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We review our recent progress in the determination of the high-density correlation energy E. in two-elec-
tron systems. Several two-electron systems are considered, such as the well known helium-like ions

(helium), and the Hooke’s law atom (hookium). We also present results regarding two electrons on the
surface of a sphere (spherium), and two electrons trapped in a spherical box (ballium). We also show that,
in the large-dimension limit, the high-density correlation energy of two opposite-spin electrons interact-
ing via a Coulomb potential is given by E. ~ —1/(8D?) for any radial external potential V(r), where D is
the dimensionality of the space. This result explains the similarity of E. in the previous two-electron sys-

tems for D = 3.

Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction

The Hartree-Fock (HF) approximation ignores the correlation
between electrons, but gives roughly 99% of the total electronic
energy [1]. Moreover, it is often accurate for the prediction of
molecular structure [2], computationally cheap and can be applied
to large systems, especially within local (linear-scaling) strategies
[3-10]. To reduce the computational cost still further, various
numerical techniques have been developed including, for example,
density fitting (or resolution of the identity) [11-16], pseudospec-
tral and Cholesky decomposition [17-23], dual basis methods [24-
29], and both attenuation [30,31] and resolution [32-35] of the
Coulomb operator.

Unfortunately, the part of the energy which the HF approxima-
tion ignores can have important chemical effects and this is partic-
ularly true when bonds are formed and/or broken. Consequently,
realistic model chemistries require a satisfactory treatment of elec-
tronic correlation.

The concept of electron correlation was introduced by Wigner
[36] and defined as

E.=E — Ey (1)

by Léwdin [37], where E is the exact non-relativistic energy. Feyn-
man referred to E. as the ‘stupidity energy’ [38] because of the dif-
ficulties associated with its characterization in large systems.
Even though it is a formidable challenge to determine the cor-
relation energy accurately, even in simple systems, recent heroic
calculations on the helium atom [39-42] have demonstrated how
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near-exact results can be found. Indeed, this elementary chemical
system has been compared to the number 7 by Schwartz [43]: ‘For
thousands of years mathematicians have enjoyed competing with one
other to compute ever more digits of the number . Among modern
physicists, a close analogy is computation of the ground state energy
of the helium atom, begun 75 years ago by E.A. Hylleraas.’

Although E. in the helium atom is now known very accurately,
certain correlation effects remain incompletely understood and, for
example, even the Coulomb hole [44] itself is more subtle than one
might imagine. The primary effect of correlation is to decrease the
likelihood of finding the two electrons close together and increase
the probability of their being far apart. However, accurate calcula-
tions have revealed the existence of a secondary Coulomb hole,
implying that correlation also brings distant electrons closer
together [45]. The same observation has been made in the H, mol-
ecule by Per et al. [46] and it appears that secondary (or long-
range) Coulomb holes may be ubiquitous in two-electron systems
[47].

In order to get benchmark results for the development of intra-
cule functional theory (IFT) [48-54], we have recently initiated an
exhaustive study of two-electron systems [55]. In the present Fron-
tiers Article, we review our recent progress in the determination of
the correlation energy in various high-density two-electron sys-
tems: the helium-like ions (Section 2.1), two electrons on the sur-
face of a sphere (Section 2.2), the Hooke’s law atom (Section 2.3),
and two electrons trapped in a spherical box (Section 2.4).

It is reasonable to ask whether an understanding of the high-
density regime is relevant to normal chemical systems but it
turns out that most of the high-density behaviour of electrons
is surprisingly similar to that at typical atomic and molecular
electron densities. Much can be learned about the languid waltz
of a pair of electrons in a covalent bond from their frenetic jig
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in the high-density limit. Moreover, it has led to an understand-
ing of key systems, such as the uniform electron gas [56,57],
which form the cornerstone of the popular local density approx-
imation in solid-state physics [58].

