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4.0 Polymers at interfaces

In this section, we begin to investigate the conformation at interfaces, including multiple-

chains at interfaces. A polymer brush is a system of polymer chains that are densely end-

tethered or end-grafted onto a surface. Such brushes are important in a number of applications,

most notably surface modification and colloidal stabilisation. We will address planar brushes

only; however brushes grafted onto curved surfaces are also very important. Examples include

polymers grafted to the interior pores of membranes, the exterior surface of colloidal particles,

hairy-rod polymers and molecular bottlebrushes.

The most fundamental and easily measured property of a polymer brush is its height. In

colloidal stabilisation applications, the brush height determines the hydrodynamic radii of the

brush-coated particles and increases the range of repulsive interactions between the particles,

thereby reducing colloidal aggregation. In good solvent and where the surface is “inert”, the

brush height is determined by a balance of monomer-monomer repulsion (or osmotic pressure

of the monomers), which favours large brush heights, and the entropic stretching of the chains,

which favours small heights. The grafting density, σ, is the number of grafted chain ends per

unit area substrate, given by

σ ≡
1

(D/a)2
(1)

where D is the distance between grafting points in units of monomer size. The grafting den-

sity is an important parameter in determining the properties of a brush. If σ is too small,
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Figure 1: Schematic of solvent-swollen
chains end-grafted to an inert substrate
with distance D between grafting points.
The grafting distance is larger than the
radius, RF ∼ aN3/5 so that the chains
are isolated from one another and form
“mushrooms” on the surface

then the chains are effectively isolated from one an-

other and act independently of one another: there is

no additional osmotic pressure causing the chains to

stretch away from the surface, and the chains form

isolated islands or “mushrooms”. In the following sec-

tion, we explore first, the “mushroom-regime”, where

the grafting is too small for brush formation and sec-

ond, the “brush” regime of higher grafting densities

4.1 The “mushroom” regime of polymers end-

grafted to a substrate

Consider chains that are end-grafted in a dilute man-

ner on an inert surface, in a good solvent, figure 1.

The size of an isolated chain in good solvent is given

by the Flory radius:

RF ∼ aN3/5
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so that, if tethered dilutely, the size of a single-chained mushroom is also RF . The critical

grafting density, σ∗, that delineates the mushroom and brush regime occurs at a grafting

density where the mushrooms are just touching each other, or when the grafting distance D is

approximately RF :

σ∗

≡
1

(D
a
)2

∼
a2

R2

F

∼ N−6/5.

Thus, the longer the chains, the more dilute the surface tethering must be in order to remain

in the mushroom regime. Alternatively, consider a substrate with a prescribed array of reactive

tether sites, at which monomers are incorporated to form “growing polymers”. At the early

stages of polymerisation, when the number of monomers in each growing chain is small, the

surface is spotted with isolated polymer mushrooms. But as the chains grow longer, each

mushroom grows in size until they impinge upon one another and finally begin to form a

polymer brush.

EXAMPLE PROBLEM

•• Using simple geometrical arguments, describe the profile of monomer concen-

tration of end-tethered chains in the mushroom regime?

First, consider the boundaries of a mushroom as a shell of size RF that circumscribes each

isolated end-grafted chain. The volume fraction of monomers within the mushroom is approx-

imately N/R3

F as there are N monomers per chain. Now consider a plane, parallel to the

grafting surface, located an arbitrary distance z from the substrate. The concentration or vol-

ume fraction of monomers located in a plane at z > RF must vanish. However, the volume

fraction of monomers in planes z < RF is non-zero as these planes must bisect the mushrooms.

The z = a plane has a minimal, non-zero volume fraction of monomers that is roughly equal

to the grafting density

φ(z = a) = σ. (2)

The plane of maximum volume fraction should be located roughly z ∼ RF or at z of order RF .

The volume fraction at z ∼ (O)RF can be simply estimated as the fraction of the plane that

bisects mushrooms, or the area of the mushroom, πR2

F , times the number of mushrooms per

grafting area, estimated by the grafting density:

φ(z ∼ RF ) ∼
N

R3

F

× R2

F σ. (3)

This can be re-expressed in quantities of grafting density and number of monomers per chain

to yield

φ(z ∼ RF ) ∼ σN2/5, (4)

indicating that the maximum concentration depends upon the size of the chains that are grafted.

Now these two estimates, φ(z = a) = σ and φ(z ∼ RF ) = σN2/5 describe the minimum and

maximum concentrations in the profile. There is no reason to assume discontinuities in the

profile, or a non-monotonic concentration profile. So we can fit these two values of φ to a

profile of the form

φ(z) ∼ σ(z/a)m. (5)
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Figure 2: Volume fraction of monomer, scaled with grafting density, φ/σ, versus scaled distance above
grafting plane, z/a, for Flory chains end-grafted to an inert substrate in the mushroom regime. The
concentration of monomers s simple ansatz is given in full line and is φ ∼ σ(z/a)2/3 spanning φ ∼ σ
at z = a and φ ∼ σ(RF /a)2/3 = σN2/5 at z = RF . For z > RF , the monomer concentration should
fall smoothly to zero over a distance less than RF . There should be no discontinuity in this profile or
its slope - discontinuous slope is due to graphing program, to be fixed later. Problem based upon De
Gennes, P.G., “Conformations of Polymers Attached to an Interface”, Macromolecules 13, 1069-1075
(1980).

