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3.0 The size of chains in good and poor solvent conditions

Obviously, the ideal chain is a simple, first approximate model of an isolated polymer chain.

It assumes that the chain is intersectable with itself and inert; i.e., it suffers no energetic

interactions with itself or with the surrounding solvent. In this section, we are going to lift

these assumptions. But we will do so separately for poor solvent and for good solvent conditions.

In general, a poor solvent is one in which the solute (in this case the isolated polymer chain)

precipitates. A solute precipitates out of solution so as to avoid energetically unfavourable

solute-solvent interactions. In such a case the solute-solute interactions are more favourable

than the solute-solvent interactions. Thus precipitation in a poor solvent will lower the internal

energy (∆U = Usolute−solute −Usolute−solvent < 0). In contrast, good solvents are those where the

solute-solvent interaction is more favorable than the solute-solute interaction. In this case the

solute (or polymer chain) will lower its energy by solubilising in the solvent medium. In this

section we ask what effect poor solvent and good solvent have upon the size of a polymer chain.

3.1 A chain in poor solvent

We start here with a FJC chain in a poor solvent. In this case, monomer-monomer interactions

are favoured over monomer-solvent interactions. Thus, the chain will adopt a configuration

that minimises contact with the poor solvent and maximises self-contact. Very simply, a long,

flexible chain will “collapse” upon itself, forming a dense monomer mass that excludes solvent

molecules from its interior. In its collapsed state, the chain cannot completely avoid contact

with the solvent, but if it adopts a spherical collapsed state, then it will minimise its solvent-

monomer interactions. In terms of the free energy of the chain, ∆F = ∆U −T∆S, you can see

that the collapse of the chain will lower ∆U simply because Umonomer−solvent > Umonomer−monomer.

However, what will happen to the chain’s entropy? In going from a solvated, fully flexible chain

to a collapsed chain with a dense core, the chain will lose entropy, i.e., ∆S < 0. Thus there

are two competing effects: the interactions with the solvent will promote collapse (i.e., the

interactions contribute to a lowering of the free energy), but the loss of entropy will actually

suppress the chain collapse (i.e., entropy contributes to an increase in the free energy). Indeed,

the balance of these two effects is determined by the temperature.

Given that the temperature is low so that the chain adopts a collapsed configuration, how

does the size of the chain vary with the number of monomers in the chain? The volume of a

chain is simply the contour length, Na, times the cross-sectional area of the chain, which is

πr2 where r is the cross sectional radius of the chain. The value of r will be on the order of a,

so we can say that the volume of the chain is Vchain ∼ Na3, where the prefactor depends upon

the cross-sectional area of the chain contour. In its collapsed state, a single chain will form a

spherical globule of volume Vsphere = (4/3)πR3 where R is the radius of the sphere. If the chain

collapses so as to expel all monomer, then this spherical volume is comprised of polymer only,
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or Vchain = Vsphere. That is, Na3 ∼ R3, or the size of the collapsed chain scales with the cubed

root of the number of monomers:

R ∼ aN1/3 (1)

This geometrical argument works fairly well for flexible chains: implicitly, it lifts the simplifying

approximation of a self-intersectable chain. If a chain were intersectable, it would intersect itself

over and over again to form the smallest volume (smallest surface area) which is a point.

However this analysis does not work for a rigid-rod chain, as it has NO flexibility and will

change its shape minimally when in the presence of a poor solvent. What about a semi-flexible

chain like DNA? Recall that we said such chains were like a garden hose - imagine collapsing

such a hose into a dense ball - it would be very difficult. Indeed, experiments have shown

that when subjected to poor solvent conditions, DNA coils up, very much like a neatly wound

garden hose, forming a doughnut (or donut), or more mathematically, a torus. This torus is

the shape that minimises the solvent contact with the semi-flexible DNA chain.

3.2 A chain in a good solvent

A chain in a good solvent will adopt a configuration that maximises contact with the solvent.

