
Chemistry C3102-2006: Polymers Section

Practise problems & SOLUTIONS

Instructor’s notes: I anticipate that I solve these problems differently than others. Reading

over these questions, attempting/providing a solution is a valuable learning exercise. Note that

your correct solution to the problem may be a little different (and much shorter) to the one I

provide here.

1. An isolated chain which is otherwise ideal, adsorbs onto a flat substrate. Each of the N

monomers of size a is restricted to the plane of the substrate, but is otherwise mobile

within the plane of the substrate.

(a) What is the mean size of the chain?

The average square end-to-end distance of a 2-D, as well as a 3-D freely jointed,

ideal chain, is < R2 >∼ Na2.

(b) What is the change in entropy of the chain upon adsorption?

Invoking a discrete or lattice model for the placement of monomers of the chain,

where z is the coordination per dimension (so that z × d is the coordination of the

lattice in d dimensions), then the number of conformations available to a chain of

N monomers in d = 3 dimensions is (3 × z)N and in d = 2 dimensions is (2 × z)N .

Then by Boltzmann’s equation,

∆S = S2d − S3d = kB ln
((2 × z)N

(3 × z)N

)

,

or ∆S = kBN × ln (2/3). The argument of the logarithm is less than unity, ∆S < 0,

as you would expect: entropy is lost in confining the chain in a lower dimension of

space.

Alternatively you can invoke a continuum model. Each monomer link can freely

rotate about its other end in 2 or 3 dimensions. In 2-dimensions, the end can

be located on a circumference of length 2πa, centered about the other end. In 3-

dimensions, the one end can be located on a shell of area 4πa2 about the other

end. Thus, linking monomers end-to-end, the number of possible placements of

each consecutive link is proportional to 2πa in two dimensions and 4πa2 in three

dimensions. Then, by Boltzmann’s equation:

∆S = kB ln
( (2πa)N

(4πa2)N

)

,

or ∆S ∼ kBN × ln (1/(2a)), which again is negative as it should be.

2. What is the change of entropy associated with an ideal chain of N monomers transformed

into a molecular ∞ or “crazy-8”?

I chose to solve this as a two-part “reaction: first, I consider gluing the ends of a linear

chain, that is, monomers 1 and N together, such that R1,N = 0, and let the entropy
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change for this first reaction be ∆S1(N). Then, as the second-part, I consider gluing

together two arbitrary monomers, m and n, located on the ring. The entropy change

for this reaction is ∆S2(| m − n |), and the sum of these entropies yields the entropy of

formation of a “crazy-8” with loop sizes of | m − n | and N − m + n:

∆S(| m − n |) = ∆S1 + ∆S2(| m − n |)

First Reaction: Formation of a ring from a linear chain of N monomers: This

reaction was solved in the notes under the Example Problem: •• What is the change of

entropy associated with an ideal chain of N monomers forming a ring?

The probability distribution of end-to-end vector R for a linear chain of N monomers in

d dimensions is

pN (R) = (
d

2πNa2
)d/2 exp (−

dR2

2Na2
)

Consequently, the probability of observing a ring, or where R = 0 is

pN(R = 0) = (
d

2πNa2
)d/2.

Now the change in entropy is

∆S1 = kB ln
( Γ(R = 0)

Γ(−∞ < R < ∞)

)

,

where Γ(R = 0) is the number conformations with R = 0, and Γ(−∞ < R < ∞) is the

number of conformations of any R. As pN(R) is a normalised probability distribution,

this ratio of the number of conformations is pN(R = 0). Therefore, the entropy change

upon ring formation of a chain of N statistical monomers, each of size a, is

∆S1 = kB ln pN(R = 0) =
dkB

2
ln (

d

2πNa2
)

=
dkB

2
[ln (d) − ln (2πNa2)].

As N is large and d small, ln (d) << ln (2πNa2), and ∆S is negative, that is, entropy is

lost in the process of ring formation.

Second Reaction: Formation of an intersection of a ring chain of N monomers:

This reaction was solved in the notes under the Example Problem: • • • What is the

distribution of monomer-monomer distances of an ideal chain of N monomers whose

first and last monomers are joined to form a ring?