We also show (Section 3) that, in the large-dimension limit, the
high-density correlation energy of two electrons is given by a sim-
ple universal rule which is independent of the external confining
potential. Just as one learns about interacting systems by studying
non-interacting ones and then introducing the interaction pertur-
batively, one can understand our three-dimensional world by
studying high-dimensional analogues and introducing dimen-
sion-reduction perturbatively.

In this study, we confine our attention to the 'S ground states of
two-electron systems. This allows us to ignore the spin coordinates
and focus on the spatial part of the wave function. Atomic units are
used throughout.

2. High-density limit

For two electrons confined in a spherically-symmetric external
potential V(r), the Hamiltonian is
~ Vi V3 1
H_7777+V(r1)+V(rz)+§, (2)
where the first two terms represent the kinetic energy of the elec-
trons and 1/ry; = 1/|ry — 3| is the Coulomb operator (Figure 1).
After a suitable scaling of the coordinates and energy [59,60], the
Hamiltonian can be recast as
~ VIV 11
H——7—7+V(T1)+V(r2)+2a, (3)
where Z measures the confinement strength. Eq. (3) is well poised
for a perturbation treatment in which the zeroth- and first-order
Hamiltonians are

HO — ﬁgo) + fl(zo)’ HD — 1%27 (4)
and the one-electron Hamiltonian is given by

hO = V7 V). 5)
The zeroth-order wave function satisfies the eigenequation
HOWo(r1,ry) = EOWo(r1,12), (6)
and the zeroth- and first-order energies are

E© = (ol HO| o), (7)
EY = (ol H"| o). (8)

Following Hylleraas [61], we can use perturbation theory to ex-
pand both the exact [61] and Hartree-Fock (HF) [62] energies as
series in 1/Z, yielding

rn

®c—

L]
e—

Figure 1. The basic coordinates of a two-electron system.

E(Z,D,V) = E9(D,V)Z* + EV(D,V)Z + E? (D, V)
+E¥DV)Z7 -, 9)

Eur(Z.D,V) = EQU(D, V)Z* + E4(D, V)Z + EG}(D, V)
+ERDVIZT 4, (10)

where D is the dimensionality of the space. It is straightforward to
show that

E®(D,v) = EQ(D,V), (11)
EV(D,V) = E(D.V) (12)
and therefore, in the high-density (large-Z) limit, we find
E®(D,V) = lim Ec(Z.D, V)

= %E?O[E(Z,D, V) — Ege(Z,D, V)]

=E?(D,V) - E(D,V). (13)

2.1. Helium

As a first example, we consider the D-dimensional helium-like
ions (He) [61,63] where the electrons move in the Coulomb field
of a nucleus with charge Z, i.e.,

Z

Vi) =-=. (14)

From the foregoing section, we have

. 1[/d D-1d]| 1
“ﬁ‘z{drz* : dr} “r (15)
and the zeroth-order wave function is
4P 2(r1+r2)}
Yo(ri,1m2) = exp |— . 16
o(r1,12) D _1)°T D) D{ D1 (16)
The E© and EV values are given by
4
E9D,He)=———, 17
(D.He) == o= (a7)
r(o+Hrea
E(l)(D7 He) = 4 ( Jr2) ( 2 ) (18)

(D-1?% I'(D+1)rg) "’

where I' is the Gamma function [64].

To compute the second-order energy E'“/, we use the Hylleraas
method [61], adopting the length and energy scaling of Herrick and
Stillinger [65] and employing the conventional Hylleraas basis
functions [61]

(2)

Vo = Voim = s"tym exp(—s/Z), (19)
where w = (n,l,m) are non-negative integers and
S=ri+r, t=r—-r, uUu=ry, (20)

are the conventional Hylleraas coordinates. The second-order en-
ergy, which minimizes the Hylleraas functional, is then given by

E?(D,He) = — %bTA’lb, (21)
where

Aoy, = Toym, — ?sz —2E9S,, ., (22)
b, = 2EVSg,, — D ; ! Uso, (23)

In (22)and (23), T, L, S and U are the kinetic, electron-nucleus, over-
lap and repulsion matrices, respectively, and are defined by
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1 s
Tww)z = i /[aslpw] asl//wz + afl//w] aflpwz + auwwl 8“‘#(02

