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We introduce the two-particle probability density X(x) of x = r12 · p12 = (r1 − r2) · ( p1 − p2). The fundamental equations
involved in the derivation of this new intracule X(x), which we call the Posmom intracule, are derived and we show how
to derive X(x) from the many-particle wave-function. We contrast it with the Dot intracule [Y.A. Bernard, D.L. Crittenden,
and P.M.W. Gill, Phys. Chem. Chem. Phys. 10, 3447 (2008)] which can be derived from the Wigner distribution and show
the relationships between the Posmom intracule and the one-particle Posmom density [Y.A. Bernard, D.L. Crittenden, and
P.M.W. Gill, J. Phys. Chem. A 114, 11984 (2010)]. To illustrate the information provided by the Posmom intracule, we apply
this new formalism to various two-electron systems: the three-dimensional parabolic quantum dot, the helium-like ions and
the ground and excited states of the helium atom.
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1. Introduction

Intracules are two-particle density distribution obtained
from the spinless second-order reduced density matrix [1]

ρ2

(
r1 , r ′

1
r2 , r ′

2

)
=

∫
"∗ (r1, r2, r3, . . . , rN )

×"
(
r ′

1, r ′
2, r3, . . . , rN

)
d r3 · · · d rN, (1)

where "(r1, r2, r3, . . . , rN ) is the N-particle position wave
function. Intracules are usually normalised to the number
of particle pairs N(N − 1)/2.

The seminal intracule is the Position intracule

P (u) =
∫

ρ2

(
r , r
r + u , r + u

)
d r d!u, (2)

which was introduced long ago by Coulson and Neilson [2]
to study correlation effects in the helium atom. In
Equation (2), u = r1 − r2, u = |u| ≡ r12 and !u is the
angular part of u. P(u) gives the probability density for
finding two particles separated by a distance u and has been
widely studied [3–21].

The corresponding Momentum intracule [22,23] is

M(v) = 1
(2π )3

∫
ρ2

(
r , r + q
r + u + q , r + u

)

× eiq·vd r dq du d!v, (3)

∗Corresponding author. Email: peter.gill@anu.edu.au

where v = p1 − p2, v = |v| ≡ p12 and !v is the angular
part of v. M(v) gives the probability density for finding two
particles moving with a relative momentum v.

Starting with the Wigner distribution [24,25], one can
construct a family of intracules [15,16], which provide two-
electron position and/or momentum information. Within
this family, the patriarch is the Omega intracule

$(u, v,ω) = 1
(2π )3

∫
ρ2

(
r , r + q
r + u + q , r + u

)

× eiq·vδ(ω − θuv)d r dq d!u d!v, (4)

where ω ≡ θuv is the dynamical angle between the vec-
tor u and v. $(u, v, ω) can be interpreted as the joint
quasi-probability density for u, v and ω. The quasi prefix
emphasises that $(u, v, ω) is not a rigorous probability den-
sity and, indeed, it may take negative values [24]. Based on
the observation of Rassolov [26] that both relative position
and relative momentum are important to describe the cor-
relation between pairs of electrons, and because the Omega
intracule contains information on both quantities, $(u, v,
ω) has been extensively used in intracule functional theory
(IFT) [16,17,27–33].

Appropriate integrations [16] reduce the Omega intrac-
ule to lower order intracules such as P(u), M(v) and the
Angle intracule [27,28]

ϒ(ω) =
∫ ∞

0

∫ ∞

0
$(u, v,ω)du dv, (5)

C© 2013 Taylor & Francis
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Molecular Physics 2415

which provides information on the angle ω between u and
v. A similar reduction yields the Dot intracule [17,30]

D(x) =
∫ ∞

0

∫ ∞

x

$(u, z/u,ω)
u z sin ω

dz du. (6)

The variable x = u · v = u v cos ω combines information
on the relative position and momentum of the particles, and
it is easy to show that it gives the rate of change of u2, i.e.

x = 1
2

d

dt
u2. (7)

In this way, x sheds light on the motion of the electrons.
For example, x = 0 implies that the electrons are moving
in such a way that their separation is constant. This could
arise, for example, if they were in a circular orbit around
their centre of mass.

