
rXXXX American Chemical Society 1254 DOI: 10.1021/jz100216d |J. Phys. Chem. Lett. 2010, 1, 1254–1258

pubs.acs.org/JPCL

Posmom: The Unobserved Observable
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ABSTRACT We have recently shown that the probability density S(s) of the
position-momentum dot product s=r 3p of a particle can be computed efficiently
from its wave function ψ(r). Here, by examining the H atom and LiH molecule, we
show that S(s) yields insight into the nature of electronic trajectories, and we argue
that electron posmometry provides information that is inaccessible by diffraction
or momentum methods.

SECTION Molecular Structure, Quantum Chemistry, General Theory

O neof the first successful attempts to understand elec-
tronic behavior in matter was Bohr's famous model
of the hydrogen atom.1 By quantizing the angular

momentumwith an integern (the principal quantumnumber),
he sought to describe electronic motion using circular orbits,
analogous to those of a planet. Some years later, Sommerfeld
refined this model,2 quantizing the z component of the
angular momentum with another integer l to yield the Old
QuantumTheory.3 In thismodel, the electron follows elliptical
orbits.

Although the Bohr-Sommerfeld (BS)model appeared to
explain a number of features of atomic spectra, its insis-
tence that electrons follow classical trajectories is essen-
tially incorrect and has been superseded by modern
quantum mechanical treatments. The advent of the Hei-
senberg Uncertainty Principle,4 which states that the posi-
tion r and the momentum p of a particle cannot be known
simultaneously with arbitrary precision, showed that the
classical concept of a trajectory begins to lose its signifi-
cance in nanoscopic systems and must be abandoned
completely in discussing the motion of an electron. In such
circumstances, where classical mechanics aims to predict
the position r of the particle at a time t, quantummechanics
more modestly (and correctly) offers only a wave function
ψ(r)which is related to the probability of finding the particle
at the position r at time t.

In nonrelativistic wave mechanics,5 the wave functions
ψn(r) and energies En of a particle are found by solving
the Schr€odinger equation Hψn = Enψn where H is the
Hamiltonian operator for the system. As Dirac discovered,6

these position wave functions are related to the particle's
momentum wave functions φn(p) by a Fourier transform,7

and this is depicted as a horizontal orange arrow in Figure 1.
The fact that the product of the variance of a function and
the variance of its Fourier transform is strictly positive
is then the Schr€odinger explanation for the Uncertainty
Principle.

In the Born interpretation, the squared modulus of the
wave function yields the corresponding probability den-
sity and, in this way, one can form the position density
F(r)=|ψ(r)|2 andmomentum densityΠ(p)=|φ(p)|2 of the

particle (Figure 1, blue arrows). Unlike the wave func-
tions, the densities are experimental observables, and it
is possible to measure F(r) by X-ray8 or neutron9 diffrac-
tion and to measure Π(p) by Compton spectroscopy.10

Such techniques are widely used for the characteriza-
tion of matter in condensed phases and furnish valuable
information about molecular structure and bonding. We
note that, although ψ(r) and φ(p) contain the same infor-
mation, the density F(r) contains information that is not
present in Π(p), and vice versa.11 In this way, position and
momentum spectroscopy provide complementary per-
spectives.

The Fourier transforms in atomic units (the orange arrows
at the top and bottom of Figure 1) of the position and
momentum densities

F̂ðpÞ ¼
Z

FðrÞe- ir 3 p dr ð1Þ

Π̂ðrÞ ¼
Z

ΠðpÞe- ir 3 p dp ð2Þ

are also important, and the convolution theorem shows12 that
Π̂(r) is the autocorrelation of the position wave function

Π̂ðrÞ ¼
Z

ψ/ðr0 þ r=2Þψðr0 - r=2Þ dr0 ð3Þ

and F̂(p) is the autocorrelation of the momentum wave
function

F̂ðpÞ ¼
Z

φ/ðp0 þ p=2Þφðp0 -p=2Þ dp0 ð4Þ

These connections are depicted by purple arrows in Figure 1.
Thus, to compute the momentum density from the position
wave function, one can take either the squared modulus of
the Fourier transform, or the Fourier transform of the auto-
correlation.
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A classical particle at r has a moment of inertia I=mr2

about the origin. If the particle is moving, the rate at which
I changes is dI/dt=2s, where

s ¼ r 3 p ð5Þ
is the particle's position-momentum dot product, or posmom.
The sum of the posmoms of all of the particles in a system is
known as the virial.13

One may also consider the posmom of a quantum parti-
cle.14,15 After symmetrizing eq 5, it can be shown that
posmom is a quantum mechanical observable16,17 and its
wave function and density S(s) are related nonbijectively18

to the position and momentum wave functions by Mellin
transforms7 (the dashed red arrows in Figure 1). Unfortu-
nately, the required transforms usually lead to formidable
integrals and, until very recently, no such densities had been
published.