+ S(uz - tz)(aswwl Ouwwz + 8ul//a)1 85'//(»2)

+ t(sz - tz)(af‘pw, Bulpwz + au‘//m] 8rl//mz )} dT (24)

and

1 1
Lunwz - / l//cul <E + E) ‘ﬂmz d‘E7 (25)
Sanu)z :/lﬁwl l//wz d‘cv (26)

1
Unson = [ o - @)
with the volume element and domain of integration [65]
dt = u(s® — t2) #°7 dsdt du, (28)
S = - - 1), (29)

/dr:/omds/;du/oudt. (30)

All the matrix elements can be obtained in closed form using
the general formula

4 ' nelymy—s g252
F(n+l+m+2D—3)_/5tu e g7 dsdtdu
m+1D-1 l+m+D-1D-1
_B< R )B( 3 ) ), (31)
where
_I'mrn)
B(m,n) = Fam (32)

is the beta function [64]. The E, value for D = 3 has been studied in
great detail [66,67], but the only other helium whose E, value has
been reported is 5-helium [65] and this value was obtained by
exploiting interdimensional degeneracies [68]. Numerical values
of E? for 2 < D < 7 are given in Table 1.

E3) values can be found by generalizing the Byers Brown-Hir-
schfelder equations [69] to obtain

where o = r‘;‘;’;((’;’r’) and F is the Gauss hypergeometric function [64].

ESF(D, He) has been reported for D = 3 by Linderberg [62] and
Eq. (33) yields expressions such as

9 3 13

E?(3,He) = 3507135 (36)
903 . 3 35213

(2) _ -

Eie (5. He) = — 1057 "2 ~ 124416 (37)
5643101 . 3 640149405049

(2) _ -

Eie(7.He) = == 54500 ™2~ 80621568000 ° (38)

Numerical values for 2 < D < 7 are shown in Table 1.
2.2. Spherium

Spherium (Sp) consists of two electrons, interacting via a Cou-
lomb potential but constrained to remain on the surface of a sphere
of radius R = 1/Z [70-73]. This model was introduced by Berry and
co-workers [74-77] who used it to understand both weakly and
strongly correlated systems, such as the ground and excited states
of the helium atom, and also to suggest an alternating version of
Hund’s rule [78]. Seidl studied this system in the context of density
functional theory [79] to test the ISI (interaction-strength interpo-
lation) model [80]. More recently, we have performed a compre-
hensive study of the spherium ground state, using electronic
structure methods ranging from HF theory to explicitly correlated
treatments [70].

In this section, we consider D-spherium, the generalization in
which the two electrons are trapped on a D-sphere of radius R.
We adopt the convention that a D-sphere is the surface of a
(D + 1)-dimensional ball. (Thus, for example, the Berry system is
2-spherium.)

Quantum mechanical models for which it is possible to solve
exactly for a finite portion of the energy spectrum are said to be
quasi-exactly solvable [81] and we have recently discovered that
D-spherium is a member of this small but distinguished family
[71,73]. We have found that the Schrodinger equation for D-sphe-
rium can be solved exactly for a countably infinite set of R values
and that the resulting wave functions are polynomials in the inter-

. o W(r)2 electronic distance ry; = |1y — 12].

ER = */ Srp = dr (33) The zeroth-order Hamiltonian of D-spherium is

o T lPU (rv T)
d . - & d
W(r) = 2/ J(x) — EDPo(x, x)x°~" dx, (34) Ho=-—~-(D-1)cot0—, (39)
0 do dao
o0
Jr) = MF{271797“2}XD*1 dx, (35) where 0 is the interelectronic angle and the associated eigenfunc-
Jo max(rx) [ 2 7272 tions and eigenvalues are, respectively,