Substituting the expressions for φ at z = a and z ∼ RF provides m = 2/3. So that a first

estimate of the concentration profile a < z < RF is φ(z) = σ(z/a)2/3. For z > RF , the

concentration of monomers falls away to zero.

EXAMPLE PROBLEM
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4.2 The brush regime of polymers end-grafted to a substrate
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Figure 3: Schematic of an Alexander-de
Gennes solvated brush

A first-principles approach to polymer brushes is the

Alexander-de Gennes ansatz: this brush description

ignores the detailed structure of the brush and as-

sumes that all the chain ends are located at the brush

edge. A physical picture of the model, shown in fig-

ure 3 , is based around “blobs”, whose size is the graft-

ing distance, D. Within the blob, or at lengthscales

smaller than D, the monomers “feel” only those lo-

cal monomers within the same chain. The monomers

within a blob effectively feel as if they belong to an

isolated chain in a good solvent and their monomer-

monomer correlations are dominated by excluded vol-

ume effects. Within the volume circumscribed by the

blob of size D, there are gD monomers related to the

size of the blob by

D ∼ ag
3/5

D .

The blobs act as hard, impenetrable spheres that fill space; in this way, the blob construct

qualitatively captures the interactions between monomers that are widely spaced along the

contour, or that are on different chains, and that hardly ever come into close contact. The

volume fraction of monomers in the body of the brush, D < z < L, expressed in terms of the

grafting density is thus,

φ ∼
gD

D3
∼ σ2/3. (6)

The height or thickness of the brush, L, is found by equating φ with the number of monomers

in a chain contained in a column of area (D/a)2 and height L/a,

φ ∼
Na3

D2L
, (7)

or recasting with σ−1/2 ≡ D/a and eqn 6,

L ∼ aNσ1/3 (8)

Thus, in the high grafting limit, the chains are effectively modelled by a series of hard-core

blobs that, in general, extend in a direction normal to the grafting plane.

The “physics” of this end-grafting of chains on the surface is entirely summarised by under-

standing that, as the density of grafting increases, the lengthscale over which Flory correlations

persist, diminishes. By “Flory correlations” we mean the correlations that exist between the

positions of pairs of monomers. Consider two monomers, labelled i and i+ a along the contour

of a single chain. The distribution of monomer-monomer distances between these monomers

will not differ appreciably in an isolated chain, and in a mushroom. Indeed, that is true for all

values of 1 < a < N in both an isolated Flory chain and a solvated mushroom. One can think of

the circumscribing sphere of radius RF that we draw about the Flory chain and the mushroom
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as a “blob”, a demarcation that says all monomers contained in the blob follow isolated-chain,

SAW statistics. However, this is not the case in a brush: monomers separated along a chain

contour by 1, 2, 3, . . . , up to a monomers may have unchanged monomer-monomer correla-

tions; but those monomers separated by greater than a monomers will not follow isolated-chain,

SAW statistics, simply by virtue of the excluded volume interactions with other monomers of

other chains. Again, the blob is a fictitious demarcation of where the isolated-chain, SAW

statistics fail. The crux of the Alexander & de Gennes model is the specification of how the

blob size varies with grafting density. Recognising that the blob size is constant at RF in the

mushroom regime until D = RF , they simply equated the blob size with D for brush grafting

densities. That is:

RF = blob size for σ < σ∗

RF = blob size = D for σ = σ∗

blob size = D for σ > σ∗

The introduction of blobs is a useful but simplistic theoretical tool and it captures the essential

physics of the problem. It is a way to simply describe the Flory correlations that persist at all

chain lengthscales that persist in the mushroom regime, and below a critical lengthscale, D, in

the brush regime.

EXAMPLE PROBLEM

•• Using simple geometrical arguments, describe the profile of monomer concen-

tration of end-tethered chains in the brush regime from a < z < L?

The body of the brush has a volume fraction φ(D < z < L) ∼ σ2/3, that is it is constant

over z from D to L. The volume fraction will NOT be constant over the distance a < z < D

and to consider this part of the profile, we simply need to consider the brush of figure 3,

where each grafted chain is “snipped” after the first blob. According to the model, uch a chop

does not affect the chain conformations as the monomers within each blob are correlated only

amongst themselves. This “haircut” results in a surface covered with isolated mushrooms that

are just touching. From section 4.1, we found the profile of a mushroom regime varied from

φ(z = a) = σ to a maximum φ of σN2/5. For the “haircut” case, the profile will be that of a

mushroom: φ(z = a) = σ to a maximum φ of σg2/5 = σ2/3.
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Figure 4: Volume fraction of monomer, scaled with grafting density, φ/σ, versus scaled distance above
grafting plane, z/a for Flory chains end-grafted to an inert substrate in the brush regime.

EXAMPLE PROBLEM

In recent years a more popular approach, self-consistent field (SCF) theory, has been used

to construct more detailed and more accurate predictions of brush structure than that possible

with the Alexander-de Gennes ansatz. However, it is more complex to use. Moreover, although

the simpler ansatz was first introduced and exploited for its intuitive description and theoretical

simplicity, it is now possible to construct a true Alexander-deGennes brush. Many different

formulations of an Alexander-deGennes brush is possible: the first such “model” brush used

water-soluble polymers with graftable stickers at one end, that form the root of the brush, and

lipid molecules at the other end that self-assemble into a flat membrane at the brush edge.
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