Posmom: The Unobserved Observable
Yves A. Bernard and Peter M. W. Gill*

Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia

ABSTRACT We have recently shown that the probability density $S(s)$ of the position–momentum dot product $s = r \cdot p$ of a particle can be computed efficiently from its wave function $\psi(r)$. Here, by examining the H atom and LiH molecule, we show that $S(s)$ yields insight into the nature of electronic trajectories, and we argue that electron posmometry provides information that is inaccessible by diffraction or momentum methods.

SECTION Molecular Structure, Quantum Chemistry, General Theory

One of the first successful attempts to understand electronic behavior in matter was Bohr’s famous model of the hydrogen atom. By quantizing the angular momentum with an integer n (the principal quantum number), he sought to describe electronic motion using circular orbits, analogous to those of a planet. Some years later, Sommerfeld refined this model, quantizing the angular momentum with another integer l to yield the Old Quantum Theory. In this model, the electron follows elliptical orbits. Although the Bohr–Sommerfeld (BS) model appeared to explain a number of features of atomic spectra, its insistence that electrons follow classical trajectories is essentially incorrect and has been superseded by modern quantum mechanical treatments. The advent of the Heisenberg Uncertainty Principle, which states that the position r and the momentum p of a particle cannot be known simultaneously with arbitrary precision, showed that the classical concept of a trajectory begins to lose its significance in nanoscale systems and must be abandoned completely in discussing the motion of an electron. In such circumstances, where classical mechanics aims to predict the position r of the particle at a time t, quantum mechanics more modestly (and correctly) offers only a wave function $\psi(r)$ which is related to the probability of finding the particle at the position r at time t.

In nonrelativistic wave mechanics, the wave functions $\psi_n(r)$ and energies E_n of a particle are found by solving the Schrödinger equation $i\hbar \frac{\partial \psi_n}{\partial t} = H\psi_n$ where H is the Hamiltonian operator for the system. As Dirac discovered, these position wave functions are related to the particle’s momentum wave functions $\phi_n(p)$ by a Fourier transform, and this is depicted as a horizontal orange arrow in Figure 1. The fact that the product of the variance of a function and the variance of its Fourier transform is strictly positive is then the Schrödinger explanation for the Uncertainty Principle.

In the Born interpretation, the squared modulus of the wave function yields the corresponding probability density and, in this way, one can form the position density $\rho(r) = |\psi(r)|^2$ and momentum density $\Pi(p) = |\phi(p)|^2$ of the particle (Figure 1, blue arrows). Unlike the wave functions, the densities are experimental observables, and it is possible to measure $\rho(r)$ by X-ray or neutron diffraction and to measure $\Pi(p)$ by Compton spectroscopy. Such techniques are widely used for the characterization of matter in condensed phases and furnish valuable information about molecular structure and bonding. We note that, although $\psi(r)$ and $\phi(p)$ contain the same information, the density $\rho(r)$ contains information that is not present in $\Pi(p)$, and vice versa. In this way, position and momentum spectroscopy provide complementary perspectives.

The Fourier transforms in atomic units (the orange arrows at the top and bottom of Figure 1) of the position and momentum densities

$$\rho(p) = \int \rho(r) e^{-i r \cdot p} \, dr$$

$$\Pi(r) = \int \Pi(p) e^{-i p \cdot r} \, dp$$

are also important, and the convolution theorem shows that $\Pi(r)$ is the autocorrelation of the position wave function

$$\Pi(r) = \int \psi^* (r' + r/2) \psi (r' - r/2) \, dr'$$

and $\rho(p)$ is the autocorrelation of the momentum wave function

$$\rho(p) = \int \phi^* (p' + p/2) \phi (p' - p/2) \, dp'$$

These connections are depicted by purple arrows in Figure 1. Thus, to compute the momentum density from the position wave function, one can take either the squared modulus of the Fourier transform, or the Fourier transform of the autocorrelation.

Received Date: February 16, 2010
Accepted Date: March 18, 2010
The relationships between the position, momentum, and posmom of a quantum mechanical particle.

A classical particle at \(r \) has a moment of inertia \(I = mr^2 \) about the origin. If the particle is moving, the rate at which \(I \) changes is \(dI/dt = 2s \), where

\[
S = r \cdot p
\]
(5)

is the particle’s position–momentum dot product, or posmom. The sum of the posmoms of all of the particles in a system is known as the virial.\(^{13}\)

One may also consider the posmom of a quantum particle.\(^{14,15}\) After symmetrizing eq 5, it can be shown that posmom is a quantum mechanical observable\(^{16,17}\) and its normal autocorrelations in eqs 3 and 4. After generating the position or momentum wave functions. Equations 6 and 7 of the position or momentum wave functions. Equation 8 enables the routine prediction of posmom densities in molecular systems using standard methods of molecular physics. The definition eq 5 is origin-dependent so we choose the origins such that \((r) = (p) = 0 \).