Table 1

Second-order energies and limiting correlation energies in two-electron systems.
System D=2 D=3 D=4 D=5 D=6 D=7
Second-order exact energies, —E® (D, V), from (9)
Helium 0.632740 0.157666 0.070044 0.039395 0.025208 0.017501
Spherium 0.227411 0.047637 0.019181 0.010139 0.006220 0.004189
Hookium 0.345655 0.077891 0.032763 0.017821 0.011153 0.007622
Ballium 0.057959 0.014442 0.006194 0.003333 0.002037 0.001352
Second-order HF energies, —E(HZF) (D, V), from (10)
Helium 0.412607 0.111003 0.051111 0.029338 0.019020 0.013325
Spherium 0 0 0 0 0 0
Hookium 0.106014 0.028188 0.012904 0.007382 0.004776 0.003342
Ballium 0.324120 0.069618 0.028107 0.014770 0.008977 0.005983
Limiting correlation energies —E (D, V), from (13)
Helium 0.220133 0.046663 0.018933 0.010057 0.006188 0.004176
Spherium 0.227411 0.047637 0.019181 0.010139 0.006220 0.004189
Hookium 0.239641 0.049703 0.019860 0.010439 0.006376 0.004280
Ballium 0.266161 0.055176 0.021913 0.011437 0.006940 0.004631




N

where C? is a Gegenbauer polynomial [64] and

. \/2D3(2n +D-1I(5Y)’I(n+1)

nl'(n+D-1) (42)
Using the partial-wave expansion of r;}, one finds
b b1 (m+1)p,

) =R o2 43
< 0 12 > (Tl + %)DA ( )
where (a), is the Pochhammer symbol [64]

_TI'(a+n)
(@), = T@ (44)
From this, one can show that
®/(D,sp) =0, (45)
D - 1)I (25
VD, sp) = TP DIC5) (46)
ro-)r@)
and the second-order energy is given by
- l1UO|7‘121 |¥n)
2(D,Sp) = Z P—
n=1
o) re)? & (n+1),, 1 1
_TD)IEE) 5~ (2 Do ntaoi) @)
T r®° = m+y)p, 0 n+b-

which reduces to a generalized hypergeometric function. It is also
easy to show [70] that E2)(D,Sp) = 0.

The E® (and thus E.) value for 2-spherium was first reported by
Seidl [79] but elementary expressions for any D can be obtained
from Eq. (47) and these are reported for 2 < D < 7 in Table 2.

2.3. Hookium

Hookium (Ho) consists of two electrons that repel Coulombical-
ly but are bound to the origin by the harmonic potential

V(r)==r12 (48)

This system was introduced 50 years ago by Kestner and Sinanoglu
[82] and solved analytically by Santos [83] and Kais et al. [84] for a
particular value of the harmonic force constant. Later, Taut showed
that it is quasi-exactly solvable in that its Schrédinger equation can
be solved for a countably infinite set of force constants [85]. An
interesting paper by Katriel et al. discusses similarities and differ-
ences between the hookium and helium atoms [86].
The one-electron Hamiltonian in D-hookium is

2
. 1|d° D-1d|
ho=—5|-5+— | +5 49
T 20g2 " dr| T2 (49)
Table 2
E®, EM, E? and E{) for D-spherium.
D ) E E® E2
2 0 1 4In2 -3 0
2o 5 -8 0
4 0 % 6411—12 222 0
5 0 Tose §‘s‘ € 0
6 0 b HoEIn2 — 528% 0
7 0 8192 4924 588637011968 0

o
Al
S|
af
A

10395 ~ 1248047088751%
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and the zeroth-order wave functions are

Yy(r1,12) Hlﬂak X1.0)¥b, (X2), (30)
where x; is the kth Cartesian coordinate of electron i, and a, and by
are non-negative integers. The orbitals are the one-dimensional
harmonic oscillator wave functions

= V/2%!m/2H,(x) exp(—x%/2), (51)

where H, is the ath Hermite polynomial [64]. The energy differ-
ences between the eigenstates are given by

D

& — & = Z(ak +by) = 2n, (52)

k=1

where 2n is the excitation level, i.e., the number of nodes in ¥,. It is
not difficult to show that

