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Density functional theory (DFT) has become the most popular by far
of the panoply of methods in quantum chemistry and the reason for
this is simple. Where other schemes had become bogged down in mind-
numbingly expensive and detailed treatments of the electron correlation
problem, DFT simply shrugged, pointed at the Hohenberg—Kohn theorem,
and asserted that the correlation energy can be written as an integral of a
certain function of the one-electron density. The only thing that irritated
the wavefunction people more than the cavalier arrogance of that assertion
was the astonishing accuracy of the energies that it yields.

Well, most of the time. Occasionally, DFT fails miserably and,
although the reasons for its lapses are now understood rather well, it
remains a major challenge to correct these fundamental deficiencies, while
retaining the winsome one-electron foundation upon which DFT rests.

Does this mean that, for truly foolproof results, we have no option but
to return to the bog of many-body theory? One might think so, at least
from a cursory inspection of the current textbooks. But we feel differently,
and in this chapter we present an overview of an attractive alternative that
lies neither in the one-electron world of DFT, nor in the many-electron
world of coupled-cluster theory. Our approach nestles in the two-electron
“Fertile Crescent” that bridges these extremes, a largely unexplored land
that would undoubtedly have been Goldilocks’ choice.

We present results that demonstrate that the new approach — Intracule
Functional Theory — is capable of predicting the correlation energies of
small molecules with an accuracy that rivals that of much more expensive
post-Hartree—Fock schemes. We also show that it easily and naturally
models van der Waals dispersion energies. However, we also show that
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2 D.L. Crittenden and PM.W. Gill

its current versions struggle to capture static correlation energies and that
this is an important area for future development.

Finally, we peer into the probable future of the field, speculating on the
directions in which we and others are likely to take it. We conclude that,
although the approach is conceptually attractive and has shown consid-
erable promise, the investigations hitherto have scarcely scratched the sur-
face and there are ample opportunities for fresh ideas from creative
minds.

1.1. Introduction

In the late 1920s, Hartree [1] was among the first to realize that the newly
derived Schrodinger equation [2] describing quantum electronic motion
could be solved for multi-particle systems if the wavefunction, a com-
plicated multidimensional object that explicitly couples the motion of all
particles in the system, is approximated by a product

W(ry, ra, ..., 1) = @1(r))d2(r2) - - - ¢u(ry) (L.1)

of single-particle functions (spin-orbitals). Physically, the Hartree wave-
function implies that each electron moves independently in the electro-
static field created by all of the others. Shortly thereafter, both Slater [3]
and Fock [4] pointed out that Hartree’s wavefunction lacks the antisym-
metry required by the Pauli Principle [5], but that this can be rectified by
adopting the determinant form

o1(r1)  ¢a(ry) ... @u(ry)
_ ¢1(r2) ¢a(r2) ... ¢u(r2)

"Ij(rlvrzv ""rl’l) (12)

¢l(.rn) ¢2(.rn) ¢n(rn)

Unfortunately, the resulting Hartree—Fock (HF) model neglects the inter-
electron correlations that influence chemically important phenomena such
as bond making and breaking, electron gain and loss, and the response of
a molecule to an external electric and/or magnetic field. For example, in
the homolytic fission of a single bond, the two formerly paired electrons
migrate in opposite directions and this cannot be accurately described by a
single determinant.

The difference between a molecule’s HF energy and its exact energy is
E, the correlation energy, and the challenge of its determination is known
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as the “electron correlation problem” and has been the focus of ongoing
research efforts for almost a century. Currently, methods for recovering E,
fall into two broad classes.

Wavefunction-based methods are based upon the mathematical obser-
vation that an improved wavefunction can be constructed from the occupied
and unoccupied orbitals that arise from solving the HF equations. These
methods are guaranteed eventually to converge to the exact result, but
their convergence is hampered because they are effectively approximating
cusps in the true wavefunction by sums of smooth functions. In practice,
wavefunction-based post-HF methods are typically limited in applicability
to systems containing a few dozen non-hydrogen atoms.

Density-based methods are a popular low-cost alternative. They are
based upon the Hohenberg—Kohn theorem [6], which states that the energy
of the ground state of a system is a universal functional of its electron density
p(r). Unfortunately, the theorem gives little insight into the construction
of the functional and, despite the efforts of many researchers over many
years, its form remains unknown. Many approximate functionals have been
devised, each with its own strengths and weaknesses, but none yet has
proven accurate for all types of chemical problems. The major systematic
weaknesses [7] of density functional theory (DFT) stem from its inability
to deal with intrinsically two-electron phenomena such as bond cleavage
and static correlation.