However, we recently found14 an alternative to the Mellin
pathway by showing that the Fourier transform Ŝ(k) of the
posmomdensity is givenby the “hyperbolic autocorrelations”

ŜðkÞ ¼
Z

ψ/ðeþk=2rÞψðe- k=2rÞ dr ð6Þ

ŜðkÞ ¼
Z

φ/ðe- k=2pÞφðeþk=2pÞ dp ð7Þ

of the position or momentum wave functions. Equations 6
and 7 (the green arrows in Figure 1) are analogous to the
normal autocorrelations in eqs 3 and 4. After generating Ŝ(k),
the inverse Fourier transform yields

SðsÞ ¼ 1
2π

Z ¥

-¥
ŜðkÞeiks dk ð8Þ

(the vertical orange arrow in Figure 1) and, if necessary, this
canbeachieved byanefficient fast Fourier transform.19 Time-
reversal symmetry implies S(s)=S(-s), sowe can restrict our
attention to s g 0.

Figure 1, which illustrates all of the interconnections
between the position, momentum, and posmom wave func-
tions and densities, is one of the important contributions of
this letter.

The combination of eqs 6 and 8 enables the routine
prediction of posmom densities in molecular systems using

standardmethods ofmolecular physics. The definition eq 5 is
origin-dependent so we choose the origins such that Æræ =
Æpæ=0.

Wehave implemented this in a development versionof the
Q-CHEM quantum chemistry package20 and, because of the low
computational cost of eqs 6 and 8, the posmom densities
of moderately large molecules can be computed on a desk-
top computer. For a 50-atom molecule with a triple-ζ-plus-
polarization basis set, for example, the calculation of Ŝ(k)
for a single value of k requires only a few seconds. We are
currently investigating the posmom densities in atoms21 and
molecules.22

One may ask whether it feasible to find S(s) from F(r) and
Π(p), but this is extremely difficult.11 Knowing nothing about
the statistical correlation between r and p, one is obliged to
assume that they are independent and to write

SindepðsÞ ¼
Z Z

FðrÞΠðpÞδðs - r 3 pÞ dr dp ð9Þ

and this is completely different from the true S(s) given by
eq 8. For a harmonic oscillator, for example, one finds14

SðsÞ ¼ ð2πÞ-3=2

�����Γ 1
4
þ is

2

� ������
2

ð10Þ

SindepðsÞ ¼ ð2=πÞK0ð2sÞ ð11Þ
where Γ and K0 are Gamma andmodified Bessel functions.23

We conclude that the posmom density contains informa-
tion that is inaccessible from position or momentum spectro-
scopies. But how can its measurement give insight into
electronic motion? If a particle moves in a circular (or
cylindrical) orbit that preserves its distance from the origin
(e.g., the blue curve in Figure 2), its position and momentum
are orthogonal at all times, its posmom vanishes, and its
posmomdensity S(s) is a delta function at s=0. In contrast, if
the particle follows a highly eccentric Keplerian ellipse (e.g.,
the red curve in Figure 2), its position and momentum are
almost parallel (or antiparallel), its posmom swings between
positive and negative values, and S(s) is broad.

Thus, given the posmom density in an electronic system,
one can deduce something about the types of trajectories that
the electrons follow. To illustrate this, we will examine the
posmom distributions in various states of the hydrogen atom
and the lithium hydride molecule.

Figure 1. The relationships between the position, momentum,
and posmom of a quantum mechanical particle.

Figure 2. Two types of electron trajectory. The blue trajectory has
s=0, but the red trajectory yields a range of s values. The blackdot
marks an arbitrary origin along the horizontal axis.
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The posmomdensity for the (n,l,m) state of theH atomcan
be found, using eqs 6 and 8, from the position wave function

ψðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
n

� �3ðn - l - 1Þ!
2nðn þ lÞ!

s
e- r=nð2r=nÞlL2l þ 1

n - l - 1ð2r=nÞYlmðrÞ

ð12Þ
where Ln-l-1

2lþ1 is an associated Laguerre polynomial, and Ylm is
a spherical harmonic. This yields

SðsÞ ¼ ð-1Þn- l-1ðn þ lÞ!
ðn - l - 1Þ!ð2l þ 1Þ!

�����Γ l þ 3
2
þ is

� ������
2

Γ
1
2

� �
Γ l þ 3

2

� �
Γðl þ 2Þ

� 4F3
- ðn - l - 1Þ n þ l þ 1 l þ 3

2
þ is l þ 3

2
- is

l þ 3
2

l þ 2 2l þ 2

2
64

3
75

ð13Þ
(where 4F3 is a generalized hypergeometric function24),
which is independent of the quantum number m. It can be
shown that the variance of S(s) is

σ2 ¼ n2

2
-

lðl þ 1Þ
2

þ 1
4

ð14Þ

and this decreases monotonically as l increases for a fixed n.
The density at s=0 is

Sð0Þ ¼ 1
nπ

Γ
n - l þ 1

2

� �

Γ
n- l
2

� � Γ
n þ l þ 1

2

� �

Γ
n þ l þ 2

2

� �
2
6664

3
7775
β

ð15Þ

where β= (-1)n-l. This oscillates as l increases, creating an
increasing subsequence for odd n - l and a decreasing sub-
sequence for even n- l. As a result, the largest S(0) occurs for
l=n - 1 and the smallest S(0) occurs for l=n - 2.