E9(D,Ho) = D, (33)
1 F(D—l)
EYV(D,Ho) = ATH (54)

Both E? and E{) can be found by direct summation [87], as in

Eq. (47). The sum includes all single and double excitations for

@ but only singles for EZ). The integral (¥o|r;}|¥,) vanishes un-
less all of the a, + by are even and, in that case, it is given by

1 I'&A)rin+d
-1 _ 2 2
<W0|r12 "Pl> - \/2_7T F(n +2)
D iakibk ay + by + ]>
X r . 55
g \ nak!bk! < 2 ( )
In this way, one eventually finds
D-1\2 o (1)2
E(Z)(D7 HO) _ _F( 2 ) Z ([2))n }_7 (56)
4r(®)’ = (), nin
D-1\2 s (1\2 n
EI(_[ZF)(D7 HO) _ _F( 2 ) (Z)n (1/4) (57)

2r®? = 6, nin

which reduce to generalized hypergeometric functions.

E®(3,Ho) has been derived by several groups [88,89,87], and
the energies for other D have been reported in Ref. [59].
Closed-form expressions for E? and E\), for 2 < D < 7, are listed
in Table 3.

N

2.4. Ballium

Ballium (Ba) was first studied by Alavi and co-workers [90-92]
and consists of two electrons, repelling Coulombically, but con-
fined within a ball of radius R=1/Z. It has been used for the
assessment of density-functional approximations [91,93,94] and
the study of Wigner molecules [36] at low densities [95,96,92].
We recently obtained near-exact energies for various values of R
[97].

The one-electron Hamiltonian for D-ballium is

o1 @ ,b-1d
T " 20g? " dr
and the external potential is defined by

0, ifr<R
Viny=<" !
(r) {oo, otherwise,

+V(r), (58)

(59)

or equivalently

V(r) = (r/R", m— oo. (60)



P.-F. Loos, P.M.W. Gill/ Chemical Physics Letters 500 (2010) 1-8 5

Table 3
E®, ED, E? and EZ) for D-hookium. (G is Catalan’s constant [64]).
D E© EQ E@ E2
2 2 JE 2672 ~5aFs(1,1,3,3:2,2,2:)
3 3 NG ~2(1+1n2) §-2[1+1n(s-4v3)]
4 4 13 o 2 (11331223
3 3 3.2 3- 23 (4+3In2) %-25[8-3v3+6In(8-4v3)]
6 6 3 tog g . 320 g P (1133224
7 7 52 - 13 (23+15In2) 48— 5% [368 + 15v3 + 2401n (8 - 4v3)]

Any physically acceptable eigenfunction of (2) must satisfy the
Dirichlet boundary condition

¥(r, =R) = ¥(r, = R) = 0. (61)

The associated zeroth-order wave function of the zeroth-order
Hamiltonian (58) is

2 Jppa(r) Jppoa(kr2)
WYo(r1,12) *]D/Z(K)z rg)/p] r2D/271

In (62), K = jp/,_11 and j, is the kth zero of the Bessel function of
the first kind J,,, , [64]. The E values are easily obtained from
the relation

E9(D,Ba) = k2. (63)

(62)

For odd D, EV can be found in closed form via Eq. (8). For example,
for D=3,

EM(3,Ba) =2 17% %, (64)
where Si is the sine integral function [64].

Using the basis functions
Vam = (1 =X3)(1 =y )X*"y?2", (65)
where
x=r1/R, y=r/R, z=r12/R, (66)

and n, [ and m are non-negative integers, one finds that the second-
order energy E@ is given by (21) where

A=T-EOs, (67)
b=C'EVS - U] (68)
The vector C contains the coefficients of the zeroth-order wave
function (62) expanded in the basis set (65).