Comparing these two alternatives — wavefunction-based and density-
based models — reveals a vast and largely unexplored intermediate ground
between the complexity of wavefunction schemes (which depend explicitly
on the coordinates of every electron) and the simplicity of density schemes
(which depend only on the one-electron density). The most obvious entry
point — and this is our present strategy — is to develop approaches that
incorporate rwo-electron information but retain the computational advan-
tages enjoyed by DFT. We will use atomic units throughout.

1.2. Intracules

A reasonable starting point for the development of a two-electron analogue
of DFT is the two-electron density

(1], 1)) = f |W(ry, ..., 1) drs...dr,, (1.3)
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which gives the joint probability of finding one electron at r; and another at
r;. How might one extract the correlation energy from this six-dimensional
object? Intuitively, one may expect the statistical correlation between the
motions of two electrons to depend strongly on their separation and this
leads naturally to the position intracule [8]

Puw) = / pa(E1, £2)8(r12 — w)drrdrs, (1.4)

(where § is the Dirac delta distribution and ri» = [ri3| = |r1 — rp|)
which gives the probability density of finding two electrons separated by a
distance u.

Example 1.1: The Position Intracule for a He-like Ion

In most modern calculations, the molecular orbitals (MOs) are expanded in a
basis of Gaussian functions. If we model the 1s orbital in a He-like ion by the
single Gaussian exp(—ar?), the HF wavefunction is

W(ry, 1) = Qa/m)Y? expl—a(r? +13)]

and one finds from Eq. (1.4) that the position intracule is

P(u) = /02(1‘1, r2)8(ri2 — u)dry drp
= (205/7'[)3 / exp[—2a(r% + r%)](S(r]z — u)dridr;

= Qu/n)? / exp[—2a(r? + |r; — u|>)]dry dS,

by writingr, =r; —u

= (a/m)*? / exp(—au?)dy,

by integrating over r;
= (a/n)3/ 2470 exp(—om2), by integrating over the angular part of u

As the Gaussian exponent « increases, the 1s orbital shrinks and P(u) contracts
toward the origin.

The Gaussian exponent that minimizes the HF energy of the He atom is

o= %ﬁ and the resulting intracule reveals that the electrons are most

likely to be found with a separation # ~ 1 but that they are unlikely to be
found close to one another (# & 0) or at large separations (u > 3).
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Fig. 1.1. Position intracule for the helium atom.

Unfortunately, although it is easy enough to compute P(u), even in large
molecules [9], it is not an optimal source of two-electron information for
electron correlation. This can be demonstrated by considering two-electron
systems that are confined by a tunable parameter. For example, in the
helium-like ions (i.e. H™, He, Li™, ...), where the confinement parameter
is the nuclear charge Z, the exact [10] and HF [11] energies are

5
Eexact = —Z° + gz —0.15767+ 0z (1.5)

5
Enp = —27%+ gZ = 0.11100 + oz™h (1.6)

and therefore, as the confinement parameter grows, the correlation energy
E. = FEexact — Enur approaches a limiting value (—46.67 mEy). Anal-
ogous behaviour is found in other such systems [12] and, indeed, it can be
proven [13] that the correlation energy of two electrons always approaches
a limiting value when they are confined to an infinitesimal volume. This
constancy contrasts sharply with the behaviour of the position intracule
P(u), which approaches a delta distribution at u = 0 as the two electrons
are sequeezed closer together. Such analysis indicates that P(u) does not
possess the qualitative behaviour required to capture E. in these simple
systems.

Example 1.2: The Momentum Intracule for a He-like Ion

Modelling the 1s orbital in a He-like ion by the Gaussian exp(—ar?) yields
the HF momentum wavefunction

@ (p1, p2) = 2ra) >/ ? exp[—(p? + p3)/4al
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6 D.L. Crittenden and PM.W. Gill

and one finds from Eq. (1.7) that the momentum intracule

M) = /ﬂz(Pl, P2)3(p12 — v)dp1 dpa2
— Qna)? / expl—(p% + p2)/2018(p12 — v)dprdp2

= Qna)~? f expl—(p} + Ip1 — vI»)/2a1dp1d<Qy,

by writing p, = p1 — Vv
= (4ra) 32 / exp(—v?/4a)d Sy,

by integrating over p;
= (4ma) " ?4m0? exp(—v? /),

by integrating over the angular part of v

is a Maxwell distribution. As « increases, high relative momenta become more
likely and M (v) broadens.

Using the energy-minimizing exponent o = %@ yields the momentum
intracule which reveals that the electrons are most likely to be moving
with a relative momentum v =~ 2 but that they are unlikely to have
very similar momenta (v &~ 0) or very different momenta (v > 6).