Although D(x) is usually a non-negative function and
has proven useful for understanding electronic behaviour
[27] and for estimating electron correlation energies in
atomic and molecular systems [29,30], its connection to
the Omega suggests that it is not a rigorous probability
density. However, in the following section, we show how to
derive the exact probability distribution of x.

2. The Posmom intracule

We define the Posmom intracule X(x) to be the exact proba-
bility density for the variable x = u · v. It is the two-particle
version of the Posmom density S(s) where s = r · p [34–
36] and, as we have argued that s describes particle trajec-
tories, we now propose that x likewise characterises pair
trajectories.

The quantum mechanical operator

s̄ = −i!
(

3
2

+ r · ∇r

)
(8)

is known to be an unbounded self-adjoint operator [37,38]
and its two-particle equivalent is

x̄ = −2i!
(

3
2

+ u · ∇u

)
, (9)

where ∇ is the gradient operator. Both s̄ and x̄ correspond
to quantum mechanical observables.

Following the same approach used in [34] to obtain S(s)
from s̄, one can show that the Posmom intracule can be
expressed as the Fourier transform

X(x) = 1
2π

∫ ∞

−∞
X̂(k)eikxdk (10)

of the two-particle hyperbolic autocorrelation function

X̂(k) =
∫

ρ2

(
r , r + sinh(k!)u
r + ek!u , r + cosh(k!)u

)
d rdu. (11)

This expression can be simplified after defining the intrac-
ule density matrix

ρu

(
u , u′ ) =

∫
ρ2

(
U − u/2 , U − u′/2
U + u/2 , U + u′/2

)
dU, (12)

where U = r1 + r2 is the extracule vector, and yields

X̂(k) =
∫

ρu

(
e+k!u , e−k!u

)
du. (13)

In an entirely analogous way, the Dot intracule can be
expressed as the Fourier transform

D(x) = 1
2π

∫ ∞

−∞
D̂(k)eikxdk (14)

of the f-Dot function [30]

D̂(k) =
∫

ρ2

(
r , r + k!u
r + u + k!u , r + u

)
d r du, (15)

and the latter can be reduced to

D̂(k) =
∫

ρu

(
(1 + k!)u , (1 − k!)u

)
du. (16)

Comparing (13) with (16) and the Taylor expansion of
the exponential function

e±k! = 1 ± k! + k2

2
!2 + . . . (17)

reveals that the probability density D(x) derived from the
Wigner distribution is a first-order approximation to the ex-
act density X(x). Thus, the quasi-intracule is correct to O(!)
and becomes exact in the classical limit ! → 0. Remarkably,
one can construct the exact density from the approximate
density using the mapping

X̂(k) = D̂(tanh(k!))

cosh3(k!)
. (18)

Table 1 gives the one- and two-particle hyperbolic
autocorrelation functions, the corresponding first-order
(Wigner) approximations, and the relations between them.
In Table 1, the one-particle density matrix is given by

ρ1
(

r1 , r ′
1

)
= 2

N − 1

∫
ρ2

(
r1 , r ′

1
r2 , r2

)
d r2. (19)
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2416 Y.A. Bernard et al.

Table 1. One- and two-particle hyperbolic autocorrelation functions.

