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Dr. Edie Sevick, Research School of Chemistry, ANU

2.0 Thermodynamics of an Ideal Chain: Stretching and Squashing

In this section, we begin to investigate the thermodynamics of polymers, starting first, with

an isolated ideal chain. We begin with the Helmholtz free energy, F , which corresponds to the

available work at a constant temperature:

∆F = ∆U − T∆S, (1)

where U is the internal energy of the chain, T is the temperature which is held constant and S is

the entropy. Examples of energies which contribute to U range from Lennard-Jones interactions

to complex interactions which scientists might propose, all of which are of the form U = f(rij)

where rij is a vector of distances between monomers, solvent, or other particle or surface which

might be included in the system. By definition, an ideal chain suffers NO interactions and

contributes nothing to the internal energy at a constant temperature. Consequently, if we take

an ideal chain and end-tether it to a phantom wall, or change the solvent, then the change in

the internal energy of the system is 0 under isothermal conditions: ∆U = 0 1. On the other

hand, the chain has considerable disorder, measured by the number of configurations that it

can adopt and quantified by the thermodynamic quantity entropy. If we were to hold the

two ends of the chain a distance Na apart so that the chain was taut, we would considerably

decrease the number of configurations that the chain could adopt. If S1 is the entropy of the

ideal chain in its relaxed, or natural state, and S2 the entropy of the chain in its taut state,

then S1 >> S2 or ∆S = S2 − S1 would be negative, and by the above equation, ∆F , would be

positive. That is, in stretching the chain to its taut state, we would be performing work on the

system to increase the free energy of the system. If we were to release the ends of the chain, the

chain would spontaneously relax to its natural state that maximises the number of available

configurations; that is the system maximises its entropy and minimises its free energy. Thus,

in order to describe the thermodynamics of an ideal chain, we need only quantify the entropy

of the chain. In this section, we will investigate the thermodynamics of an ideal chain when

it is stretched and when it is squashed. The force of stretching and squashing is determined

solely by entropy- such forces are referred to as entropic or elastic forces.

Boltzmann’s Principle (after Ludwig Boltzmann (1844-1906)) states that the entropy of

the system is S = kB ln[Ω], where Ω is the number of configurations of the system and kB is

Boltzmann’s constant:

kB ≡ 1.381 × 10−23J/K

≡ R

Na
=

8.314J mol−1K−1

6.022 × 1023mol−1
.

Imagine that we could actually count the number of configurations of a chain in its natural

and fully-stretched states, then the change in entropy would be ∆S = kB ln [Γ/Γ0] where Γ is

1Like an ideal gas, if there is a temperature change, ∆U = Cv∆T
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the number of taut configurations and Γ0 is the larger number of configurations in the chain’s

natural state.

EXAMPLE PROBLEM

•• What is the change of entropy associated with an ideal chain of N monomers

forming a ring?

From Boltzmann’s principle, we find that the entropy change for ring formation is

∆S = Sring − S0 = kB ln (
Γring

Γ0

) (2)

where the subscript 0 indicates an FJC chain possessing the same number of monomers, of

the same size, but whose ends are not constrained. Γring and Γ0 are the total number of

configurations of the ring and the unconstrained chain, respectively. Following section 1.2, we

can express Γ in terms of the number of possible random walks that arrive at a destination m.

In 1-dimension, the total number of configurations available to the random walker is 2N , as at

each step the walker has 2 possible directions. In order for the walker to form a ring, he must

return to his starting point, or in the language of section 1.2, m = 0 and n+ = n−. The number

of such ring configurations is
N !

(N
2
)!(N

2
)!

(3)

Therefore the probability of observing a random walker returning to his starting point (in

1-dimension) is

p1−D
ring =

1

2N
× N !

(N
2
)!(N

2
)!

= (
2

πN
)1/2 (4)

where the last term on the right hand side resulted from application of Stirling’s approximation,

which is valid in the limit of large N . You should see that this formula also results from eq. 29

in the notes, by replacing m with 0. Likewise, you can transform from discrete destinations to

a continuous, end-to-end distance in three dimensions as achieved in Section 1.2. The result is

that the probability of observing a ring in three dimensions is

p3−D
ring = (

3

2πNa2
)3/2. (5)

Therefore, the entropy change upon ring formation of a chain of N statistical monomers, each

of size a, is

∆S = kB ln p3−D
ring =

3kB

2
ln (

3

2πNa2
)

=
3kB

2
[ln (3) − ln (2πNa2)].

As N is large, ln (3) << ln (2πNa2), and ∆S is negative, that is, entropy is lost in the process

of ring formation, and as ∆F = −T∆S, the free energy of the ideal chain increases as it is

confined to a ring conformation.