M(v)
0.5
0.4
0.3
0.2
0.1

Fig. 1.2.  Momentum intracule for the helium atom.

A decade ago, Rassolov observed that the relative momentum pjy =
IP12] = |p1 — p2]| also plays a role in electron correlation [14]. Intuitively,
this makes sense: high relative velocities reduce interaction times for the
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electrons and therefore reduce the extent of their correlation. This infor-
mation is captured by the momentum intracule [15, 16]

M(v) = fﬂz(Pl, p2)8(p12 — v) dpidp2, (1.7)

where the two-electron momentum density is

(P, p2) = f D@1, ..., p)dps ... dpn (1.8)

and the momentum wavefunction

d(Ppi, ..., pn) = Qm) 2 / W(ry, ..., rp)e (®rrit Pt gp gy,

(1.9)
is the Fourier transform of the position-space wavefunction. Unfortunately,
the momentum intracules of the He-like ions become flatter as Z increases,
suggesting that — like P(u) but for the opposite reason — M(v) is not an
optimal source of two-electron information for correlation. However, the
opposing trends in the position and momentum intracules suggest that we
may be able to model correlation through a product variable involving both
ri2 and pia.

Yet again, however, it seems that we are thwarted because, although
one can form a momentum-space wavefunction from its position-space
counterpart using a Fourier transform, the Heisenberg Uncertainty Principle
forbids the construction of a joint phase-space wavefunction. Likewise,
although p,(ry, r2) and 2 (p1, p2) can be easily obtained, there exists no
comparable joint probability density P(ry, rz, p1, P2)-

Nevertheless, although a genuine density in phase-space is prohibited,
it is possible to concoct guasi-densities with some of the properties that the
genuine article would possess. The most famous of these are the Wigner
quasi-densities [17]

Wn(rl""vrn7p19'-'7pn)
1
= 3,,f‘I’(lrlJrql,...,rqun)*
T

XU —qi, ..., — Qe ®rat=tPedgq,  dq, (1.10)

and the Husimi quasi-densities [18]. Besley [19] has studied the latter but
we will confine our attention here to the former.

Being a function of 6n coordinates, the full Wigner quasi-density is
even more complicated than the wavefunction. However, because we are
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8 D.L. Crittenden and PM.W. Gill

primarily interested in two-electron information, it is natural to integrate
over all but two of the electrons to use instead the second-order reduced
Wigner quasi-density

Wa(ry, 2, p1, p2)
1 )
= pry / o1 +q,rp+q, ] —qr, 1 — q2)621(P1-Q1+p2-Q2) dqidqo,
(1.11)

where p» is the reduced second-order density matrix [20]. W> is a simpler
object than W), but it is nonetheless a function of 12 variables and is con-
ceptually formidable. Ideally, we would like to extract from it only the
information that is directly relevant to a description of electron corre-
lation. It obviously contains information about the relative position 7y
and momentum p1 variables but it also knows about the dynamical angle
012 between the vectors ri and pp», giving insight into the nature of the
electrons’ mutual orbit, as illustrated below.

By analogy with Egs. (1.4) and (1.7), we can extract the quasi-density
for r12, p12 and 617 to form the Omega intracule [21]

Q(u, v, w)

=/W2(l‘1, r2, p1, p2) 6(ri2 — u) 8(p12 — v) (012 — w) dry drp dp; dp>

1 .
~ a6 / p2(r] 4+ q1, 12 + q2, T — qy, Ty — o)X PraTPra)

X 8(r12 — u)d(pi2 — v)8(012 — w)dq dqp dry dry dp dp>
1

- F ,02(1‘, r+ q + ur + q’ r—+ u)eiVAqB(qu - C()) drdquudQV7
T

(1.12)

where, as before, u and v are arbitrary vectors of length u and v, respectively,
and 6y, is the angle between them. At this point, things do not look very

01,=0 012 =m/2 Op=m

Fig. 1.3. Physical interpretation of the dynamical angle 61».
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Intracule Functional Theory 9

practical, for the Omega intracule is written as a ten-dimensional integral
over the second-order density matrix. However, as we will see in a moment,
things become much more tractable after we introduce a Gaussian basis set.

The Omega intracule is the grandfather of a family of lower-dimensional
intracules and each of its descendants is obtained by appropriate integration.
This is illustrated diagrammatically below where we also introduce s =
ri2p12 and x = ry» - pr2. Both of these variables have dimensions of
angular momentum and units of Planck’s constant.