Density Intracule

Dot ŜW(k) =
∫

ρ1
(

(1 + k!/2)r , (1 − k!/2)r
)
d r D̂(k) =

∫
ρu

(
(1 + k!)u , (1 − k!)u

)
du

Posmom Ŝ(k) =
∫

ρ1
(
e+k!/2r , e−k!/2r

)
d r X̂(k) =

∫
ρu

(
e+k! u , e−k! u

)
du

Relation Ŝ(k) = ŜW (2 tanh(k!/2))

cosh3 (k!/2)
X̂(k) = D̂ (tanh(k!))

cosh3 (k!)
= ŜW(k) + O(!2) = D̂(k) + O(!2)

If the wave function is expanded in one-electron func-
tions, φa(r), the reduced two-particle density matrix be-
comes

ρ2

(
r1 , r ′

1
r2 , r ′

2

)
=

∑

abcd

Pabcdφa(r1)φb(r ′
1)φc(r2)φd (r ′

2),

(20)

where Pabcd is a two-particle density matrix element. In this
case, (11) is given by

X̂(k) =
∑

abcd

Pabcd [abcd]X̂ , (21)

where we have introduced the two-particle hyperbolic au-
tocorrelation integral [abcd]X̂. For example, if the basis
functions are s-type Gaussians, we obtain (in atomic units)

[ssss]X̂ =
∫

e−α|r−A|2e−β|r+sinh(k)u−B|2e−γ |r+exp(k)u−C|2e−δ|r+cosh(k)u−D|2 d r du = π3

J 3/2
exp

[
1
ξ

( |H|2

J
− F

)]
, (22)

where

ξ = α + β + γ + δ, (23a)

J = ξ [β sinh2(k) + γ exp2(k) + δ cosh2(k)]

− [β sinh(k) + γ exp(k) + δ cosh(k)]2, (23b)

F = αβ|A − B|2 + αγ |A − C|2 + αδ|A − D|2

+βγ |B − C|2 + βδ|B − D|2 + γ δ|C − D|2, (23c)

and

H = sinh(k)G B + exp(k)GC + cosh(k)G D, (24a)

G B = αβ(B − A) + βγ (B − C) + βδ(B − D), (24b)

GC = αγ (C − A) + βγ (C − B) + γ δ(C − D), (24c)

G D = αδ(D − A) + βδ(D − B) + γ δ(D − C). (24d)

The scalars and vectors above are independent of the choice
of origin and X̂(k) and X(x) are therefore likewise indepen-

dent. This contrasts with the annoying origin-dependence
[35] of the one-electron posmom density S(s).

Integrals of higher angular momentum can be generated
by differentiating [ssss]X̂ with respect to the Cartesian co-
ordinates of the basis function centres, as first suggested
by Boys [39], or, more efficiently, using recurrence rela-
tions [31]. We have written a programme to compute X(x)
within an spd Gaussian basis set and implemented this in a
development version of the Q-CHEM 3.2 quantum chemistry
package [40].

Equations (21)–(24) are easily modified to generate
P(u), M(v), ϒ(ω) and D̂(k). In particular, if the functions
sinh (k), exp (k) and cosh (k) are replaced by their first-order
approximations (k, 1 + k and 1, respectively) in the expres-
sions for J and H , one obtains the f-Dot integrals [ssss]D̂
[30].

In the special case of concentric s-type Gaussians, the
intracule integrals become

[ssss]P = 4π5/2

ξ 3/2
u2 exp

(
−µ

ξ
u2

)
, (25a)

[ssss]M = 4π5/2

χ3/2
v2 exp

(
− ν

χ
v2

)
, (25b)

[ssss]ϒ =
π3

(
λ − 2η cos2 ω

)

2ζ 3/2
(
λ + η cos2 ω

)5/2 sin ω, (25c)

[ssss]D̂ = π3

K3/2
, (25d)

[ssss]X̂ = π3

J 3/2
, (25e)

where

µ = (α + β)(γ + δ), (26a)

ν = (α + γ )(β + δ), (26b)

ζ = (α + δ)(β + γ ), (26c)
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Molecular Physics 2417

Figure 1. Physical interpretation of the variables u, v, ω and x in the weak, medium and strong correlation regimes.