The integrals needed to compute the different matrix elements
are of the form

Fnim = / x1y'znd, (69)
with the volume element
dt = xyz s dxdydz, (70)
I =X+y+2)X-y+2)x+y-2)(x -y -2), (71)
and domain of integration

1 -1 "Xty
/d‘E = / dx / dy dz. (72)

JO JO J|x-y|

One eventually finds

(=1 n-+l+m+2D
fnlm:\/ﬁ (2 ) R (Inm+]r1) (73)

rG n+l+m+2D

and
a+D b b+D-2.a+D+2 D.
_3F (5P, -3, B e )

b
l a+D

(74)

E}fg values can be found using the Byers Brown-Hirschfelder equa-
tions (see Section 2.1) and numerical values of E® and E{?) are listed
in Table 1.

3. Large-dimension limit
3.1. The conjecture

In the large-D limit, the quantum world reduces to a simpler
semi-classical one [98] and problems that defy solution in D =3
sometimes become exactly solvable. In favorable cases, such solu-
tions provide useful insight into the D = 3 case and this strategy
has been successfully applied in many fields of physics [99,100].

Following Herschbach and Goodson [101,102], we expand both
the exact and HF energies with respect to D. Although various
asymptotic expansions exist [103] for this dimensional expansion,
it is convenient [100] to write [103-106]

E*OW) E*V()

2
DY) ===+ (75)
EZOwvy  EED(WV)
2)
Egp(D.V) = S (76)
EXOW) EZV(V)
2
E(C)(DV): CDZ + CD3 +oe (77)
E2Ov) = E2O(v) — EZO V), (78)
EZV (V) = E*V(V) — EgV (V). (79)

Such double expansions of the correlation energy were originally
introduced for the helium-like ions, and have led to accurate esti-
mations of correlation [107,108] and atomic energies [109,110]
via interpolation and renormalization techniques. Eq. (77) applies
equally to the 'S ground state of any two-electron system confined
by a spherical potential V(r).

For helium, it is known [111,101,102] that

EZ%(He) = f%, EZV(He) = f%, (80)

and we have recently found [59] that

EZO(Ho) = 5, E(Ho)= — 11, (81)
1 53

EXO(Sp)=—g, EXV(SP) =135 (82)

E20(Ba) = g, ECV(Ba)= . (83)
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The fact that EZ? is invariant to the external potential and EZ" de-
pends only weakly on it explains why the high-density correlation
energies (Table 1) of all the systems are similar, though not identi-
cal, for D = 3 [59,97].
On this basis, we conjectured [59] that
1 CWv)
2

EZ(D,V) ~ 2 D
holds for any spherical confining potential, where the coefficient
C(V) varies slowly with V(r).

(84)

3.2. The proof

In this section, we will summarize our proof of the conjecture
(84). More details can be found in Ref. [60]. We prove that E*¥
is universal, and that, for large D, the high-density correlation en-
ergy of the 'S ground state of two electrons is given by (84) for any
confining potential of the form

V(r) = sgn(m)r™v(r), (85)

where »(r) possesses a Maclaurin series expansion
2

v(r):vo+v1r+z/z%+-~-. (86)

After transforming both the dependent and independent vari-
ables [60], the Schrodinger equation can be brought to the simple
form

1~ -~ — 1
(Z T+U+V +ZW>@D = &pPp, (87)

in which, for S states, the kinetic, centrifugal, external potential and
Coulomb operators are, respectively,

— 2?9 1 1\[(&* 1
— 27 _<8_r§+8_r§>+<ﬁ+r_%><ﬁ+zl>’ (88)
~ 1 1 1
U=—— =+, 89
2sin’ 0 <r% "%) (89)
Y =V(r) + V(ra), (90)
W= ! (91)

\/12 +12 =211y cos 0

and the dimensional perturbation parameter is

A:W. (92)

In this form, double perturbation theory can be used to expand the
energy in terms of both 1/Z and 1/4.

For D = o, the kinetic term vanishes and the electrons settle
into a fixed (‘Lewis’) structure [101] that minimizes the effective
potential

A~ 1~
X=U+"V +ZW. (93)
The minimization conditions are

6§l(r1 T2, 0) _ ag?(rh 2, 9)

ory or, =0, (94)
‘9@("1 ,12,0)
CAURELE) (95)

and the stability condition implies m > —2. Assuming that the two
electrons are equivalent, the resulting exact energy is

oo = A (I, Toc, ). (96)

It is easy to show that

_ o? 1 m+1wv\1
eat g s AT n) o
o 1
S0 =——=5+-", 98
NGy %)

where =2 = sgn(m)muwy.