EXAMPLE PROBLEM

2



2.1 Stretching a chain

Take an ideal chain, grab each of the free ends, and then isothermally extend or stretch the

chain by pulling the ends to progressively larger values of R, the end-to-end distance. We want

to know the force needed to stretch the chain to half of its contour length. First, lets express

the above equation in differential terms: dF = −TdS, where dU = 0 as there is no change

in temperature. Then, since work, w, is equal to the force, f , integrated over the distance,
∫ R

0
dRf , we can write

f = −dF

dR
= T

dS

dR
(6)

We already have an expression of the entropy in terms of the end-to-end distance from the

Gaussian distribution of end-to-end distance, p(R):

S(R) = kB ln (p(R)) = kB ln
[

(
3

2πNa2
)
3/2

exp (−3R · R
2Na2

)
]

, (7)

where I write R2 = R ·R, so thht you can see where the vector quantity arises after we take a

derivative. We can simplify this to

S = kB ln(
3

2πNa2
)3/2 − kB(

3R · R
2Na2

) (8)

Taking the derivative of S with respect to R gives −3kBR/(Na2) as the first term on the RHS

vanishes as it has no R dependence. Thus, the entropic or elastic force needed to stretch a

chain to an end-to-end distance R is

f ∼ −3kBT
R

Na2
(9)

Notice that f is a vector quantity, and in the direction opposite to the end-to-end vector. In

other words, f is a restoring force.

EXAMPLE PROBLEMS

• An ideal polymer chain is end-tethered to a fixed wall and a weight of mass

m is suspended from the free-end of the chain, as pictured below. The weight is

sufficiently small that the elongation of the chain, R, is between the natural size

of the chain and its contour length,
√

(N)a < R < Na. Derive an expression for the

chain elongation, x, as a function of the mass of the weight, m, under isothermal

conditions

First, we assume that the force of extension or stretching force is entirely entropic. We can

derive the force, f , versus extension, R, relation starting from simple thermodynamics:

F = U − TS,

where the elastic force, f , is

f = −dF

dR
= T

dS

dR
The entropy is given by Boltzmanns principle and the Gaussian probability distribution

S(R) = kB ln (P (R))

dS

dR
= kB

d

dR
ln

[( 3

2πNa2

)3/2

exp
(

− 3R2

2Na2

)]

.
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Figure 1: Schematic of an end-
tethered ideal chain, extended a dis-
tance x under the action of a weight,
attached to its free end.

Using the identity ln (ab) = ln a + ln b, the last equation

becomes

dS

dR
= kB

d

dR

[( 3

2πNa2

)3/2

− 3R2

2Na2

]

,

or
dS

dR
= −kB

3R

Na2
.

Therefore, the equation for the force versus extension is

f = −kBT
3R

Na2
.

Now the force on the chain is simply the mass of the weight

times gravitational acceleration, or f = mg, so the sought

expression is

mg = −kBT
3R

Na2
.

• Continuing with the weight attached to the free-

end of the chain · · · what happens to the extension

of the chain when the ambient temperature is in-

creased, and why?

From the above equation, you see that the LHS is constant the weight on the free-end of

the chain does not change. Thus, if the temperature is increased, then the extension must

proportionally decrease. Thus this above result indicates that a stretched chain will contract

upon heating. This beahviour was first noticed in strips of natural rubber by Guch in 1805 and

nearly fifty years later, was measured by Joule: this “shrinkage” with temperature is known as

the Guch-Joule effect. Why does the chain shrink with temperature?

It is primarily an effect due to entropy, even in systems when U 6= 0. You know that entropy

rather than interactions dominate because (1) when temperature is increased, the importance

of interactions decrease as the magnitude of the interaction, ε, becomes smaller compared with

thermal energy,i.e., ε/(kBT ) < 1; and (2) from F = U − TS, you see that increasing the

temperature increases the role of entropy. When temperature is increased, the effect on each

statistical monomer is to increase its thermal energy. In other words each statistical monomer

becomes more randomised with increased temperature or the entropy of the chain is increased.

We know that the conformational entropy of an ideal chain is decreased as its ends are separated

apart: or that the ideal chains entropy increases as its end-to-end distance becomes smaller.

Thus, with an increase in temperature, there is a randomisation of the statistical monomers, an

increase in the chains entropy and a decrease in the end-to-end distance (the chain shortens).

While the Guch-Joule effect explains the change in size of an elastic chain by varying the

temperature (i.e. the size depends upon the temperature, using the temperature as the control

variable), you can also change the temperature of the chain by varying the size, or stretching the

chain (i.e. the temperature depends upon the size, using the size of the control variable). If you

stretch the chain very quickly (more quickly than the rate at which heat is exchanged so that

effectively q̇ = 0, or in other words, the stretching process is adiabatic), then the temperature
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of the chain will increase (try this with a rubber band using your lips to detect temperature

change to verify this). This is opposite to what happens with an ideal gas when it is expanded

adiabatically which we review briefly here: The first law of thermodynamics is

∆U = δq − δw.