χ = 4(αβγ + αβδ + αγ δ + βγ δ), (26d)

λ =
(

1
α + δ

+ 1
β + γ

) (
αδ

α + δ
+ βγ

β + γ

)
, (26e)

η =
(

α

α + δ
− β

β + γ

)2

, (26f)

K = ξ [βk2 + γ (1 + k)2 + δ] − [βk + γ (1 + k) + δ]2 .

(26g)

In the calculations described below, we have computed
X(x) and D(x) numerically using Equations (10) and (14).
D̂(k), X̂(k), D(x) and X(x) are all even functions and we
will therefore focus only on x ≥ 0 and k ≥ 0.

Physical interpretations of the variables u, v, ω and x are
summarised in Figure 1. The three limiting configurations
ω = 0, π /2 and π (which correspond to x = u v, 0 and −u v)
are depicted for the weak (u and v large), medium (where
one of u and v is large and the other is small) and strong
correlation (u and v small) regimes. A faithful description
of electron correlation requires information about the rel-
ative position u and momentum v, but also on the mutual
orientation ω of these two vectors, which gives insight into
the nature of the electrons’ mutual orbit. The Dot and Pos-
mom intracules provide information about the distribution
of values of x = uv cos ω, and thus about the type of corre-
lation regime (weak, medium or strong). However, as noted

above, being a first-order approximation of X(x), the infor-
mation gathered in D(x) is slightly biased. The effects of
this approximation will be investigated below.

In Section 3, the Posmom intracule is investigated
alongside D(x), ϒ(ω), P(u) and M(v) for the two electrons
in a parabolic quantum dot. In Section 4, we turn our atten-
tion to the electrons in a helium atom or helium-like ion.
We also compare the Posmom intracules for ground and
excited states and study the effect of the dimensionality of
the space D. Atomic units are used throughout.

3. Parabolic quantum dots

In our study of the Posmom intracule in parabolic quan-
tum dots [41], we consider three different treatments of the
Coulomb interaction between the two electrons. First, the
non-interacting case, in which it is simply ignored; second,
the Hartree–Fock (HF) case [42] in which it is approximated
in a mean-field sense; third, the exact treatment which is
possible for certain values of the harmonic confinement
force constant [43,44].

3.1. Hamiltonian and wave functions

The Hamiltonian is

H = −1
2

(
∇2

1 + ∇2
2

)
+ V (r1) + V (r2) + 1

r12
, (27)
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2418 Y.A. Bernard et al.

where

V (r) = r2

2κ2
(28)

is the external harmonic potential and 1/κ2 is the force
constant.

The 1S ground state of the non-interacting system has
the wave function

"0(r1, r2) = ψ0(r1)ψ0(r2), (29)

ψ0(r) = (πκ)−3/4 exp
(

− r2

2κ

)
, (30)

and the energy

E0 = 3
κ

. (31)

The more accurate HF wave function

"HF(r1, r2) = ψHF(r1)ψHF(r2) (32)

is not known in closed form, but can be efficiently treated
numerically by expanding ψHF(r) in a Gaussian basis

ψHF(r) =
NG∑

j=1

cj exp(−αj r
2). (33)

The HF energy can be directly minimised with respect
to the coefficients cj and exponents αj using a numerical
solver [45], thus avoiding the self-consistent field proce-
dure usually needed for this kind of calculation [46,47].

The exact wave function and energy can be found in
closed form [44] for certain values of κ . For example, for
κ = 2

"2(r1, r2) =
(

1 + r12

2

)
ψ0(r1)ψ0(r2), (34a)

E2 = 2, (34b)

and, for κ = 10,

"10(r1, r2) =
(

1 + r12

2
+ r2

12

20

)
ψ0(r1)ψ0(r2), (35a)

E10 = 1/2. (35b)

Table 2 shows the convergence of EHF with NG for κ = 2
and κ = 10. The correlation energy

Ec = Eexact − EHF (36)

for κ = 2 (Ec = 38.438 871 755 mEh) agrees with earlier
work [14,46]. For κ = 10, we find Ec = 29.041 525 56 mEh.