We have implemented this in a development version of the Q-CHEM quantum chemistry package\(^{20}\) and, because of the low computational cost of eqs 6 and 8, the posmom densities of moderately large molecules can be computed on a desktop computer. For a 50-atom molecule with a triple-\(\xi \) plus polarization basis set, for example, the calculation of \(\hat{S}(k) \) for a single value of \(k \) requires only a few seconds. We are currently investigating the posmom densities in atoms\(^{21}\) and molecules.\(^{22}\)

One may ask whether it feasible to find \(S(s) \) from \(\rho(r) \) and \(\Pi(p) \), but this is extremely difficult.\(^{11}\) Knowing nothing about the statistical correlation between \(r \) and \(p \), one is obliged to assume that they are independent and to write

\[
S_{\text{indep}}(s) = \int \int \rho(r) \Pi(p) \delta(s - r \cdot p) \, dr \, dp
\]
(9)

and this is completely different from the true \(S(s) \) given by eq 8. For a harmonic oscillator, for example, one finds\(^{14}\)

\[
S(s) = (2\pi)^{-3/2} \left| \Gamma \left(\frac{1}{4} + \frac{is}{2} \right) \right|^2
\]
(10)

\[
S_{\text{indep}}(s) = (2/\pi)K_0(2s)
\]
(11)

where \(\Gamma \) and \(K_0 \) are Gamma and modified Bessel functions.\(^{23}\)

We conclude that the posmom density contains information that is inaccessible from position or momentum spectroscopies. But how can its measurement give insight into electronic motion? If a particle moves in a circular (or cylindrical) orbit that preserves its distance from the origin (e.g., the blue curve in Figure 2), its position and momentum are orthogonal at all times, its posmom vanishes, and its posmom density \(S(s) \) is a delta function at \(s = 0 \). In contrast, if the particle follows a highly eccentric Keplerian ellipse (e.g., the red curve in Figure 2), its position and momentum are almost parallel (or antiparallel), its posmom swings between positive and negative values, and \(S(s) \) is broad.

Thus, given the posmom density in an electronic system, one can deduce something about the types of trajectories that the electrons follow. To illustrate this, we will examine the posmom distributions in various states of the hydrogen atom and the lithium hydride molecule.
The posmom density for the \((n,l,m)\) state of the H atom can be found, using eqs \(6\) and \(8\), from the position wave function

\[
\psi(r) = \sqrt{\frac{2^n}{n!}} \frac{(n-1)!}{(2n)!} e^{-r/(2n)} L_n^{2l-1}(2r/n) Y_{lm}(r)
\]

where \(L_n^{2l-1}\) is an associated Laguerre polynomial, and \(Y_{lm}\) is a spherical harmonic. This yields

\[
S(s) = \frac{\Gamma\left(l + \frac{3}{2} + is\right)^2}{\Gamma\left(l + 1\right)^2} \prod_{l=0}^{\infty} \left[1 + \frac{\Gamma\left(l + \frac{3}{2} + is\right)}{\Gamma\left(l + 2\right)}\right]^{2l+1}
\]

(12)

where \(\mathcal{F}_3\) is a generalized hypergeometric function, which is independent of the quantum number \(m\). It can be shown that the variance of \(S(s)\) is

\[
\sigma^2 = \frac{n^2}{2} - \frac{l(l + 1)}{2} + \frac{1}{4}
\]

(14)

and this decreases monotonically as \(l\) increases for a fixed \(n\). The density at \(s = 0\) is

\[
S(0) = \frac{\Gamma\left(n - l + 1\right)}{\Gamma\left(n\right)} \frac{\Gamma\left(n + l + 1\right)}{\Gamma\left(n + l + 2\right)} \beta
\]

(15)

where \(\beta = (-1)^{n-l}\). This oscillates as \(l\) increases, creating an increasing subsequence for odd \(n - l\) and a decreasing subsequence for even \(n - l\). As a result, the largest \(S(0)\) occurs for \(l = n - 1\) and the smallest \(S(0)\) occurs for \(l = n - 2\).

It can be shown that, when \(n\) is large and \(l = n - 1\), the density \(S(0)\) approaches a Normal distribution.

Figure 3 depicts the densities for the states with \(n = 5\), and Table 1 contains associated numerical data. Radial nodes in \(\psi(r)\) create oscillations in \(S(s)\), and the posmom densities extend significantly into the nonclassical region beyond their final points of inflection \(s_{\text{inf}}\). The most probable posmom values in the \(5s\) state are near \(s = 4\), but the variance decreases with \(l\), and the most probable value in the (almost normally distributed) \(5g\) state is \(s = 0\). In the trajectory interpretation, this shows that \(5s\) electrons rarely follow circular paths, but that \(5g\) electrons may do so much more often.