Recall that the internal energy of an ideal gas can only change with temperature, dU = CV dT ,

δq = 0 for adiabatic processes, and that the work done (reversibly) by the gas is pextdV =

pintdV , so that the first law reduces to

CvdT = 0 − pdV

which, upon insertion of the ideal gas law, becomes

CvdT = −nRT

V
dV

CV
dT

T
= −nR

dV

V

CV ln
(Tf

Ti

)

= nR ln
( Vi

Vf

)

Next, recognise that R/CV ≡ γ, which is equal to 2/3 for ideal monoatomic gases

( Vi

Vf

)γ

=
Tf

Ti

.

Thus if Vi < Vf , that is, the gas expands, then Tf < Ti or the gas temperature decreases.

Conversely, if Vf < Vi, that is, the gas is compressed, then Ti < Tf or the gas temperature

increases. You can understand this qualitatively from the first law: if you compress the gas, you

must do work on the system with external forces and this work is converted into the internal

energy of the gas, and hence the temperature rises.

• Homework Problem: Using the adiabatic expansion of an ideal gas as an analogy,

construct an expression for the temperature change of an rubber band (modelled

as an ideal chain) as it is adiabatically stretched.

EXAMPLE PROBLEM
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2.2 Squashing a chain

Consider an ideal chain sandwiched between two infinite, impenetrable plates which form an

slit of thickness H . We want to know the force needed to compress the plates such that the slit

distance is reduced from Na to a. This is an entropic force as there are no interactions between

the plates and polymer, except excluded-volume interactions that limit the number of config-

urations that the chain can adopt. We cannot easily use the above method to determine the

force as we do not know how p(R) depends upon the slit distance H . However, we can assume

a simple model of a chain on a lattice so that we can “count” the number of configurations

available to the chain at any slit thickness.

Figure 2: Schematic of counting the con-
figurations of a 2-D chain on a square, or
4-coordinate lattice

First, assume that the ideal chain must traverse

the scaffolding of a lattice. We could pick any lat-

tice, but a square (2-D) lattice, or 4-coordinate lat-

tice, is convenient to draw (as you will see, the

choice of lattice does not matter in the derivation).

Each statistical monomer must adopt one of four

vertices on the lattice. Thus, starting from the

first monomer, the chain has 4 possible vertices to

choose from, the second monomer has another 4 pos-

sible vertices to choose from, etc. Thus, the to-

tal number of configurations available to a chain of

N statistical monomers on a 4-coordinate lattice is

4N . We can now generalise the lattice to any regular lattice with z vertices or a “z-

coordinate” lattice, where zN configurations are available. Now imagine that this lat-

tice is of infinite extent in two directions, but has a thickness H that we will vary.

H

Figure 3: Schematic of counting the configura-
tions of a 2-D chain in a slit formed by inert, but
impenetrable walls, The ideal chain must fold-
back along itself when it “feels” a wall and loses
configurational entropy per wall contact.

How does the thickness of the scaffolding re-

duce the number of configurations of the chain?

As each statistical monomer has z possible ver-

tices to traverse, a statistical monomer which is

located at the boundary has only 1 possible ver-

tex - it must “reverse” its direction. Thus, the

number of possible configurations is zN−X where

X is the number of monomers which contact the

boundaries. If ∆S, the entropy change due to

confinement, is proportional to the logarithm of

the ratio of the number of configurations in an

H-thick slit to that in an infinitely-thick slit,

then

∆S = kB ln (
zN−X

zN
) = −kBX × ln (z) (10)

We need to develop an expression that relates X, the number of contacts the chain makes

with the boundaries, to H , the separation between the boundaries. If we were to snip the

chain at all points of contact with the boundaries, the chain snippets would be on average m
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monomers long with end-to-end distances of exactly H. As the chains are ideal, the general

scaling relationship for chain size holds: H2 = ma2. The number of chain snippets is equal

to the number of contact with the boundary, or X. The number of chain snippets is N/m, or

replacing m with H2/a2, X = Na2/H2. Therefore,

∆S = −kB
Na2

H2
× ln (z) (11)

Now the factor ln (z) is just a constant, independent of H , so we will drop this factor as we

only care about how the force changes with H and not necessarily its magnitude. The change

in free energy in going from an infinite slit to one of thickness H under isothermal conditions is

∆F = −T∆S ∼ kBT ×Na2/H2. Since F (H = ∞) = 0, we can equate F (H) = kBT ×Na2/H2.