Table 2. Energies of parabolic quantum dots for different treat-
ments of the interelectronic interaction.

NG κ = 2 κ = 10

E0 — 1.5 0.3
EHF 1 2.04 0.53

2 2.038 439 0.529 04
3 2.038 438 9 0.529 041 5
4 2.038 438 871 8 0.529 041 525 6
5 2.038 438 871 755 0.529 041 525 56

O’Neill and Gilla 2.038 438 87 —
Ragotb 2.038 438 871 76 —

Eexact — 2. 0.5

aReference [14]: 7 basis functions.
bReference [46]: 11 basis functions.

3.2. Position Intracule

The non-interacting Position intracule is

P0(u) =
√

2
πκ3

u2 exp
(

− u2

2κ

)
, (37)

and the HF intracule PHF,κ (u) is found from (25a) and (33).
For κ = 2 and κ = 10, the exact intracules are given by

P2(u) = (1 + u/2)2

8 + 5
√

π
u2 exp

(
−u2

4

)
, (38)

P10(u) = (1 + u/2 + u2/20)2

5/2(240 + 61
√

5π )
u2 exp

(
−u2

20

)
. (39)

Equation (38) has been reported previously [14].

3.3. Momentum intracule

Using the same notation as above, the non-interacting Mo-
mentum intracule is

M0(v) = 2
π

κ3/2v2 exp
(

−κv2

2

)
, (40)

MHF,2(v) and MHF,10(v) are obtained from (25b) and (33),
and the exact Momentum intracules are

M2(v) = 8v2

8 + 5
√

π

[√
2
π

+ e− v2
2 +

(
1
iv

+ iv

)

× erf
(

iv√
2

)
e− v2

2

]2

, (41)

M10(v) = 80
√

5v2

48
√

5 + 61
√

π

[√
10
π

+
(
4 − 5v2) e− 5v2

2

+
(

1
iv

+ 5iv

)
erf

(√
5
2
iv

)

e
−5v2

2

]2

, (42)
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Molecular Physics 2419

where erf(z) is the error function [48]. Equation (41) has
been reported previously [14].

3.4. Angle intracule

The Angle intracule of two non-interacting particles is en-
tirely determined by the Jacobian factor and is [28]

ϒ0(ω) = 1
2

sin ω. (43)

ϒHF,2(ω) and ϒHF,10(ω) are obtained from (25c) and (33).
ϒ2(ω) and ϒ10(ω) have been obtained by numerical inte-
gration of (4) and (5). Equation (4) can be reduced to a two-
dimensional integral, and the resulting four-dimensional
numerical integration in Equation (5) was performed care-
fully to ensure accuracy of O(10−3) for each value of ω.

3.5. Dot and Posmom intracules

D̂HF,2(k) and D̂HF,10(k) [Equations (33) and (25d)], as
well as X̂HF,2(k) and X̂HF,10(k) [Equations (33) and (25e)]
have been obtained numerically. Table 3 gathers the non-
interacting and exact (κ = 2 and 10) Dot and Posmom
intracules in Fourier and real space. The similarity between
the Dot and Posmom expressions is striking.

3.6. Holes

The correlation hole was originally defined [2] as the dif-
ference between the exact and HF Position intracule

5P (u) = P (u) − PHF(u), (44)

but this can be extended to any intracule I

5I = I − IHF. (45)

One can also define the HF hole as the difference between
the HF and non-interacting intracules

5IHF = IHF − I0. (46)

Figure 2 shows all of the intracules for κ = 2 and Figure 3
shows the holes created as the Coulomb interaction is
introduced.