For the HF treatment, we have ¢'F = 7r/2. Indeed, the HF wave
function itself is independent of 6, and the only 0 dependence
comes from the D-dimensional Jacobian, which becomes a Dirac
delta function centered at 7/2 as D — oco. Solving (94), one finds
that f and r., are equal to second-order in 1/Z. Thus, in the
large-D limit, the HF energy is

HF _ 5 (HF HF T
éx 71(”9@7”0@72)7 (99)
and correlation effects originate entirely from the fact that 0. is
slightly greater than 7/2 for finite Z.

Expanding (96) and (99) in terms of Z and D yields

1

W) = (m+2)’

_% _ (100)
Ey’ (V) = ,72(m1+ 7 (101)

thus showing that both E*® and Ez” depend on the leading power
m of the external potential but not on »(r).
Subtracting these energies yields

EXV(V) = —g, (102)
and this completes the proof that, in the high-density limit, the
leading coefficient EZ? of the large-D expansion of the correlation
energy is universal, i.e., it does not depend on the external potential
V(r).

Table 4
E?9, EZO, E2Y and E>Y coefficients for various systems and o(r) = 1.
System m _E20 7E£42F.0) —Eg“’) —E(CZ-”
Helium -1 5/8 12 1/8 0.424479
Airium 1 7124 1/6 1/8 0.412767
Hookium 2 1/4 1/8 1/8 0.433594
Quartium 4 5/24 1/12 1/8 0.465028
Sextium 6 3/16 1/16 1/8 0.486771
Ballium S 1/8 0 1/8 0.664063
Coefficients
1 - 1 1 1 1 1 J m
-1 geo 1 2 -“_3_ ______ 4 ... Samaann 6
0o et T mmmmmmm T T
EHF'." ST EQO
RO PPt
0' “
" 7
Q 7
AV
e 2,1
; // E@D
‘ ,’ E@D
. (2,1)
:II EHF
']
Hi
H
Wl 1t

Figure 2. Coefficients of the exact (dashed), HF (dotted) and correlation (solid)
energies with respect to m, for »(r) = 1 (Egs. (75)-(77)).
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The result (102) is related to the cusp condition [112-114]

o¥p

1
ar ==—=¥p(ri2 =0), (103)

D-1

r12=0

which arises from the cancellation of the Coulomb operator singu-
larity by the D-dependent angular part of the kinetic operator [2].

The E®Y and E&" coefficients can be found by considering the
Langmuir vibrations of the electrons around their equilibrium posi-
tions [101,102]. The general expressions depend on v, and vy, but
are not reported here. However, for »(r) = 1, which includes many
of the most common external potentials, we find

85 9/32 1/2
E@ __ % +
c ( ) 128 (m+2)3/2 (m+2)1/2
1/16
(m+2)"242’

(104)

showing that E*", unlike E2?, is potential-dependent. Numerical
values of E2" are reported in Table 4 for various systems, and the
components of the correlation energy are shown graphically in
Figure 2.

4. Conclusion

In this Letter, we have reviewed our recent progress in the
determination of the high-density correlation energy for four
two-electron systems: the helium atom (He), the Hooke’s law atom
(Ho), two electrons confined on the surface of a sphere (Sp), and
two electrons trapped in a ball (Ba). In the large-Z limit for
D = 3, we have found

E.(He) ~ E<(Sp) ~ E.(Ho) ~ E.(Ba). (105)

These striking similarities can be rationalized by treating the
dimensionality D of space as a system parameter, and we have
proved that, as D grows, all such correlation energies exhibit the
same universal behaviour

E. ~—1/(8D% (106)

in a D-dimensional space. This is true irrespective of the nature of
the external potential that confines the electrons.
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