Then force of compression at any given H is f = −dF/dH, or

f ∼ kBT
Na2

H3
(12)

EXAMPLE PROBLEMS

•• The free ends of an ideal chain are end-tethered to two parallel, volume-

excluding, and thermostatting walls. Construct (graph) the force profile associated

with changing the separation of the walls from H = a to H = Na.

There are two regimes to consider

• Chain squashing over a < H <
√

Na When the open slit is smaller than the natural

size of the chain,
√

Na, the number of conformations of the compressed chain is smaller

than that of a free, or uncompressed chain. That is, there is a reduction in the entropy

of the chain, or an increase in the free energy of the chain, ∆F = −T∆S, as ∆U = 0

for an ideal chain. The entropy reduction can be approximated by simply counting the

number of times the Gaussian chain contacts one of the plates. Each monomer located

at a plate loses a bit of entropy, of order kB, as demonstrated in the lattice model of

section 2.2 of the notes. So we simply need to find the number times a Gaussian chain

of N monomers contacts the of the chain and multiply this by kB to find the decrease

in entropy. Any contiguous segment of a Gaussian chain also obeys Gaussian statistics

(as long as the segment is sufficiently long). Thus consider that the squashed chain is

severed at each of the contact points and let m be the average number of monomers in the

segments. Becuase each segment obeys Gaussian statistics, and the end-to-end distance

of each segment is determined by the slit separation, H , we can say that H2 ∼ ma2 or

that m scales as (H/a)2. The number of times the chain is severed N/m, or ∼ Na2/H2.

Thus, the entropy reduction is kBT × Na2/H2. Then,

∆F = F (H) − F (∞) ∼ kBT
Na2

H2
− 0 (13)

where we set F (∞) = 0 since there is no configurational constraints when H → ∞. The

entropic compressing force is then

f = −dF (H)

dH
∼ kBT

Na2

H3
(14)
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where we have dropped all numerical prefactors of order 1. Note that the free energy of

the chain increases as the slit distance decreases; i.e., |dF/dH| < 0 so that the force is

positive, pushing the plates apart. This squashing force holds for H such that O(100) <

m < N . The lower bound, order of 100, is required so that the segments still obey

Gaussian statistics and the upper bound ensures, on average, one contact. This range

O(100) < m < N is more informatively cast in terms of H through m/N ∼ H2/(Na2),

or

O(100) < m < N

O(100) < H2/a2 < N

O(100)a2. < H2 < Na2

O(10)a < H <
√

Na

For a < H < 10a the finite size of the chain segments plays an important role and the

entropic force will not necessarily scale as 1/H3. For 10a < H <
√

Na, the force scales

as 1/H3

• Chain stretching over
√

Na < H < Na Entropic or elastic stretching force can be again

be approximated using Gaussian statistics. This is done in section 2.1 of the notes, with

the resulting force profile being

f ∼ −kBT
H

Na2
, (15)

where again we are not keeping constants of order unity, O(1). Note that the force is

negative and in opposition to the squashing force, pulling the plates together.

To plot these force regimes on the same graph, we cast the squashing force, f ∼ kBTNa2/H3

as
fa

kBT
∼ N(

a

H
)3, (16)

and the stretching force, f ∼ −kBTH/(Na2) as

fa

kBT
∼ − 1

N
(
H

a
). (17)

This way you can see that the squashing force is proportional to N while the stretching force

is inversely proportional to N . That is, it is harder to squash a bigger chain in the same slit,

but easier to stretch a larger chain the same distance.

•• How does the above force profile change if the chain is replaced by a chain of the

same exact contour length, but is less flexible or more stiff (has a larger persistence

length)? Provide a qualitative description

The force and slit distance were appropriately scaled to dimensionless quantities so that the the

plots are unchanged by changing the statistical monomer size, which is twice the persistence

length. The slope of the force profile, Fig. 4(d), is proportional to 1/N and N , in the stretching

and squashing regimes, respectively and independent of the persistence length.
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Figure 4: Versions of the force profile, fa/kBT versus H/a for squashing (red) and stretching (blue)
from (a), (b) draft to final shown in Figure 2(b). In all plots, I adopted N = 400 and I assumed that the
order of 1 constant in each expression was unity. In (a) I did not worry about the regimes and I plotted
both forces over all H/a but noted on the horizontal coordinate that 10 < H/a <

√
N = 20 is the

squashing regime while
√

N = 20 < H/a < N = 400 is the stretching regime. In subsequent versions
(b)-(d), I simply replot versions to get a proper force profile. (b) Here I’ve changed the horizontal
coordinate bounds to 10 < H/a < 400 so that only the Gaussian squashing and stretching regimes
are shown. (c) I added constants to each force profile to make the stretching and squashing forces
equivalent (and arbitrarily zero) at H =

√
Na. (d) I eiliminated the stretching points in the squashing

regime, and the squashing points in the stretching regime. All done in Kaleidagraph, changing the
Kaleidagraph output to .eps format using Illustrator, and inserting them in my Latex document.
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•• Answer the above question quantitatively (provide a comparative graph) for a

chain whose persistence length differs by a factor of 5

For a more stiff chain, where the persistence length is 5 times longer, the monomer size would

also increase by a factor of 5. Therefore at any H/a, the value of fa/kBT is unchanged, but the

force f is reduced by a factor of 5 . This is because a stiff chain has fewer conformations, and

consequently less entropy to loose. The range of H over which entropic forces are estimated is

increased as the chain is larger in size.