One can see from P(u) and M(v) in Figure 2(a) or 2(b)
that the electrons are found at larger separations and move
with lower relative momenta in the HF approximation than
in the non-interacting case. However, the non-interacting
and HF intracules, ϒ(ω), D(x) and X(x), are almost identi-
cal. The fact that ϒ(ω), D(x) and X(x) are all invariant under
a uniform scaling leads us to conclude that the introduction
of the Coulomb operator at the mean-field level leads to an
almost exact dilation of the system.
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Figure 2. Intracules for a parabolic quantum dot with κ = 2: non-interacting(—), HF (- - -) and exact (···). (a) Position. (b) Momentum.
(c) Angle. (d) Dot. (e) Posmom.

Figure 3 reveals that the HF holes and correlation
holes of P(u) and M(v) are surprisingly similar in size and
shape. It also shows that the introduction of correlation
decreases the probabilities of ω ≈ π /2 and x ≈ 0, indicat-

ing that the correlated electrons spend less time circularly
orbiting their centre of mass. This conclusion is supported
by both the non-rigorous ϒ(ω) and D(x) intracules and the
rigorous X(x) intracule.
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Figure 3. Intracule holes for the parabolic quantum dots with κ = 2 and κ = 10: HF hole (—) and correlation hole (- - -). (a) Position
κ = 2. (b) Position κ = 10. (c) Momentum κ = 2. (d) Momentum κ = 10. (e) Angle κ = 2. (f) Angle κ = 10. (g) Dot κ = 2. (h) Dot κ =
10. (i) Posmom κ = 2. (j) Posmom κ = 10.
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Table 4. HF, radial and exact energies of various helium-like ions.

Atom H− He Li+ B3 + Ne8 +

Z 1 2 3 5 10
HF −0.487 93 −2.861 67 −7.236 41 −21.986 2 −93.861 1
Radial −0.514 5 −2.879 0 −7.252 5 −22.001 5 −93.875 9
Exact −0.527 75 −2.903 72 −7.279 91 −22.031 0 −93.906 8
Ec −0.03982 −0.04205 −0.04350 −0.0448 −0.0457
%Erad

c 66.7 41.3 37.0 34.2 32.3

However, the differences between D(x) and X(x) are
significant. D(x) comes from the Wigner distribution and, as
Equations (13) and (16) show, it is the O(!) approximation
to X(x). Its Fourier transform D̂(k) decays as k−3 for large
k and this creates a discontinuity in the second derivative
D′′(x) at x = 0 [30,49]. In contrast, X(x) is smooth at x = 0.
One of the consequences of this misbehaviour at x = 0
is that, for the κ = 2 quantum dot, the Dot intracule’s
prediction D(0) = 0.219 overestimates the exact value X(0)
= 0.168 by 30%.

4. Helium-like ions

We now turn our attention to the helium-like ions. The
Hamiltonian is obtained by substituting the harmonic po-
tential v(r) in (27) with the Coulombic potential

V (r) = −Z

r
, (47)

where Z is the nuclear charge. As before, the HF wave
function and energy can be found by expanding the HF
orbital in a Gaussian basis, optimising both the coefficients
and exponents. We consider five values of Z, corresponding
to the H−, He, Li+ , B3 + and Ne8 + ions and, in this Section,
we focus on their Position and Posmom intracules.

4.1. Ground state

The HF orbital of the 1S ground state was approximated by
a Gaussian expansion (33) with NG = 11. The exact wave

function was approximated by the 64-term Hylleraas-type
expansion [50]

"(r1, r2) =
3∑

nlm

cnlm(r1 + r2)n(r1 − r2)2lrm
12e

−α(r1+r2).