If the MOs are expanded in a basis set {¢;}, the reduced second-order
density matrix is

p2(r1, T2, 1], 1)) = Z Cabed $a(C1)Pp(02)Pc (X)) pa(ry),  (1.13)

abcd

where the I'yq are two-particle density matrix (2PDM) elements. Thus,
from Eq. (1.12), the Omega intracule is

Qu, v, ) =Y Tapea labed]g, (1.14)
abcd

where the Omega integrals are

1
fabedle = & / $a®PH (T + @ + W (T + Qda(r +u)

x €V'48(0,,y — @) drdqd 2 dSUy. (1.15)

Cl%(l”hplal”zap‘z) )

|

Fig. 1.4. The intracule family tree.
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If the ¢; are s-type Gaussians centred at A, B, C and D, with exponents
a, B, y and §, it can be shown [22] that

[ssss]lg = K exp(—R) % /n io(v/Xx + ycost)dt, (1.16)
0

where
_ 7T2M2U2S1H6l) )\2 ) 2 9 i 117
= G 5 i P vt —ivcosw) - (L17)
P g cp (1.18)
B+vy
x = (Pu)? + (iQv)* + 2(Pu)(iQv) cos x cos & o
vy = 2(Pu)(iQv) sin x sin w )
ol 1 1 o
at+d Pty at+s Bty a+s Bty
(1.20)
28
P=- * (A~ D)+ B -0
Pty (1.21)
A 8D B+ yC :
Q:oe + _/3 +vy P.Q = PO cos 1
o+ B+vy

and io(z) = z~! sinh z. The integral in Eq. (1.16) can be evaluated by qua-

drature or series expansion [22]. However, if the Gaussian centres are colli-
near, it can be found in closed form and, if they are concentric, it reduces to

[ssss]g = K. (1.22)

Integrals overthe p, d, . . . basis functions may be obtained by systematic
Boys differentiation [23] of the [ssss]gq integral. However, it is more efficient
to use recursion and a 18-term recurrence relation has been developed for
this purpose [24].

Example 1.3: The Intracule Family for a He-like Ion

As in the previous examples, the HF wavefunction of a He-like ion in the basis
of a single Gaussian is

W(ri, 1) = Qa/m)*? expl—a(r] +r3)]
and one finds from Eq. (1.22) that the Omega intracule is
Qu, v, w) = (l/yr)u2 exp(—auz) v? exp(—v2/4a) sin w.

Continued
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P(u) and M(v), implying that # and v are statistically independent. However,
such systems are the exception, not the rule.

The lower intracules can be constructed easily from 2 (u, v, w), as shown
below:

Intracule Construction Explicit form

W(u, v) I @@, v, wydo @/m)u? exp(—au?)v? exp(—v? /4a)
A(s, @) Je° @, s/u, wyu="du (1/m)s2Ko(s) sin

P(u) fooo W(u, v)dv (a/m)3247u% exp(—au?)
M(v) J5° W, vydu (4ma) 324702 exp(—v? /4a)
A(s) I Als, w)do 2/m)s2Ko(s)

D(x) f;o A(s, w)(ssinw) Lds (1/m)xK1(x)

Y(w) Jo° Als, w)ds (1/2)sinw

Here K¢ and K; are modified Bessel functions of the second kind [25].

Each of the three one-dimensional intracules, A(s), D(x) and Y(w), whose
graphs are shown below, is independent of the exponent «, that is, they
are invariant with respect to dilation. As such, they apply not only to the
helium atom but, equally, to any helium-like ion. This will be important in
Section 1.3.

The attentive reader may wonder why, if # and v are statistically independent
in this system, the angle intracule Y'(w) is not constant. After all, if the relative
positions and momenta of the two electrons are independent, one might have
expected the angle between ri; and pi; to be equally likely to take any value
between 0 and 7. The fact that this is not the case is a purely geometrical
(“Jacobian”) effect: as ry» and pi; range independently over their respective
domains, dynamical angles 61> close to 7/2 arise far more often than angles
close to 0 or . The fact that there are many more points on the Earth’s surface
with latitudes near 0° (equatorial regions) than with latitudes near 90° (polar
regions) arises from the same geometrical effect.

A(s) V()

0.5
0.4
0.3
0.2
0.1

Fig. 1.5. Action, dot and angle intracules for a He-like ion.

In this simple system, we find that €2 («, v, ®) is proportional to the product of
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Example 1.4: The Wigner Intracule for the Be Atom
The STO-3G basis for the Be atom consists of two three-fold contracted
Gaussian-type functions. Total contraction coefficient arrays for the 1s and
25 molecular orbitals (C' and C2, respectively) are calculated by mul-
tiplying the normalized contraction coefficients by the appropriate MO
coefficients.