For a more flexible chain, a would decrease by a factor of 5. Again, at any H/a, the value of

fa/kBT is unchanged, but the force f is 5 times as large. This is due to a larger configurational

entropy. The range of H over which these entropic forces are estimated is decreased as the chain

is small in size.

• • Homework Problem: Construct an expression for the temperature change of

an end-tethered chain that is adiabatically squashed between 2 infinite plates.

EXAMPLE PROBLEM

2.3 Experimental techniques for stretching and squashing single chains

The manipulation of single polymer chains, adsorbed onto a surface has received considerable

attention in the past decade, from both theoreticians as well as experimentalists. With the

advent of the Atomic Force Microscope (AFM) and Optical Tweezers (OT), scientists are

above to impose nanometer scale deformations and measure the resulting forces on the scale of

picoNewtons (1 pN= 10−12 N). In this section, we will briefly review the techniques of AFM

and OT used for micromanilpulation of single polymer chains.

2.3.1 Atomic Force Microscopy

Figure 5: Schematic of an Atomic Force Mi-
croscope, from http://www.pacificnano.com/afm-
tutorial afm-instrumentation.html

AFM is used routinely for imaging small

items, ranging in size from 1 nm to 100 µm,

corresponding to say, a single atom, to the

width of a human hair. A conventional AFM

is based upon a flexible cantilever that is

rastered in close proximity over the surface

that is to be imaged. Forces, either attrac-

tive or repulsive, between the surface and the

tip of the cantilever cause the cantilever to

deflect. This deflection is measured and con-

verted into an electrical signal. Any chemical

heterogeneities in the surface will result in a

variation of the force on the cantilever tip as

it is rastered over the surface. This variation

in force over the rasterised surface is converted into an image.
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A schematic of a conventional AFM is given in figure 5. The components of the AFM are:

• Cantilever The cantilever is the heart of the AFM . Cantilevers are small, fragile

components, with dimensions on the order of 100 × 20 × 1µm (length × width × thick-

ness). The tip of the cantilevers must be exceptionally small and its size limits the resolu-

tion of the image: ideally the tip should be atomically sharp so that it probes the surface

Figure 6: Electron micrographs of AFM can-
tilevers, from http://www.astbury.leeds.ac.uk

with atom-like resolution. In practise, the tip

does have appreciable size, and the AFM signal

then reflects not the point-like probing of the

surface, but rather a convolution of the surface

properties over the shape of the tip. (This can

cause considerable problem with image interpre-

tation.) Figure 6 are electron micrographs of

commercially available cantilevers. The force on

the tip of the cantilever causes it to deflect ac-

cording to Hooke’s law,

f = −kd

, where d is the cantilever deflection and k is a

“spring” constant, a property of the cantilever

dimensions and material. k varies from can-

tilever to cantilever and must be calibrated in-

situ; a typical value of k is 1N/m, or 106 pN/µm.

There are many cantilevers on the market with

different spring constants: you want to choose

the cantilever carefully. A cantilever with a large

value of k, i.e., a stiff cantilever, is used to mea-

sure large surface forces.

• Piezoelectric transducers These electromechanical transducers convert an electrical

signal into mechanical motion and are used extensively to precisely translate objects, such as

microscope stages, automated pipette/injection delivery systems, etc. Piezoelectric crystals are

precisely fabricated materials that expand under an applied voltage: they can expand O(1nm)

per 1 Volt. Commercially available transducers consist of layers of piezoelectric materials that

can be used to translate 1mm per 100 V. These piezoelectric transducers are used to precisely

place the the tip of the cantilever a distance z above the surface and to raster or move it in

an x − y direction. Usually, the transducers operate on the microscope stage, onto which the

substrate is mounted, and the cantilever and deflection sensor are stationary.