“First, consider a Gaussian ring chain where the monomers are labelled 1 to

N . Let Rmn be the end-to-end distance between any two arbitrary monomers n

and m within the Gaussian ring. Clearly R1,N ≡ R = 0. Let pN (Rmn; R = 0) be

the distribution of end-to end distances Rmn given that the freely jointed chain

of N monomers is a ring. We can write an expression from this distribution in

terms of the distribution of linear chains:

PN(Rm,n; R = 0) = Pn−m(Rmn)PN−n+m(Rmn)
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where Pn−m(Rmn) is the distribution of distances for a linear chain of n − m

monomers and PN−n+m(Rmn) is the distribution associated with a linear chain

of N − n + m monomers. This equation results from the fact that the sub-

components of a Gaussian chain remain Gaussian, as long as they contain a

large number of monomers.

You can then show, by replacing the RHS of the above equation with Gaus-

sian distributions (remembering that a linear chain of n − m monomers has

〈R2〉 = (n − m)a2 and that a chain of N − n + m monomers has 〈R2〉 =

(N − n + m)a2) that

PN(Rmn; R = 0) = (
d

2πµ2
)d/2 exp (−

dR2
mn

2µ2
),

where

µ2 =| m − n | a2(
N − m + n

N
).

That is, for the Gaussian ring, 〈R2
mn〉 = µ2”.

Now, PN(Rmn = 0; R = 0)dRmn, represents the probability that monomers m and n

overlap. Again, as the distribution is normalised, we can express the entropy change of

having overlap in a ring chain by

∆S2(| m − n |) = kB ln PN(Rmn = 0; R = 0 =
dkB

2
ln (

d

2πµ2
)

=
dkB

2
[ln (d) − ln (2πµ2)],

Now

∆S(| m − n |) = ∆S1 + ∆S2(| m − n |)

=
dkB

2

[

ln
( d

2πNa2

)]

+
dkB

2

[

ln
( d

2πµ2

)]

=
dkB

2
×

(

ln (
d

2πNa2
) + ln (

d

2πNa2
×

1
|m−n|

N
N−m+n

N

)
)

Again, as | m− n | and N −m + n represent the monomer lengths in each of the loops of

the ∞, let | m − n | /N be the fraction of contour in one loop, θ and 1 − θ the fraction

of contour in the other loop. Then, the last expression becomes

∆S(| m − n |) =
dkB

2
×

(

2 × ln (
d

2πNa2
) − ln (1 − θ)θ)

)

,

so that, to first order the entropy reduction of making a molecular crazy-8 is roughly

equal to twice the entropy reduction of forming a ring (see first term on RHS of last

expression). Actually, from the last term on the RHS, you see that the entropy reduction

isn’t as large as twice the entropy reduction of forming a ring, as the term − ln (1 − θ)θ)

is a positive number, that is minimal when θ = 0.5.

3. Explain why a rubber band, slowly stretched feels cold while a metal paper clip similarly

deformed feels warm.
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First, when you deform the rubber band or the metal clip, you are doing work on the

system. Usually, if you are performing the work quickly, there is no time available for

heat transfer with the surroundings, and the process is said to be adiabatic, δq = 0. In

this case, the work must go into the internal energy of the system.

∆U = δq − δW

So, if you take an ideal gas and compress it, you do work on the system by applying

external forces. As no heat is exchanged with the surroundings, then all of the work is

transformed into the internal energy of the gas, and consequently, the gas temperature

increases. Likewise, if you stretch a rubber band adiabatically you are applying external

forces, and this energy is transformed into internal energy, and there is an attendant

increase in the temperature. So both metal clip and rubber band will warm up if stretched

adiabatically (usually quickly).

However, now consider the case when you deform the rubber band and metal isother-

mally, in contact with a heat bath (your lips are a particularly good heat bath that can

additionally sense the flow of heat: if your lips sense a “cold” object, heat is being trans-

ferred from your lips to the object; if your lips sense a “hot” object, then heat is being

transferred to your lips from the object.) In general isothermal processes are “slow” and

not “quick” as indicated in the problem statement, allowing time for heat transfer such

that the system is isothermal. Such slow processes are called “reversible” and require the

minimum amount of work. For an isothermal system with no interactions (say an ideal

chain or an ideal gas) ∆U = 0 So, for the purely elastic sub-chains, δwrev = δqrev = T∆S.

As the rubber band’s entropy decreases with stretching, heat is extracted from the sur-

roundings to the system. Now, the metallic clip is different, as under isothermal processes

∆U 6= 0 because of the changes in the atomic interactions. Thus, the work of deforming

a metallic clip is δqrev = T∆S = δwrev −∆U +T∆S. That is the work goes into breaking

crystalline bonds, with the net energy being dumped as heat to the surroundings.