Gaussian Contraction 1s MO 2s MO 1s array 2s array

Index  exponent coefficient  coefficient coefficient c! C?

1 30.167871 1.4158460 1.4057909 —0.4160898
5.495115 1.3693446 0.9928982 —0.2938807  1.3596198 —0.4024239
1.487193 0.4267649 0.4237341 —0.1254180
1.3148331 —0.08747241 —0.0022866 —0.0905572

0.3055389 0.11701478  0.0261377  1.0351471  0.0030585  0.1211275

A U AW

0.09937070  0.088312776 0.0023083  0.0914167

The HF two-particle density matrix elements can be constructed using
Tubed = CLCLCICY +4CiClC2C? 4 c2cicicl —2clcicic),

where C’; denotes the ath element of the C array. The Wigner intracule is
then assembled through

6 6

6
W, v) =) Y > Tasea labedlw

a=1b=1 c=1d=1

and it is illustrated in the following contour plot:

This intracule possesses three maxima. The first, near (u, v) =~ (0.7, 3),
describes electrons that are close together and moving fast; it arises from
observing the two 1s electrons. The second, near (u, v) & (2.5, 0.8), describes
electrons that are well-separated and moving relatively slowly; it arises from
observing the two 2s electrons. The third, near (u, v) ~ (2,2), describes
electrons that are moderately far apart and moving at a moderate pace; it arises
from observing a 1s electron and a 2s electron. The third maximum is the
largest because there are 4C>, = 6 ways to choose two of the electrons, and
four of these choices involve a 1s and a 2s electron.

Continued
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T\
4
3
\'
2
1
0
0 1 2 3 4 5
u
Fig. 1.6. Wigner intracule for the beryllium atom.

1.3. Electron Correlation Models

The Omega intracule for an atomic or molecular system provides an impres-
sively detailed picture of the dynamical behaviour of its electrons. We know,
for any given values of u, v and w, the (quasi-)probability of finding two of
its electrons at a distance u, moving with a relative speed v at a dynamical
angle w. This now allows us to return to our original question: can we
exploit this information to predict electron correlation energies?

The foundation of DFT methods is the Hohenberg—Kohn theorem
[6], which assures us that the correlation energy is a functional of the
one-electron density p(r). We now make an analogous conjecture [21]:
that the correlation energy is a functional of the Omega intracule, i.e.

E.=F[Qu,v, w)]. (1.23)

To prove this remains an interesting open challenge and there are surely
many possible lines of attack. Our earliest attempts sought to show that
the Hamiltonian can be reconstructed (apart from unimportant translations
and rotations) from the intracule. If this can be shown, it proves the con-
jecture, for the correlation energy is certainly a functional of the Hamil-
tonian. However, even in the absence of a proof, we feel that the correlation-
relevant information in the Omega intracule is much more accessible than

that in the one-electron density and, therefore, it should be easier to recover
SOLVING THE SCHR[10%00DINGER EQUATION - Has Everything Been Tried?
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14 D.L. Crittenden and PM.W. Gill

E. from Q(u, v, w) than from p(r). We call this idea Intracule Functional
Theory (IFT).

Although one can imagine many ways to extract £, from Q (u, v, o),
one of the simplest is to contract the intracule with an appropriate kernel,
writing

o0 OO p,TT
E. = / / / Qu, v, w)Gu, v, w)dwdvdu. (1.24)
0 JO JO

In such a formulation, the correlation kernel G (u, v, ) acts as a weighting
function, assigning high priority to regions of intracule space where the
electrons are strongly correlated, and low priority to regions where corre-
lation is weak. The thought experiment summarized in the diagram below
helps to guide our thinking about this. In situations where both u# and v
are small, the electrons are close together and moving relatively slowly
and so we anticipate a large correlation contribution. Conversely, corre-
lation effects should be small when the electrons are far apart and moving
quickly. In intermediate cases, where one of # and v is large and the other is
small, we expect moderate correlation effects. This picture fits nicely with
the conclusion in the preceding section that correlation in the He-like ions
depends in some way on the product r13 p17.