• Deflection sensor In order to measure the force at any (x, y) point on the surface, we

need to be able to measure the cantilever deflection, d. Typically this is done by reflecting a

laser beam off of the back of the cantilever onto a photodiode detector surface. As the cantilever

deflects, the reflected light beam travels across the surface of detector.
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Figure 7: AFM images of circular λ-DNA in single-strand and double-stranded form, by Dr. Gen-
miao Wang of P&SCM Group of RSC. The AFM image on the right is of dsDNA, and the middle
image is of the same DNA solution with single-strand-binding (SSB) protein added in less than 1:1:1
bp/SSB stoichiometry, and (far left) SSB added in greater than stoichiometric amount. SSB protein
binds to the single-strand form of DNA, stabilising it. Without SSB, the AFM shows opened ringed
dsDNA, while with SSB protein, the single-stranded form is folded, collapsed upon itself to satisfy
complementary pairing of bases. Note that in less than 1:1 bp/SSB amounts, molecules are either
fully double-stranded, or fully single-stranded.

AFM is used extensively for imaging surfaces, and figure 7 provides an example of how AFM

can be used to image DNA and conformational changes induced by the addition of a specific

protein. AFM has also been used in more novel ways.

• Researchers used a cantilever tip to “pick-up” single atoms and deposit the atoms to spell

out the name of their company “I B M”; this they did by altering the properties of

the cantilever tip, by driving a current through the cantilever. Indeed, one topic of

instrumental research is to develop cantilevers than can alter their stiffness in situ with

the addition of an external field.

• ANU researchers, led by Prof. Richard Pashley at the Department of Chemistry, attached a

colloidal particle to the cantilever tip and measured the force between colloid and surface.

• Dr. Tim Senden of the Department of Applied Mathematics, used the cantilever tip to go

“fly-fishing” for polymer chains that were adsorbed onto the substrate. The cantilever

tip was made of the same adsorbing material as the substrate, so that when the AFM tip

was brought in contact with the substrate, there was a good chance that some part of a

chain could be adsorbed to the tip. This was arguably the first time that the stretching

force of a polymer was measured; however, the disadvantage to this work was that you

could not determine the length of contour that was stretched between substrate surface

and cantilever tip.

• Nowadays, the big-buzz in single chain stretching is the stretching of biomolecules. Bio-

chemists can functionalise the ends of DNA and attach these reactive ends to substrates

and colloidal beads. This same chemistry can be used to tether the ends of DNA to a

substrate and an AFM tip. An example of AFM stretching of biopolymers that will prob-

ably become a “classic” in this area is described in Rief, M., Gautel, M., Oesterhelt, F.,

Fernandez, J.M., Gaub, H.E., “Reversible Unfolding of Individaul Titin Immunoglobulin
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Figure 8: Schematic of AFM stretching a biomolecule, from http://www.astbury.leeds.ac.uk

Domains by AFM”, Science 276, 1109-1112, 1997. In this paper, the authors use AFM

to study the tension-induced unfolding transition of a giant muscle protein, titin.

• To date, no one has used a polished AFM tip to measure the squashing of a single poly-

mer/biopolymer chain. The idea is that by “sanding” down the point of the AFM tip,

you can make a small obstacle that can be used to “flatten” a biopolymer chain that is

tethered to a substrate, and measure the force of squashing. However, if the flat end of

the AFM tip is comparable in size to the tethered chain, then simple theory predicts that

most of the monomers will “escape” from beneath the compressing tip, depending upon

the rate at which the tip is lowered. It is relatively easy to explain how this prediction can

be made. As the tip is lowered, the chain is confined into a smaller and smaller gap and

consequently, its number of possible configurations is diminished and it “loses” entropy.

That is, the energy of the chain increases due to entropic confinement. However, at some

critical slit distance, the chain can lower its energy by forming a stretched umbilical,

from the tether point to the edge of the flat tip, so that most of the chain monomers are

escaped from underneath the tip. It does this as the entropic penalty of stretching the

umbilical is matched by the gain in entropy of escaped monomers. The squashing force is

proportional to the number of monomers trapped underneath the tip and consequently,
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upon escape, the squashing from decreases significantly. As the tip is made larger, it

takes more time for the chain to “find” the edge of the tip to escape. Indeed, it is possible

to do numerical simulation of ideal chain dynamics to predict how this escape transition

is affected by the rate of squashing. Such squashing profiles are of interest for a number

of reasons. First, one can expect that proteins tethered to a cell are continually being

bombarded/impacted by other objects, causing distortions in the shape of the tethered

chain. Second, chains tethered onto colloidal surfaces act as “bumpers” to other colloidal

particles, stabilising the particles against irreversible aggregation: how these chains de-

form upon close approach of another surface will determine how effective the chain in

stabilising the colloidal solution. If the chain “escapes” from between the surfaces, then

it may be an ineffective barrier to aggregation. Colloidal scientists overcome this problem

by tethering or grafting many chains in close proximity, rather than isolated chains. We

come back to this later.

