, the distribution

would not be very wide) and does not depend upon the number of sculptures, nor the

dimension of the sculpture.

σ2 = Na2.

3. Consider three linear, freely-jointed chains having the same number of steps, N , with

monomers of the same size a, but in different dimensions. One chain is 1-dimensional,

another is 2-dimensional, and the last is in 3 dimensions. Order the chains of different

dimension in terms of increasing

(a) mean end-to-end distance, and

(b) probability of finding the largest end-to-end distance.

Make sure you justify your answers with plots of probability distributions (using Maple

for maximum efficiency). Does you answer agree or contravene your intuition?

First it is useful to express each of the distributions

(a) The distribution in 1-D is

p1(R) =
( 1

2πNa2

)1/2

exp
(

− R2

2Na2

)

where you can check that this distribution is normalised by showing 1 =
∫ +∞

−∞
p1(R)dR.

You can change the integration variable to a scalar R and integrating the scalar dis-

tance from 0 to ∞.

(b) The distribution in 2-D is

p2(R) =
( 2

2πNa2

)2/2

exp
(

− 2R2

2Na2

)

where you can check that this distribution is normalised by showing 1 =
∫ +∞

−∞
p2(R)dR,

where you are integrating over all 2-D vectors R. You can change the integration

variable to a scalar R using dR = 2πRdR and integrating the scalar distance from

0 to ∞, so that the normalisation check is 1 =
∫ ∞

0
p2(R)2πRdR

(c) The distribution in 3-D is

p(R) =
( 3

2πNa2

)3/2

exp
(

− 3R2

2Na2

)

where you can check that this distribution is normalised by showing 1 =
∫ +∞

−∞
p3(R)dR,

where you are integrating over all 3-D vectors R. You can change the integration

variable to a scalar R using dR = 4πR2dR and integrating the scalar distance from

0 to ∞, so that the normalisation check is 1 =
∫ ∞

0
p3(R)4πR2dR
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Now, if I am going to compare the probabilities of finding a scalar R in a 1, 2, and 3-

dimensions , I must ensure that I compare “apples” with ”apples”. To achieve this I will

do 2 things. First (purely for convenience), I will rewrite R in a dimensionless form, using

x = R/(
√

Na) or relacing R with x
√

Na. The normalisation conditions for each of the

distributions is then, for 1-d:

1 =

∫ ∞

0

2p1(R)dR

=

∫ ∞

0

2
( 1

2πNa2

)1/2

exp
(

− x2

2

)

(
√

Nadx)

=

∫ ∞

0

2√
2

exp
(

− x2

2

)

dx

for 2-d:

1 =

∫ ∞

0

p2(R)2πRdR

=

∫ ∞

0

( 2

2πNa2

)2/2

exp
(

− 2R2

2Na2

)

2πR(
√

Nadx)

=

∫ ∞

0

2x exp
(

− x2
)

dx,

and for 3-d:

1 =

∫ ∞

0

p3(R)4πR2dR

=

∫ ∞

0

( 3

2πNa2

)3/2

exp
(

− 3R2

2Na2

)

4πR2(
√

Nadx)

=

∫ ∞

0

6

√

3

2π
x2 exp

(

− 3x2

2

)

dx.

Second, recognise that you want to plot the quantity y of 1 =
∫ ∞

0
ydx versus x for each

dimension. This will ensure that the area under the curves that you plot is equivalent.

This is important because it amounts to ensuring that you are considering all scalar

distance R in each of the dimensions, and that the probability, integrated over all possible

dimensionless distances x is unity. So what I have done is plotted each of these using

Maple using (blue,green,red) = (1, 2, 3 dimensions). Moreover, I also checked to ensure

that the areas under the three curves is unity (plus a small error when I approximate π

with 3.14159) when integrated out to infinity.
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> plot( [sqrt(2/3.14159)*exp(-x^2/2), 2*x*exp(-x^2), 6*sqrt(3/(2*3.14159))*x^2*exp(-3*x^2/2)], x=0..3, 
color=[blue, green, red], style = [point, line, point]);
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> int(sqrt(2/3.14159)*exp(-x^2/2), x=0..infinity),int(2*x*exp(-x^2), x=0..infinity), 
int(6*sqrt(3/(2*3.14159))*x^2*exp(-3*x^2/2), x=0..infinity);

1.000000422, 1, 1.000000422

Figure 1: Maple 9.5 output.

From these distributions you can order the chains:

(a) the mean end-to-end distance (
√

〈R2〉 and not 〈R〉 as that is 0!) is roughly the

same,
√

Na, to within order 1. That is 〈x〉 ∼ 1. However, you can check this by

integrating x over the distributions:

For 1-D:

int(x ∗ sqrt(2/3.14159) ∗ exp(−x2/2), x = 0..infinity) = 0.79

For 2-D:

int(2 ∗ x2 ∗ exp(−x2), x = 0..infinity) = 0.89

For 3-D:

int(6 ∗ sqrt(3/(2 ∗ 3.14159)) ∗ x3 ∗ exp(−3 ∗ x2/2), x = 0..infinity) = 0.92

So you see that as the dimension increases, the mean increases slightly. But again,

the mean is still 〈x〉 ∼ O(1)

(b) the probability of finding the largest end-to-end distance increases with smaller di-

mension. (You can see this particularly well for values 3 < x < 4).

This does agree with intuition. Consider a drunken walker. If the walker were confined

to a line (1 -D) as opposed to 2-D, then it would be more likely that she would return to

her original starting position. In higher dimension, it is less likely to find your way back

to the starting condition. Moreover, it is also likely that the walker will venture furthest

away from the origin in 1-D whereas in higher dimension you are less likely to venture.

From the distributions you see that a walker becomes more “localised” about x = 1 as

dimension is increased.

4. What is the probability of observing a chain in three dimensions whose end-to-end dis-

tance, R, is within one standard deviation of the mean end-to-end distance? AIM: Con-

structing and extracting information from a probability distribution, using Maple for

maximum efficiency.
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The mean end-to-end distance is
√

〈R2〉 =
√

Na and the standard deviation, σ (or the

square root of the variance σ2) is
√

Na. So we seek the probability of observing a chain

with end-to-end distance between 0 and 2
√

Na. Following from page 13 of Chapter 2

where we solve the integral,

P (R)dR =

∫ 2
√

Na

0

4πR2(
3

2πNa2
) exp (− 3R2

2Na2
)dR

but first express it in the variable x,

4π(
3

2π
)3/2

∫ 2

0

x2 exp (−3x2

2
)dx,

which, in Maple is input as:

4 ∗ pi ∗ (3/2/pi)(3/2) ∗ (int(x2 ∗ exp(−3 ∗ x2/2), x = 0..2));

output as:

3π
√

3
√

2
(1

π

)3/2(

− 2

3
e−6 +

1

18

√
π
√

6erf(
√

6)
)

which is after evaluating this using “ evalf(%)”, yields the answer

I = 0.9926172590.
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