If the wavefunction is expanded in a Gaussian basis, then combining
Egs. (1.14) and (1.24) yields

E.= E LCabed [abed]c (1.25)
abcd
< -
I’/ \\\ I’/ \\\
large u | ! ! !
\\ // \\ /I
correlation weak correlation
<= (—/,‘\
small u ( ) { /
\ / \\ ’
SO >
strong correlation correlation
small v large v

Fig. 1.7. Four interaction scenarios for two electrons.
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and it can be shown that the correlation integrals are given by
1

bedlg =
bedle = S v 0P+
x/exp(—)»zuz—,uztﬂ—inu-V—P-u—iQ-V—R)
X G(u, v, w)duadv. (1.26)
The four-parameter generalized Gaussian kernel [26]
Gs(u, v, w) = cexp(—)u(z)u2 — M%Uz — InoUuv cos w) (1.27)

has the attractive property that it leads to correlation integrals that can be
found in closed form. For example,

3

@t 832 (B+ ) PGl + h2)32
|:mzP2 + hPQcos x — 1202
X ex —

[ssss]lg =

R|. (128
42m? + h2 ] (1.28)

where 12 = A2 4+ A3, m? = u? + u% and & = n + no. Except where
otherwise indicated, the numerical results below use this kernel with
two-particle density matrices I'4pcqg from (spin-unrestricted) UHF/6-311G
wavefunctions.

Optimization of the parameters (c, 19, A9 and pp) in the G4 kernel
against the exact correlation energies [27] of the ground states of the first
18 atoms [28, 29] and the 56 small molecules in Pople’s G| data set [30]
revealed that, whereas no plays a critical role in capturing the correlation
energies in these systems, /4o 1S unimportant and can be set to zero without
affecting the results significantly. Accordingly, we optimized and explored
the two simpler kernels

Go(u, v, w) = cexp(—inouvcosw) (c =0.07695, no = 0.8474)

(1.29)
G3(u, v, w) = cexp(—rdu® — inouvcosw) (c = 0.2113, 79 = 1.0374,
A0 = 0.5578) (1.30)

The correlation energies predicted by the G, and G3 kernels (denoted
E? and Eg , respectively) are plotted below against the exact correlation
energies of the 18 atoms and 56 molecules described above.

The first thing that one learns from these scatterplots is that these simple
kernels are surprisingly successful at capturing the principal correlation

effects in these 74 systems. It is very encouraging to find that the G
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Fig. 1.8. Comparison of correlation energies from the G, kernel (left) and G3
kernel (right) with exact correlation energies.

kernel — which is simply an exponential in x = ry, - pj2 — performs so
well. On closer inspection, we see that the G kernel tends to overestimate
E. in o-bonded molecules such as CHy and SioHg and to underestimate
in -bonded molecules such as No and HCCH. The overestimation in the
o-bonded systems is substantially reduced by the G3 kernel, whose extra
exp(—k%uz) factor decreases the predicted correlation energies in spatially
extended systems. However, even the G3 kernel still underestimates E. in
compact, 7-bonded molecules.

Why are the unsaturated molecules problematic? It appears that it is
because a significant fraction of E. in these systems is “static,” rather than
“dynamic,” in nature. Though precise definitions are elusive, static cor-
relation is associated with the presence of low-lying excited states and
the resulting inadequacy of a single determinant wavefunction, whereas
dynamic correlation results from the intricate dance of the electrons as they
strive to avoid close encounters with one another. Evidently, our G, and
G3 correlation models are effective at modelling dynamical correlation but
struggle to capture the static component.

1.4. Dynamic and Static Correlation

The total correlation energy, which is defined [31] as the difference

Ec = Eexact - EUHF/CBS (1-31)

between the exact and UHF energies at the complete basis set (CBS) limit,
can be partitioned into a static part

Estat = ECASSCF(valy/cBS — EUHF/CBS (1.32)
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and a dynamic part

Egyn = Eexact — ECASSCF(val)/CBS (1.33)

where CASSCF(val) refers to the Complete Active Space SCF method [32]
within a full-valence active space. Although this partition is just one of many
that have been suggested, it has the twin virtues of conceptual simplicity
and computational tractability, at least for smallish systems.

One of the simplest and most instructive systems in which both E,; and
Egyn are significant is partially dissociated H, and the graph below shows
how E. (solid black), Eqyn (dashed black [33]), and ES (solid grey, from
Eq. (1.30)) evolve as the bond length R varies from 0.2 to 3.8 A. The cusp in
the Eqyn curve arises from the well-known RHF — UHF instability around
1.2 Angstrom. It is clear that the Eg model reproduces the behaviour of E,
poorly, but that it bears some similarity to the Eqgy, curve. This confirms our
earlier observation that our simple IFT models capture primarily dynamic,
rather than static, correlation energy.

If we re-fit the G3 kernel to the Egyn curve, we obtain the new param-
eters ¢ = 0.090, ng = 0.85 and Ao = 0.525 and the resulting Egyn energies
(dashed grey) match Egy, with near-mEy, accuracy. Continuing in this vein,
we can abandon the HF/6-311G two-particle density matrix in favour of
the CASSCF(val)/6-311G one and, by re-fitting the G3 kernel again, we
obtain the parameters ¢ = 0.102, n9 = 1.02, A9 = 0.43. The resulting
energies match Egy, with sub-mEy, accuracy at all bond lengths. This sug-
gests that combining an IFT-based treatment of dynamic correlation with a
full-valence multireference method will produce a method that is capable
of estimating E. very accurately.