(48)
We also considered the 64-term radially-correlated wave
function [51,52]

"rad(r1, r2) =
7∑

nl

cnl(r1 + r2)n(r1 − r2)2le−α(r1+r2). (49)

Table 4 gathers the HF, exact and radially correlated
energies obtained from (33), (48) and (49), respectively.
Only the correct figures are reported [52–54], as well as
the percentage of radial correlation (%Erad

c ). As above, the
correlation hole is defined as the difference between exact
and HF intracules [Equation (45)]. We also define the radial
and angular holes [55]

5Irad = Irad − IHF, (50)

5Iang = I − Irad. (51)

Both P(u) and X(x) were obtained numerically and are
shown in Figure 4. Increasing the nuclear charge barely
affects XHF(x) because it produces an almost uniform con-
traction of the system. However, the effect on the exact X(x)

Figure 4. Posmom intracules of helium-like ions: Z = 1 (- · · -), Z = 2 (- · -), Z = 3 (···), Z = 5 (- - -) and Z = 10 (—). (a) Hartree–Fock.
(b) Exact.
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Molecular Physics 2423

Figure 5. Correlation holes of helium-like ions: Z = 1 (- · · -), Z = 2 (- · -), Z = 3 (···), Z = 5 (- - -) and Z = 10 (—). (a) Posmom. (b)
Position.

is much larger and the values of X(0) are 0.1642, 0.1917,
0.1968, 0.2003 and 0.2027 for Z = 1, 2, 3, 5 and 10, respec-
tively. These values reveal that the electrons in H− spend
less time mutually orbiting than those in Ne8 + . This is
consistent with the conventional view that H− is a more
strongly correlated system than Ne8 + .

Figure 5 shows the Posmom and Position holes of the
ions. The depth of 5X(x) decreases as Z increases but the
depth of 5P(u) is almost constant as it is squeezed toward
the origin. 5P(u) exhibits a secondary hole, discussed in
detail by Pearson et al. [18], but this subtle correlation effect
is not visible in 5X(x).

Radial correlation provides the majority (67%) of the to-
tal correlation energy in H− but this decreases to 41% in He,
and to 32% in Ne8 + , as angular correlation effects becomes
dominant. This shift is visible in 5Prad(u) and 5Pang(u),
as shown in Figure 6, but 5Xrad(x) is always larger than
5Xang(x) and becomes almost identical for Ne8 + .

If we compare the insets in Figure 5(b) and Figure 6(c),
we see that the radial secondary hole is several times deeper
than the total secondary hole. This implies that the radial
secondary hole, which has been noted previously by Ka-
triel et al. [55], is almost entirely cancelled by an angular
secondary hole.

Figure 6. Radial and angular holes in He-like ions: Z = 1 (- · · -), Z = 2 (- · -), Z = 3 (···), Z = 5 (- - -) and Z = 10 (—). (a) Posmom
radial correlation hole. (b) Posmom angular correlation hole. (c) Position radial correlation hole. (d) Position angular correlation hole.

D
ow

nl
oa

de
d 

by
 [A

us
tra

lia
n 

N
at

io
na

l U
ni

ve
rs

ity
] a

t 1
2:

36
 3

0 
Se

pt
em

be
r 2

01
3 
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Figure 7. Posmom intracule for states of the He atom: 1s2 1S
(—), 1s2s 1S (- - -), 1s2s 3S (···), 2s2 1S (- · -), 2p2 1S (- · · -).

4.2. Excited states

We have calculated the HF Posmom intracule for several
excited states of the He atom using a Gaussian basis of 36
s-type functions with exponents 2−15, 2−14, . . . , 220 and
31 p-type functions with exponents 2−10, 2−14, . . . , 220.
The maximum overlap method (MOM) has been employed
for finding excited-state solutions to the HF self-consistent
field equations [56].

The intracules in the ground state (1s2 1S) and four ex-
cited states (1s2s 1S, 1s2s 3S, 2s2 1S and 2p2 1S) are shown
in Figure 7. Table 5 lists the values of X(0) for these and
other excited states.

When the electron pair occupies a more diffuse orbital,
X(x) becomes broader and X(0) drops from 0.206 in the
1s2 state to 0.165 in the 2s2 state, and to 0.127 for the 2p2

state. The decrease is even more marked when the electrons
occupy orbitals in different shells, such as in the 1s2s 1S
state where X(0) = 0.087. However, if the two orbitals have
the same principal quantum number, such as in the 2s2p 1P
state, the decrease is smaller.