That is, the chain will adopt a random walk configuration, with the exception that it will not

self-intersect. This is called a self-avoiding random walk or SAW. There are a handful of ways

of deriving the scaling relationship for the size of a chain in good solvent. Here we will follow

the so-called “Flory” derivation (after Paul Flory, American Chemist and Nobel Laureate).

Flory used a simple thermodynamic argument: the chain will adopt an average size that will

minimise its free energy:

F = U − TS (2)

We need to cast each term on the RHS in terms of the chain size. The entropy term is rather

straightforward. We said that the solvent-swollen chain is very similar to a random walk chain

with the exception that it does not have self-intersections. As you might imagine, the entropy

of a SAW of N steps is very similar to a self-intersecting random walk - and consequently, we

will simply apply the ideal chain description of entropy that was derived in the previous section

for an ideal chain. Thus, the only difference in a Flory good-solvent chain and an ideal chain

is ∆U . We can write down a virial expansion of U as

U = V kBT (βη2 + γη3 + δη4 + · · ·) (3)

where β, γ, δ · · · are the second, third, fourth · · · virial coefficients which are fully determined

by the form of the energetic interactions (e.g., Lennard-Jones interactions). We will ignore

all but the leading term in this expansion, which represents the energetics of all two-body

interactions. Higher order terms represent three-body interactions, four-body interactions,

etc. If the monomer-monomer interactions are unfavourable, or repulsive, then the second virial

coefficient is positive, β > 0. If the monomer-monomer interactions are favourable, or attractive,

then β < 0. For the good solvent case, β > 0. η is the concentration of statistical monomers,

η ≡ N/V where V is the volume. Thus, we can recast the free energy in terms as

F = kBT (V βη2 +
3R2

2Na2
). (4)
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This expressions states that the energy of the chain is comprised of all binary interactions

amongst the monomers and the ideal elastic contribution of a random walker. We need to get

this expression in terms of one variable, say α which we define as the swelling or expansion

coefficient,

α =
R

R0

(5)

where R0 is the natural size of the chain, R0 =
√

Na. This swelling coefficient becomes larger

than unity when the chain exceeds the natural size of an ideal chain, and is smaller than one

when the chain collapses to sizes less than that of an ideal chain. We want to know what value α

takes on when the solvent is good; clearly α will be greater than 1. The concentration, η = N/V

is expressed in terms of R and R0 using V ∼ α3R3

0
. In terms of the swelling coefficient, the free

energy is then
F

kBT
=

β
√

N

a3α3
+

3

2
α2 (6)

As you can see from the first term on the RHS, the interactions with the good solvent promote

swelling of the chain; i.e., as α becomes larger than 1, the first term becomes smaller and the

free energy is thus smaller. On the other hand, a swollen chain has less entropy and therefore

the second term on the RHS suppresses swelling; i.e., as α increases beyond 1, the second term

becomes larger and the free energy increases. Thus, the energetic interactions with the solvent

and the entropic elasticity are in opposition. At low swelling, the free energy will be high due

to the energetic interactions, while at high swelling, the free energy will also be high due to the

entropic elasticity of the chain. There will be an intermediate or optimal value of swelling at

which the two opposing driving energies will be equal and the free energy will then be minimal.

You can determine an equation for the optimal swelling coefficient α by solving dF/dα = 0, and

checking to ensure that d2F/dα2 > 0. The equation for α at which the free energy is minimal

is

α ∼ (
β

a3
)1/5N1/10 (7)

which, when inserted into the definition of α, R = αR0, yields

R ∼ (
β

a3
)1/5N3/5a, (8)

or, R ∼ N3/5a.

This derivation is very simplistic, but the end result is effectively correct. A chain in a

good solvent is often referred to as a “Flory chain” after Paul Flory who first wrote down this

analysis. Of course, there are several simplifications and Pierre DeGennes (French Physicist

and Nobel Laureate) carried out a more precise and very complicated calculation in 1972 and

effectively got the same result. The Flory treatment effectively assumes that the only difference

between a good solvent chain and an ideal chain is in the incorporation of (repulsive) pairwise

interactions. Let’s explore this further.