Ae (mE;)

R (A)

Fig. 1.9. Correlation energy in the Hy molecule as a function of bond length.

SOLVING THE SCHR[10%00DINGER EQUATION - Has Everything Been Tried?
© Imperial College Press
http://www.worldscibooks.com/chemistry/p780.html



18 D.L. Crittenden and PM.W. Gill

Of course, multireference methods are exponentially expensive, but a
hierarchy of approximations can be constructed to reduce the computational
cost of this step [34]. Furthermore, the Density Matrix Renormalization
Group method (see Chapter 3) provides an alternate route to obtaining
static correlation energies and, in some cases, it dramatically outperforms
conventional wavefunction methods.

Although the absolute error in the IFT dynamic correlation energy is
small everywhere, its relative error grows exponentially with R. This is
because, whereas the correlation energy from any kernel of the form (1.30)
decays exponentially with R, the true E. decays as R~%. Accordingly, we
now turn our attention to London dispersion.

1.5. Dispersion Energies

London Model of Dispersion Energy
The Hamiltonian for two Coulomb-coupled oscillators with force constant
k = 4a?, separated by R, is

. V2 4+ V2 1 1 1 1
H=——"1"202F+r)+—— - + .
2 )R TR+ 1] R=ra  R+ri—1)

If R > 1, the sum of the Coulomb interactions is dominated by the dipole-
dipole term and we can write

2 2
V4 V3

H = — +2a2(r%+r§)+ xmz—i—y;y; —2Z122‘
If we transform to extracule and intracule coordinates, i.e.
S:r1+r2 :rl—rz
V2 V2

then H' becomes fully separable and its lowest eigenvalue is

E2\/2+1+2\/2 1+\/2 1+\/2+1
= o — o — — oF — —— o —=-
4R3 4R3 2R3 2R3

Because R is large, we can expand E as a power series in 1/R to obtain

E = 6a— T

3203 RO
and subtracting the energy of the uncoupled oscillators yields the celebrated
London dispersion energy

£ 3
~__ -
. .
3203 R
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Intracule Functional Theory 19

At large bond lengths (R > 5 A), the UHF energy of Hy rapidly
approaches the energy of two non-interacting H atoms and fails to capture
the long-range dynamic correlation that is responsible for the weak van der
Waals attraction. This long-range correlation energy can be rationalized by
considering a multipole expansion of the Coulomb operator, as pioneered
by London in the early 1930s [35,36].

Can we use IFT to model dispersion? To answer this, we begin by consid-
ering the simple system — two Coulomb-coupled harmonic oscillators —
that London used to model dispersion effects. He showed that its dispersion
energy is asymptotically E. ~ —3/(32a> R%) and his derivation is outlined
in the box above. Therefore, we must devise kernels that recover this asymp-
totic dispersion energy from this system’s intracules. Because we favour
kernels that depend on x = ry> - p12, we confine our attention to the D(x)
intracule and seek kernels that satisfy

E, ~ / ” D(x)G (x)dx. (1.34)

—0

or equivalently, by Parseval’s Theorem,

E, ~ f - D) G (k)dk. (1.35)

where the hats indicate Fourier transforms.

Example 1.6: The Intracule Family for the H - - - H Complex
The UHF wavefunction for very stretched H- - - H in a single-Gaussian basis is

W(ry.ry) = 2o/m)3* expl—a(r; — R/2]* + 1y + R/2[%)]
and one finds from Eq. (1.16) that the Omega intracule is
Qu, v, w) = (1/m)u’ exp[—a@® + R*)1ioRaRu)v? exp(—v? /4a) sin o.

By integrating appropriately, we can find some of the lower intracules in closed
form, viz.

W, v) = /m)u® expl—a?® + R?)]io(2aRu)v? exp(—v? /4a)
P(u) = (a/7)>*4mu® expl—a(u® + R*)lioQaRu)
M) = (4ra) "> ?47v% exp(—v? /4a)
Y(w) = (1/2) sinw

Continued
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20 D.L. Crittenden and PM.W. Gill

and the others in their Fourier representation, viz.