It is interesting to compare these results with a semiclassical approximation. The Einstein–Brillouin–Keller (EBK) model \(25\) applied to the hydrogen atom \(26,27\) is similar to the BS model, yielding elliptical orbits with semimajor axes, semiminor axes, and eccentricities given by

\[
a = n^2
\]

(16)

\[
b = n(l + 1/2)
\]

(17)

\[
\epsilon = \sqrt{1 - b^2/a^2}
\]

(18)

The density given by the EBK model is

\[
S_{\text{EBK}}(s) = \frac{1}{\pi - 2\epsilon \left(1 - \frac{1}{n^2}\right)} \left\{ \frac{1}{\sqrt{s_{\text{max}}^2 - s^2}} - \frac{1}{n} \right\} |s| < s_{\text{max}}
\]

(19)

where \(s_{\text{max}} = \pi e\). Unlike the exact density, this grows monotonically with \(|s|\). The variance of \(S_{\text{EBK}}(s)\) is

\[
\sigma_{\text{EBK}}^2 = \frac{s_{\text{max}}^2}{2} \left(1 + \frac{2}{3} \frac{\epsilon}{\pi - 2\epsilon}\right)
\]

(20)

which decreases monotonically as \(l\) increases. However, in the limit of large \(n\) and \(l\), the semiclassical and exact models converge (as required by the Correspondence Principle) and predict

\[
\sigma^2 \sim n/2
\]

(21)

The density at \(s = 0\) is

\[
S_{\text{EBK}}(0) = \frac{1 - \epsilon}{ne(\pi - 2\epsilon)}
\]

(22)

which increases monotonically from \(S_{\text{EBK}}(0) = O(n^{-3})\) at \(l = 0\) to \(S_{\text{EBK}}(0) = O(n^{-1/2})\) at \(l = n - 1\).

Figure 4 shows the EBK trajectories for the \(n = 5\) states, and Table 1 contains associated numerical data. As \(l\) increases, the trajectory shifts from a highly elliptical path in the \(5s\) state to an almost circular orbit in the \(5g\) state. However, the EBK model usually overestimates the variance.

The data in Table 1 confirm that, although a semiclassical treatment captures some of its features, the exact description of the posmom density is significantly richer and more detailed.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\sigma_{\text{EBK}}^2)</th>
<th>(S_{\text{EBK}}(0))</th>
<th>(s_{\text{max}})</th>
<th>(\sigma_{\text{EBK}}^2)</th>
<th>(S_{\text{EBK}}(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5s</td>
<td>12.75</td>
<td>0.070</td>
<td>4.64</td>
<td>19.5</td>
<td>0.001</td>
</tr>
<tr>
<td>5p</td>
<td>11.75</td>
<td>0.047</td>
<td>4.42</td>
<td>17.2</td>
<td>0.008</td>
</tr>
<tr>
<td>5d</td>
<td>9.75</td>
<td>0.109</td>
<td>3.95</td>
<td>15.2</td>
<td>0.022</td>
</tr>
<tr>
<td>5f</td>
<td>6.75</td>
<td>0.027</td>
<td>3.14</td>
<td>8.15</td>
<td>0.047</td>
</tr>
<tr>
<td>5g</td>
<td>2.75</td>
<td>0.246</td>
<td>1.56</td>
<td>2.68</td>
<td>0.114</td>
</tr>
</tbody>
</table>

Table 1. Variance, Origin Density, and Classical Turning Points of the Posmom Density in the \(n = 5\) States of the Hydrogen Atom
roughly 10%. In the trajectory interpretation, this implies that bond formation encourages the electrons to forsake motion parallel or perpendicular to the molecular axis in favor of paths around it. Although this picture is consistent with the momentum density in diagram d, it cannot be deduced from it.

There is no doubt that \(\rho(r) \) and \(\Pi(p) \) help us to comprehend the electronic structure of molecules, but it is equally clear that \(S(s) \) offers additional insight. The three densities are mutually complementary.

This letter aims to draw attention to posmom, a basic quantum mechanical observable that has been largely overlooked. The relationships between posmom, position, and momentum are summarized in Figure 1. Recent progress now allows the posmom density \(S(s) \) to be calculated routinely from the position wave function \(\psi(r) \), and we have implemented this in a development version of the Q-CHEM software package.

In a comprehensive study of the states of the hydrogen atom, we have found that semiclassical approximations fail to reproduce the detailed structure of \(S(s) \) and are an inadequate substitute for it. An examination of \(S(s) \) in the LiH molecule confirmed that it contains information about electronic motion that is absent from the position or momentum densities. Whereas diffraction techniques reveal where electrons are, and momentum spectroscopy tells us where they are going, posmommetry (the measurement of posmom) informs us without violating the Uncertainty Principle—about the type of trajectories that they follow. Potentially, this third perspective can significantly enrich our appreciation of the dynamical behavior of electrons.

We eagerly await the construction of the first posmometers.

AUTHOR INFORMATION

Corresponding Author: *To whom correspondence should be addressed. E-mail: peter.gill@anu.edu.au.*

ACKNOWLEDGMENT We thank Pierre-Francois Loos for useful suggestions on our manuscript and the Australian Research Council for research support (Grant DP0984806). Y.A.B. thanks the Research School of Chemistry for a Ph.D. scholarship.

REFERENCES

(2) Sommerfeld, A. Atombau und Spektrallinien; Friedrich Vieweg und Sohn: Braunschweig, 1919.

(11) Via a Hohenberg–Kohn argument, it is possible in principle to obtain $\Pi(p)$ from $\rho(r)$, but in practice this is almost impossible.

(17) The reader may be interested in the conjugate variable of the posmom s. In the position representation, it is given by $\text{In}(r)$; see ref 15.