First let us summarise the ideal chain, investigating the occurence of self-intersections with

itself. The ideal chain has natural size R ∼
√

Na, the volume circumscribing the chain is

V ∼ R3 = N3/2a3, and the volume fraction of segments in that circumscribed volume is

φ = Nν/V ∼ (ν/a3)
√

N
−1

. Now the number of segments on the ideal chain that intersect
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another segment of the chain is N ×φ as φ is, to first order, the probability of finding a segment

at any locations within V . Because φ ∼
√

N
−1

, the number of 2-body interactions or single-

intersections of the chain scales with
√

N . Thus, the number of intersections increases with the

square root of the number of statistical monomers. N is usually large, so the number of binary

self-intersections is appreciable. How many intersections are there that are 3-body ior 3-way (i.e.

the chain self-intersects three times at one point)? That number is N×φ2 ∼ N×
√

N
−2 ∼ O(1),

and does not scale with N , that is, we can find a three-way intersection on the order of once

each chain, irrespective of the number of statistical monomers. The number of a four-way

intersection is N × φ3 and scales as
√

N
−1

- and again, as N is usually large, the number of

four-body intersection vanishes. So in a random walk or an ideal chain, two-way intersections are

frequent, we might find a three-way intersection, but we will not find higher-order intersections.

Now contrast that with the Flory chain. In the Flory chain, an ”intersection” corresponds

to a close enough approach of the monomers that they feel the (repulsive) monomer-monomer

interaction strongly. Whether the monomers intersect or not is determined by the form of

the interaction potential. For example, in a Lennard Jones-type interaction, there is a strong

repulsion at close distances that prohibits overlap. The size of the good-solvent chain is R ∼
N3/5a, the volume circumscribing the chain is V ∼ R3 = N9/5a3, and the volume fraction of

segments in that volume is φ = Nν/V ∼ (ν/a3)N−4/5. The number of 2-way self-intersections

is N × φ ∼ N1/5, and the number of three-way intersections is N × φ2 ∼ N−13/5. For large N ,

the number of a three-way intersection is vanishingly small, and for higher-order intersection

probabilities, it is even smaller.

Consequently, in both the ideal chain and the Flory chain, the occurence of a three-way

intersection or interaction is not a dominant contribution to either chain’s configuration. How-

ever, the probability that a chain intersects itself in a two-way intersection is quite large for

an ideal chain, but binary interactions in a Flory chain are smaller in number. Indeed, this we

already know: the solvent acts to expand the chain, thereby decreasing the probability that

two monomers, on arbitrary locations on the contour, approach closely. We can additionally

state that it is these two-body interactions which effectively increase the size of the chain under

good solvent conditions.

3.3 θ-solvency conditions

It is important to understand that the sign of the second virial coefficient, β, indicates the

type of solvent. If β < 0, the solvent is poor, if β > 0, the solvent is good. It is indeed

possible for β to take on values that are very close to zero: in that case there is no energetic

preference between monomers and solvent molecules and the system has effectively no change

in its internal energy, i.e., ∆U = 0. This condition is called “theta” solvency conditions and

under these conditions, the chain size does indeed scale as R ∼
√

Na, as predicted by the ideal

chain.
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EXAMPLE PROBLEMS

• Describe an isolated, single polymer chain in (a) good solvent, (b) theta solvent,

and (c) poor solvent conditions.

good solvent: In a good solvent, an isolated chain is swollen by the solvent. Thermody-

namically we understand the size of the chain as a balance between the solvent-polymer

interactions that promote swelling and the entropy (or stretching penalty) that suppresses

swelling. The chain is fluctuating in size and shape. The average size of the chain scales

as R ∼ N3/5a, where N is the number of statistical segments in the chain and a is the

size of a statistical segment.

theta solvent In a theta solvent, the monomer-monomer interactions are identical to the

monomer-solvent interactions so that the chain is effectively inert to itself and the solvent.