A . stsinw [ k% jo(ks) aR2k? gk
Go=—") Grer®1Tre

252 [ k2 jo(ks) aR%k?
A(s) = — — - ) dk
== /O (1 +42)32 P ( 1+ k2>

D() 1 /°° cos kx aR%k? gk
= — ——exp| — ,
Ve L a2 P\ T e

1

where jo(z) = z~ sinz. We note that the Omega intracule, and therefore all
the lower intracules, are non-negative everywhere. As R — 0, they reduce to
the intracules of the He-like ions (see Example 1.3).

Fortunately, all of the intracules (or their Fourier transforms) of
London’s model can be found in closed form and they are shown in
Example 1.5. By combining Eq. (1.35) with the expression for D(x), we
find that we require

Gk T2k2 3
o S Ve~ 1.36
/_oo (1 + k2y32 XP ( 1+ K2 3276 (1.36)

where T = /aR is large. Itis not difficult to show that Eq. (1.36) is satisfied
by any kernel of the form

A 3.
G k) ~ = IkI"g (k). (1.37)

where g(k) is an even function with g(0) = 1 and g(4 c0) = 0. An obvious
example of this is

~ 3 5 45 =6 .\ —6
G(k)=—6—4|k| eXP(—§|k|):G(X)=§[(X+lC) +@x—i)~°]
(1.38)

By construction, a dispersion kernel G (x) such as the one in Eq. (1.38)
is guaranteed (for any ¢) to yield the correct asymptotic dispersion energy
when applied to London’s system of harmonic oscillators. But does it
provide us with a useful dispersion model when applied to chemical
systems? To begin to answer this question, one should apply it to pairs
of small atoms whose Cg dispersion coefficients (i.e. coefficients of R9)
are known accurately from experiment or high-level theory. We have done
this [37], using the UHF/6-311G density matrices of the H, He, Li and Be
atoms, and the results are shown in Table 1.1 below. Given that the exact
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Table 1.1. Cg dispersion coefficients (in atomic units) for
pairs of small atoms.

Exact values From Eq. (1.38)

H He Li Be H He Li Be

H 6.5 12.2
He 2.8 1.5 52 33
Li 665 225 1395 742 172 1534

Be 348 132 478 213 76.6 23.0 847 657

Cg coefficients range over three orders of magnitude, the discovery that the
IFT estimates are usually accurate to within a factor of two is a promising
start. Once again, this demonstrates the fundamental suitability of IFT for
capturing intrinsically two-electron correlation effects.

1.6. Future Prospects

In the teething stages of the development of DFT, much progress was made
through a primarily empirical approach. Indeed, between Slater’s intro-
duction of X« theory [38] in 1951 and the publication of the Hohenberg—
Kohn theorem [6] 13 years later, it was not even realized that DFT was a
theoretically justifiable theory: rather, it was embraced simply because it
was a model that worked, surprisingly often.

In some ways, contemporary IFT has evolved similarly, and now stands
at a similar point. It is clearly capable of yielding chemically useful quan-
titative predictions but, for the moment, it lacks the solid foundation of a
Hohenberg—Kohn analogue. This deficiency may deter the purist, but the
pragmatist finds it difficult to resist the allure of a model that seeks to
rationalize the correlation phenomenon through a simple, quasi-classical
two-electron picture.

So, what are the likely directions for the development of IFT in the near
future?

As functional manufacture has become an industry within DFT, we
foresee the construction of new and improved kernels as one of the most
obvious threads of future IFT research. To ensure that this progress is
rational, we expect that properties of the “exact kernel” will also be derived
and that these will be used as guides.

However, we also foresee the real possibility that the kernel ansatz (1.24)

may be obsolesced by the discovery of alternative methods for extracting
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22 D.L. Crittenden and PM.W. Gill

E. from the Omega intracule. Perhaps such methods will be found as by-
products of the construction of a rigorous proof of the central IFT con-
jecture (1.23).

Of course, itis also possible that the Omega intracule family tree does not
contain the “ultimate” intracule and that, in the future, it will be replaced
by a different, and quantum mechanically rigorous, family. We are opti-
mistic about this because it has been shown recently that the Dot intracule
D(x) is actually a first-order (in /) approximation to the true density of the
x variable. Furthermore, the exact density X (x) has also been discovered
[39—41] and it is no more difficult to extract from the wavefunction than
is D(x).

Finally, we conclude with a statement that is surpassingly obvious and
yet often overlooked. If we are to refine and enrich our understanding of the
electron correlation phenomenon, we must continue to unearth and analyze
simple systems where the phenomenon is most clearly exposed and most
readily comprehended. The helium atom, the hydrogen molecule and the
uniform electron gas have all proven to be rich veins in the past but our
quest for deeper understanding must be an ongoing one and there is no
doubt whatever that there is much to be learned from other prototypical
systems [42].
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