4. In 1997, a paper appeared in Science that demonstrated the stretching of a single protein

molecule using AFM. In that paper, the researchers investigated the tension-induced

unfolding of domains in titin, a giant protein found in muscles. They found that the force

versus extension profile was “sawtooth-like” with a periodicity that was commensurate

with the length of the chain in the folded domain. In that work, the stretching force was

fitted not to the purely entropic model, f = −kx, but rather a model that incorporated

entropic, enthalpic, and finite size of the chain, referred to as the WLC or Worm-like

Chain Model, f = −k(0.25(1 − x/L)−2 − 0.25 + x/L), where L was the contour length.
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Fig. 3. The characteristicsawtooth pattern of un-
folding can be explainedas stepwise increasesin
the contour length of a polymer whose elastic
properties are described by the wormlike chain
model (WLC) (27, 28). The figure shows a force
extensioncurve obtained by stretching of a single
Ig8 titin fragment. The force extension curve
shows a characteristicsawtooth pattern with sev-
en peaks.Theforce extensioncurve[F(x)versusx]
leading up to each peak is well described by the
WLC equationF(x) 5 (kT/b) [0.25(12 x/L)2 2 2 0.25 1 x/L] with a persistencelength b 5 0.4 nm and a
contour length L that began at 58 nm for the first peak and then increased by 28 to 29 nm to fit
consecutivepeaks, reachinga maximum of 227 nm for the last peak. k is Boltzmann's constant and T

is temperature.Thus,the WLCmodelpredicts that the contour lengthof the polypeptidechainincreases
by 28 to 29 nm each time an Ig domain unfolds. This value is close to the 30 nm predicted by fully
extendinga polypeptide chain comprising 89 amino acids (minusa folded length of 4 nm).At a force of
150 to 300 pN, the polypeptidechainisnot fullyextended,hencethe peaksarespaced by only ; 25 nm.
Unfolding of the first domain reduces the force to zero, whereas unfolding of consecutive domains
reduces the force to a lesser extent. This effect is also well explained by this simple model: Upon
reachinga certainforce (peaks),the abrupt unfoldingof a domain lengthensthe polypeptideby 28 to 29
nm and reduces the force (troughs)to that of the value predicted by the force extension curve of the
enlargedpolypeptide.

Taken from Rief, M/ Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E., “Reversible Un-

folding of Individaul Titin Immunoglobulin Domains by AFM”, Science 276, 1109-1112, 1997.

Predict the AFM force versus extension profile for a polypeptide chain having 3 folded do-

mains, the length of the unravelled domains are 30, 40, and 60 nm in length. The contour

length of the fully-unfolded chain is 300 nm. Assume, that outside of the instantaneous

unfolding of domains, the measured force is purely entropic with a k = 2/3 pN/nm and

justify any other necessary assumptions. Make sure you label pertinent features of the

force profile.

The following assumptions were made:

• The contour length of the unstretched chain is 300 − 30 − 40 − 60 = 170 nm.

• Like the reference, the rate of stretching is small in comparison to the rate at which

the domains completely unfold, so that unravelling occurs “instantaneously” on the

timescale of the experiment, providing an extra 30, 40, or 60 nm of contour length

when a domain unravels.

• The tension is uniform along the chain, irrespective of its contour length. In reality,

the tension is greater near the tether points or ends of the chain and consequently,

those domains closer to the chain ends will “feel” a large tension and might then un-

ravel first. By assuming uniform tension, we are affectly assuming that the ordering

of the domains along the contour length does not affect the order by which they are

unravelled.

• The energy of unfolding of all 3 domains are equivalent to within kBT so that

there is no preference as to which domain unfolds first. Under this assumption, and

the assumption of uniform chain tension, the order of domain unfolding is random.

An alternative, reasonable assumption is that the energy of unfolding of a domain

increases with the domain size so that the domains unfold from smallest to largest.

• Two plots are given. The first assume k is independent of contour length. The

second assumes that k ∼ 1/N according to the class notes so that the slope of the

force profile decreases upon consecutive domain unfoldings.
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Figure 1: Prediction of the AFM force profile of an ideal chain with folded domains of 30, 40, and
60 nm. The contour length of the chain is 300nm. Predictions are made for a chain that unfolds
domains randomly or non-selectively. This particular AFM trace depicts domains unfolding in the
order of 40, 60, and 30 nm, before detaching from the AFM tip or substrate at full contour length
of 300 nm. The red line is the prediction for a chain with constant value of k = 2/3 pN/µm. The
blue dotted line accounts for the N−1 dependence on the chains’s spring constant. I’ve assumed that
k = 2/3pN/µm describes the spring constant for the contour length of 300nm and that k decreases to
2/3 as the contour length is increased from 170, to 210, and to 270nm.
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