The chain is referred to as an ideal chain, as it is similar to the ideal gas model: it can

intersect itself and has no interaction energy. We model such a chain as a random walk

that can intersect itself. The probability of finding a chain of size R obeys a Gaussian

distribution for R < Na, and the average size scales as R ∼ N1/2a.

poor solvent: In poor solvent, the monomer-monomer interactions are far favourable to

monomer-solvent interactions, and consequently, the chain will adopt a size and shape to

minimise contact with the solvent. That is, the chain will collapse upon itself to expel

solvent, forming a dense sphere as a sphere has minimal surface energy and minimal size

fluctuations. Thus, the average size of the chain is R ∼ N1/3a. The chain does not

deviate significantly from its spherical shape.

• • From various models, the mean square end-to-end distance of isolated single

chains, 〈R2〉, is found to scale with number of monomers in the chain, N , according

to various power laws:

For poor solvents or (or solutions where the second virial coefficient, β is nega-

tive and monomer-solvent interactions are repulsive), a minimal surface area

model yields
√

〈R2〉 ∼ aN1/3.

For theta solvents where β ∼ 0 and monomer-solvent interactions and monomer-

monomer interactions are similar and random walk statistics is descriptive,

√

〈R2〉 ∼ aN1/2.

For good solvents described by positive second virial coefficient β > 0, and monomer-

monomer interactions are repulsive, the Flory argument provides

√

〈R2〉 ∼ aN3/5.
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Which of these power law descriptions represents the end-to-end distance of a

single polymer chain in a melt of identical chains, and why? (A melt is a solution

containing only long chains and no solvent).

In a melt, there are no small solvent molecules - only polymer chains. Thus there are only

two types of interactions: monomer-monomer interactions within the same chain (intra-chain

monomer interactions) and monomer-monomer interactions between different chains (inter-

chain monomer interactions). As the chains are identical, the inter-chain interactions are

roughly equivalent to the intra-chain interactions (which are akin to monomer-solvent interac-

tions). Consequently, a single chain in a melt has no preference for its own monomers or the

monomers of other chains; the inter and intra- chain interactions are balanced and the chain

behaves ideally, as in a theta solvent.

• What happens to the moderately stretched chain if the solvent is changed from

a theta solvent to a good solvent?

The chain extension will not change appreciably, extending only slightly. As an ideal chain

is stretched, it will have fewer self-intersections, and non-contiguous monomers will rarely be

close. In a good solvent, a chain swells because non-contiguous monomers that are close will

feel a repulsion. However, if that chain is stretched and there are few close monomer pairs,

then there will be minimal swelling of the chain. You would however see a bigger effect if the

solvent was made poor (either through a change of temperature or addition of a co-solvent).

The force required to maintain the chain extension will increase in poor solvent.

EXAMPLE PROBLEM

Partial Summary

We used geometrical reasoning and thermodynamics to explore non-ideal chain, namely chains

which interact favourably and unfavourably with their solvent.

• The size of a chain, collapsed upon itself in poor solvent is R ∼ N1/3a

• The size of a chain, swelled in good solvent, is R ∼ N3/5a

• As the second virial coefficient decreases from positive values, to zero, then to negative

values, the chain is described as being is in a good solvent, theta solvent, and poor solvent,

respectively.

3.4 Experimental stretching of single chains in poor solvent

Almost all of the experimental work fo single chain stretching focusses upon chains in good sol-

vent, where the chains are swollen and form loose coils. Under these condition, polymer tails or

loops can be “grabbed” by an adsorbing AFM tip. Separation of the AFM tip and the surface

produces a tension in the bridging polymer which is measured and characterises the elasticity of

the chain. The stretching at weak extensions is purely entropic, but at higher extensions, there is
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an additional enthalpic penalty. Such stretching profiles obtained from AFM data have been fit-

ted to various models, (including the freely jointed chain FJC, amongst others). These stretch-

ing forces increase monotonically with separation until the adsorption site or monomer-surface

contact is broken, usually at separations that are of the order of a few hundred Angstroms.