(a) (b)

Figure 9: (a) Schematic of a polished AFM tip of diameter 2L lowered against a substrate containing
an end-tethered polymer chain. As the slit or gap distance H decreases, the chain becomes more
confined until, at a critical slit distance, H∗, the chain will adopt a low energy configuration that min-
imises the confinement penalty at the expense of forming a highly stretched umbilical. (b) Prediction
of the squashing force as a function of slit distance, H. This prediction is made by comparing the
energy of a fully confined chain, , to that of a chain with an escaped chain at a given value of H.
That cconfiguration of lowest energy is the predicted configuration and the force required to squash
is found by differentiating the energy with respect to H. Reproduced from Guffond, M.C., Williams,
D.R.M., Sevick, E.M., Langmuir 13, 5691-5696 (1997).
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2.3.2 Optical Tweezers

Optical Tweezers (OT) is a relatively new device, commercially marketed as a tool for nan-

otechnologists, biologists and clinicians, providing colloid/cell- sorting and micro-dissection

capabilities. In OT, a strongly focused beam of light forms a trap that holds a small object.

For objects larger than the wavelength of the light, the trap is a result of the light’s refraction

through an object having a different index of refraction from the surrounding solvent. If η1 and

η2 are the indices of refraction of the solvent and transparent object, then the geometry of the

refraction at the solvent-object interface is given by Snell’s Law:

η1 sin φi = η2 sin φr (18)

where φi is the angle between the incident ray and interface normal, and φr is the angle between

the refracted ray and interface normal. Rays passing through the trapped object refract through

Figure 10: A diagram showing how
light imparts momentum to a transparent
spherical object, whose diameter is much
larger than the wavelength of light, with
refractive index larger than the surround-
ing solvent. The light rays of different in-
tensity refract symmetrically through the
object, but there is a difference in photon
flux on each side of the object or a net
change in photon momentum. This is bal-
anced by the momentum of the object as
it moves towards the most intense region
of the light beam.

2 interfaces, and for a spherical object, rays are mir-

rored about the pole of the sphere, as determined by

Snell’s law. A ray represents a stream of photons,

each of which possess momentum, and the ray’s in-

tensity corresponds to the flux of photons along the

ray. Consider an incident beam of light of uniform

intensity. Before refraction, each incident photon has

momentum, pi with a component directed parallel to

the light beam pi
‖ and no momentum component per-

pendicular to the light beam, or pi
⊥ = 0. However, af-

ter refracting through the object, photons may have a

component of momentum that is perpendicular to the

light beam, or pr
⊥ 6= 0, with the parallel component di-

minished pr
‖ < pi

‖. The loss of the photon’s momentum

in the ‖-direction is imparted to the object, pushing

it “downfield. The gain in a photon’s ⊥-momentum,

integrated over all the rays refracted through the ob-

ject is a net zero, due to the mirror symmetry about

the pole and the uniform photon flux. Consequently,

in a uniform light field, the object is simply propelled

in the direction of the incident light.

However, if the incident light has a gradient in in-

tensity as shown in figure 10, then the ⊥-momentum,

integrated over all the photons refracted through the

object does not vanish and there will be a net change in the ⊥-momentum , ∆p⊥ = pr
⊥−pi

⊥ > 0

By the laws of motion, there must be a corresponding momentum imparted to the sphere of

equal magnitude but opposite direction. One can show that for an object whose index of re-

fraction is larger than that of the surrounding medium, the object is propelled in the direction

of the light gradient, i.e., towards the most intense part of the light beam, as well as downfield.
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By placing an objective lens in the light beam, you create a three dimensional gradient

field with a point of maximum intensity, the focal point, to which objects are attracted by

this “radiation pressure”. (Thereby you remove the component of the optical force driving the

object downfield.) An optical trap formed from a focussed Gaussian beam (TEM00 light mode)

is a harmonic trap: the force acting on a colloidal particle positioned x from the focal point or

trap centre is a restoring force

f = −kx, (19)

where k, the trapping constant, is tuned by adjusting the beam intensity. Using a high numer-

ical aperture lens, we can create a trap that is weaker in the focal plane, but much stronger

orthogonal to the focal plane. By translating the focal point, objects can be moved, and by

increasing the laser power, the beam acts as an optical scalpel, dissecting delicate parts of

the object, such as the lining of ovum in clinical IVF procedures. Such trapping systems are

becoming highly sought after commercial tools in biological, medical, and clinical laboratories.

However, OT can also be used to quantitatively measure small forces and this pro-

vides unprecedented opportunities to solve a number of important problems in the

physical sciences, ranging from quantifying molecular forces to investigating the stretching

of single polymer chains. If there is a small external force acting on the harmonically-trapped

particle, then its magnitude is found by simply measuring the particle’s displacement from the

trap centre. Such harmonic traps have been used recently to measure attractive forces between

like-charged colloidal particles, tie knots in single DNA chains, and demonstrate “violations” in

the Second Law of Thermodynamics. Moreover, the OT can also be used as a microrheological

probe, to measure flow properties of polymer and colloidal solutions at the micron lengthscale

(we will discuss more of this in a few weeks).