The Dot intracule has been calculated for the first ex-
cited state 1s2s 3S [30] and shows a small dip in D(x) around
x = 0, which we have previously attributed to the Fermi hole.
We now believe that that explanation was incorrect and that
the dip is a failure of D(x) to capture the behaviour of X(x).

Table 5. Origin Posmom intracule, X(0), for various singlet and
triplet excited states of the helium atom (i, j = x, y, z).

Configuration Singlet Triplet

1s2 0.2060 —
1s2s 0.0866 0.09520
1s2p 0.0928 0.09525
2s2 0.1647 —
2s2p 0.1455 0.1153
2p2

i 0.1267 —
2pi2pj 0.1567 0.1538

4.3. D-dimensional helium atom

Following the pioneering work of Loeser and Herschbach
on the effect of dimensionality on the HF [57,58] and exact
energies [59] of He-like ions, several other two-electron
systems have recently been studied inD dimensions [47,60–
64].

The generalisation of the Posmom intracule for a D-
dimensional space is straightforward. Equations (10), (11)
and (13) are unchanged and Equation (25e) becomes

[ssss]X̂ = πD

JD/2
. (52)

We used a large, even-tempered Gaussian basis, optimising
the coefficients cj to minimise the HF energy [58,62]

EHF = 2
∫

ψHF(r)
[
−∇2

2
+ V (r)

]
ψHF(r)d r

+
!

ψ2
HF(r1)

〈
1
r12

〉

D

ψ2
HF(r2)d r1d r2, (53)

where

〈
1
r12

〉

D
=

F
(

3−D
2 , 1

2 , D
2 , min(r1,r2)2

max(r1,r2)2

)

max(r1, r2)
, (54)

∇2 = d2

dr2
+ D − 1

r

d

dr
, (55)

d r = 2πD/2

6(D/2)
rD−1dr, (56)

and F is the Gauss hypergeometric function [48]. Our ener-
gies for D = 2, 3, 4 and 5 agree within a microhartree with
the benchmark values of Herschbach and co-workers [58].

Figure 8 shows how X(x) changes with D. The observa-
tion that the intracule broadens as D increases is consistent
with the conclusion of Herrick and Stillinger [65] that the
electrons in D-helium can avoid each other more easily
when D is large. Furthermore, they have shown that the
binding energy of the ground state in D = 5 corresponds

Figure 8. HF Posmom intracules of theD-dimensional He atom:
D = 2 (—), D = 3 (- - -), D = 4 (···), D = 5 (- · -).
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exactly to the binding energy of the 2pi2pj
3P state inD = 3.

This feature is due to interdimensional degeneracies, first
noticed by van Vleck [66], and observed for various sys-
tems [61,65,67–70]. We observe likewise that X(x) for the
1s2 state in D = 5 is identical to X(x) for the 2pi2pj

3P state
in D = 3.

5 Conclusion

We have introduced a new two-particle density distribu-
tion, the Posmom intracule, which condenses information
about both the relative position and relative momentum of
the particles. We have shown how to construct this distri-
bution from the many-particle wave function and we have
shown that the Dot intracule D(x) is a first-order approx-
imation of the Posmom intracule X(x). We have applied
our new formalism to two-electron quantum dots and the
helium-like ions. A comparison between various intracules
(Position, Momentum, Angle, Dot and Posmom) has been
carried out, showing the interrelated information conveyed
by these two-particle probability distributions.

The Posmom intracule, unlike the Dot intracule, is
the rigorous quantum mechanical probability density for
x = u · v. This variable yields information about the rate at
which two electrons approach and therefore vanishes when,
for example, the electrons are in a circular orbit. Such de-
tailed knowledge about the relative motion of pairs of elec-
trons is the necessary ingredient for IFT and we therefore
anticipate that X(x) will play an important role in the future
development of that approach to the electronic structure
problem.
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