Figure 1: (a) Schematic of the Halperin-Zhulina
prediction of a chain, in poor solvent, whose
ends are extended. Because the fully-flexible
chain is in poor solvent, it is collapsed so as
to minimise its surface area or solvent contact.
When the ends are extended, the collapsed glob-
ule deforms into an elliptical shape, increasing
its surface area. However, at a critical exten-
sion, the chain forms a “ball-and-string” config-
uration: this configuration minimises the surface
area subject to the constraint of the separation
of chain ends. Further extension of the chain
simply takes monomer out of the “ball” and into
the “string” with a constant energy penalty per
monomer; consequently, the force of extension
will be constant in the ball-and-string configu-
ration. This theory was nice, but rather imprac-
tical: how do you find the ends of the chain in
a collapsed globule? (b) Schematic of experi-
mental strategy to demonstrate the “ball-and-
string” configuration. Taken from Haupt et al.,
Langmuir 2001..

Much less attention has been placed upon

the stretching of single chains in poor solvent.

The stretching of chains which are collapsed in

poor solvent was first studied theoretically by

Halperin and Zhulina. They argued that at

weak extensions, the globule of chain deforms

into roughly an elliptical shape and then into

a cylinder, At a critical extension, the polymer

undergoes a sharp first-order transition into a

“ball-and-string” configurations, shown in fig-

ure 1(a). This transition is driven by the high

surface tension under poor solvent conditions. In

this way, the transition is analogous to the sur-

face tension driven breakup of a column of liq-

uid into a series of droplets, referred to as the

Rayleigh-Plateau instability. However, in the

polymer case, the applied tension draws out a

thin filament rather than a series of disconnected

droplets, owing to the constraint on connectivity

of the monomers. The force required to pull the

chain beyond this critical extension, or to “pull-

out” the chain monomer-by-monomer from the

collapsed globule, is constant and independent

of extension.

Haupt, Senden, and Sevick reported the first

experimental evidence of the Rayleigh instability

of a single chain using AFM. In a simple experi-

ment, they adsorbed polymer onto a flat surface

and used the adsorbing tip of an AFM to probe

the polymer. This involves repeatedly bringing

the surface and AFM tip into contact and sepa-

rating them again, while simultaneously measur-

ing the force on the tip, as depicted in figure 1(b)

This results in chains forming bridges between the two adsorbing surfaces, The resulting force

versus separation profiles are often relatively featureless, showing only primary adhesion upon

retraction. However, over many separation cycles they find two distinct types of force profiles,

depending upon the solvent conditions. The characteristics of the first type of force profile are
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Figure 2: From Haupt et al. 2001

identical to that observed by previous authors and have been interpreted as the elasticity of

various polymers. This characteristic force profile is referred to as a “Langevin” event as it has

been fitted to various elasticity models. In poor solvent, we see a new second type of profile. It

is characterised by “steps” or plateaus of constant force which extend over separation distances

that are comparable to Langevin events. At these separation distances, polymer-solvent contact

is minimised by the formation of surface-bound polymer globules at each surface, connected

by a polymer filament. This is the analogue of the ball-chain configuration of the polymeric

Rayleigh instability. As the surfaces are separated further, monomers are pulled out of the

surface-bound globules and incorporated into the lengthening filament. The force of extension

of the filament is constant over the separation distance, reflecting the constant rate of monomer

extracted from the surface bound globules. This polymer filament may contain several chains,

and surface separation can completely pull-out the shorter chains. With each pull-out, the

plateau force drops discontinuously in a “step-like” manner, until the last single chain in the

filament is pulled out and the force between the surfaces returns to zero. We refer to such

constant force events as “Plateau” events after Plateau’s work in instabilities as well as the

physical description of the force versus distance profile.
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