The physical components of an OT are:

1. Optical path with objective lens: The intensity gradient about the focal point is the

heart of the OT; the force of the light gradient is proportional to the intensity. Consequently,

in order to change k, the trapping constant, you simply alter the intensity or power of your

incident light beam. The objective lens that is used to produce the trapping potential can also

be used to view or image the trapped object.

2. Particle position detector: In order to determine the force acting on the trapped colloid,

you simply need to measure its dispalcement from the focal point. One way of doing this is

to project an image of the colloidal particle onto a quadrant photodiode detector comprised

of four light-sensitive photodiodes arranged into four quadrants. Each quadrant photodiode

converts the light intensity over its surface into an electrical signal. By positioning the quad-

rant photodiode such that its center corresponds to the focal point, then a particle located at

the focal point will shadow each of the four quadrant photodiodes equally. However, when the

particle is displaced from the focal point, the electrical signal from each of the four quadrants

will be out of balance. This balance of 4 signals, (A,B, C, and D) can be calibrated to particle

displacement: x = (A − B)/(C − D)

3. Piezoelectric transducers: Similar to AFM, these transducers are used to translate the

stage relative to the light trap or to create flows which impose hydrodynamic or “drag” forces

on the colloidal particles.
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Figure 11: Schematic of how a DNA molecule is
stretched in an OT apparatus

In order to measure the stretching force

of a a single biopolymer with two end-

tethered colloidal beads end-tethered, one

simply sucks up one colloidal particle in

a stage-mounted micropipette, and posi-

tions it a measureable distance from the

trap center. This paragraph is a bit of

puffery about the new holographic OT sys-

tem that we are currently building. There

are several recent advances in OT, not available in commercial set-ups, that expand the

variety of manipulations achievable on small objects [4]. Using a single light beam pass-

ing though a hologram (which is effectively a phase-only diffractive beam splitter), it is

now possible to construct an array of traps in 2 or 3 dimensions, as depicted in figure 12.

Figure 12: Schematic of an advanced OT
set-up using holographic interference to
create a dynamic array of traps. Using a
computer-controlled Spatial Light Modu-
lator (SLM) in place of the hologram, one
can create optical vortices or rotator traps
which mpose twist-like torques on parti-
cles. The SLM also allows one to dynam-
ically change the array dimensions. From
Grier [4].

Depending upon the hologram, traps with different

trapping characteristics can be generated, that exert

a combination of forces and twist-like torques. For ex-

ample, a TEM00 beam can be converted into helical

mode to create an optical “vortex” or “spanner”. Par-

ticles that are repelled by a harmonic TEM00 trap (re-

flective, adsorbing particles or particles having small

index of refraction) are held in the center of the vortex

while other particles move in a circular pattern about

the vortex centre, driven by the angular momentum

of the light. These donut-like traps have been used in

fundamental studies of photon spin and momentum

[5]. Another example is a “rotator” trap, constructed

from the interference of an optical vortex with a pla-

nar wave and which exerts a torque. If the hologram

is replaced with a computer-addressed SLM or spatial

light modulator, a component that dynamically con-

trols the phase-shift and intensity at individual pixel

elements, then we can create an array of traps that

move or “dance” in 2 or 3 dimensions and dynamically

alter the trapping characteristics of each trap. These

advances can potentially make difficult OT force mea-

surements far simpler; but more importantly, they also

increase the vista of explorations available.

It is important to recognise that OT and AFM are complementary tools: OT

measures forces 0.001-10 pN over micron lengthscales whereas commercial AFMs

are capable of measuring forces ranging from 10 - 10,000 pN over nanometer length-

scales. The AFM is effectively a surface measuring device; the OT is foremost a colloidal
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technique. OT can measure hydrodynamic forces, forces between colloidal particles

Summary

In this section, we’ve extended our description of the ideal chain to include thermodynamic

predictions of stretching and squashing.

• From the Gaussian distribution (or any distribution) of chain sizes, or any way to count the

configurations of a chain, we can evaluate the thermodynamic entropy using Boltzmann’s

principle.

• For an ideal chain, ∆U = 0 under isothermal conditions and the energy of the chain is

entirely entropic. If the chain is deformed under adiabatic conditions, there is no heat

exchanged with the surroundings, δq = 0, and ∆U = CvdT

• In analogy with the adiabatic compression/expansion of an ideal gas, you can apply first

law to predict the adiabatic squashing/stretching of an ideal chain.

• The force of stretching an ideal chain is Hookean; i.e., it is linear with extension.

• The force of compression or squashing on an ideal chain scales as the inverse compression

distance, cubed.
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