It can be shown that, when n is large and l= n - 1, the
density S(s) approaches a Normal distribution.

Figure 3 depicts the densities for the states with n=5, and
Table 1 contains associated numerical data. Radial nodes in
ψ(r) create oscillations in S(s), and the posmom densities
extend significantly into the nonclassical region beyond their
final points of inflection sinf. Themostprobableposmomvalues

in the 5s state are near s(4, but thevariancedecreaseswith l,
and the most probable value in the (almost normally dis-
tributed) 5g state is s=0. In the trajectory interpretation, this
shows that 5s electrons rarely followcircular paths, but that 5g
electrons may do so much more often.

It is interesting to compare these results with a semiclassi-
cal approximation. The Einstein-Brillouin-Keller (EBK)
model25 applied to the hydrogen atom26,27 is similar to the
BSmodel, yielding elliptical orbits with semimajor axes, semi-
minor axes, and eccentricities given by

a ¼ n2 ð16Þ

b ¼ nðlþ1=2Þ ð17Þ

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1- b2=a2

p
ð18Þ

The density given by the EBK model is

SEBKðsÞ ¼ 1
π - 2ε

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smax

2 - s2
p -

1
n

� �
jsj < smax ð19Þ

where smax=nε. Unlike the exact density, this grows mono-
tonically with |s|. The variance of SEBK(s) is

σEBK
2 ¼ smax

2

2
1 þ 2

3
ε

π - 2ε

� �
ð20Þ

which decreasesmonotonically as l increases. However, in the
limit of large n and l, the semiclassical and exact models
converge (as required by the Correspondence Principle) and
predict

σ2 ∼ n=2 ð21Þ
The density at s=0 is

SEBKð0Þ ¼ 1- ε

nεðπ - 2εÞ ð22Þ

which increasesmonotonically from SEBK(0)=O(n-3) at l=0
to SEBK(0)=O(n-1/2) at l=n - 1.

Figure 4 shows theEBK trajectories for then=5states, and
Table 1 contains associated numerical data. As l increases, the
trajectory shifts from a highly elliptical path in the 5s state to
an almost circular orbit in the 5g state. However, the EBK
model usually overestimates the variance.

The data in Table 1 confirm that, although a semiclassical
treatment captures some of its features, the exact description
of the posmom density is significantly richer and more
detailed.

Figure 3. Posmom densities of the n = 5 states of the hydrogen
atom.

Table 1. Variance, Origin Density, and Classical Turning Points of
the Posmom Density in the n = 5 States of the Hydrogen Atom

exact semiclassical

σ2 S(0) sinf σEBK
2 SEBK(0) smax

5s 12.75 0.070 4.64 19.5 0.001 4.97

5p 11.75 0.047 4.42 17.2 0.008 4.77

5d 9.75 0.109 3.95 13.2 0.022 4.33

5f 6.75 0.027 3.14 8.15 0.047 3.57

5g 2.75 0.246 1.56 2.68 0.114 2.18
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We now turn from a simple atom to a simple molecule.
Whatnew insight, inaccessible fromtheposition andmomen-
tum densities, can be gained from S(s)? Figure 5 shows
various densities in the LiH molecule, both before and after
bond formation.

Diagrams a and b, which show the position densities,
reveal that bond formation is associated with significant shift
of charge density from the Li atom to the H atom, as one
would have anticipated from the electronegativities of these
atoms.

Diagrams c and d, which show the momentum densities,
indicate that the previously isotropic distribution of momen-
tum becomes strongly anisotropic and develops nodal sur-
faces near px=(1 when the bond forms.

Diagram e reveals that the posmom density narrows
during bond formation, the density at s = 0 increasing by

roughly 10%. In the trajectory interpretation, this implies that
bond formation encourages the electrons to forsake motion
parallel or perpendicular to themolecular axis in favor of paths
around it. Although this picture is consistent with themomen-
tum density in diagram d, it cannot be deduced from it.

There is no doubt that F(r) and Π(p) help us to compre-
hend the electronic structure of molecules, but it is equally
clear that S(s) offers additional insight. The three densities are
mutually complementary.

This letter aims to draw attention to posmom, a basic
quantum mechanical observable that has been largely over-
looked. The relationships between posmom, position, and
momentum are summarized in Figure 1. Recent progress
now allows the posmom density S(s) to be calculated routi-
nely from the position wave function ψ(r), and we have
implemented this in a development version of the Q-CHEM
software package.

In a comprehensive study of the states of the hydrogen
atom,we have found that semiclassical approximations fail to
reproduce the detailed structure of S(s) and are an inadequate
substitute for it. An examination of S(s) in the LiH molecule
confirmed that it contains information about electronic mo-
tion that is absent from the position or momentum densities.
Whereas diffraction techniques reveal where electrons are,
and momentum spectroscopy tells us where they are going,
posmometry (the measurement of posmom) informs us;
without violating the Uncertainty Principle;about the type of
trajectories that they follow. Potentially, this third perspective
can significantly enrich our appreciation of the dynamical
behavior of electrons.

We eagerly await the construction of the first posmo-
meters.
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