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We discuss the exact Coulomb hole for the ground state of the helium atom and helium-like ions. We find that
the correlated wavefunction yields a smaller probability of finding the electrons at large separations than does the
Hartree–Fock wavefunction, leading to the counterintuitive conclusion that correlation brings distant electrons
closer together. This effect becomes less pronounced as the nuclear charge increases.
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1. Introduction

Coulomb’s Law states that particles of the same charge
repel and opposites attract. In atoms and molecules,
this causes the electrons to try to be close to the nuclei
while remaining far from each other. This gives rise to
the phenomenon of electron correlation and its exact
mathematical description requires that the many-
electron Schrödinger equation [1] be solved. This has
not been accomplished exactly—even for the helium
atom—but there exist a variety of approximations
that have yielded valuable insight into electron corre-
lation and its effects.

The antisymmetry of an electronic wavefunction
ensures that same-spin electrons are kept apart and
creates the Fermi hole, a region around each electron
wherein another electron of the same spin is unlikely
to be found. For electrons of opposite spin, antisym-
metry has no effect but Coulomb repulsion creates
a similar, though smaller, ‘exclusion zone’ around each
electron and this is intimately associated with the
correlation phenomenon, as first discussed by Coulson
and Neilson [2].

The singlet ground state of the helium atom is
a relatively simple correlated system and the probability
density of finding its two electrons at a separation
u¼ jr1� r2j is given by the exact position intracule

PðuÞ ¼ h�j�ðr12 � uÞj�i, ð1Þ

where �(r1, r2) is the exact wavefunction.
In the Hartree–Fock (HF) approximation, each

electron moves in the mean field generated by the

other electron, and their motions are therefore

statistically independent and uncorrelated. This gen-

erates the HF position intracule

PHFðuÞ ¼ h�HFj�ðr12 � uÞj�HFi, ð2Þ

where �HF(r1, r2) is the HF wavefunction and the

difference,

�PðuÞ ¼ PðuÞ � PHFðuÞ, ð3Þ

is known as the Coulomb hole.
Coulson and Nielson showed [2] that correlation

decreases the likelihood of finding the electrons

close together and increases the probability of their

being far apart. As a consequence, the hole is nega-

tive for small u and positive for larger u, a pattern that

has subsequently been observed in a wide range of

systems [3]. To quantify this, one may seek the critical

points of the hole and, in particular, we define ŭ1, �u1
and û1 to be the minimum, the root and the maximum

of the hole. Because each intracule is normalized, i.e.

Z 1
0

PðuÞdu ¼

Z 1
0

PHFðuÞdu ¼ 1, ð4Þ

the hole has no net content but we can define its

strength as

S1 ¼ Z

Z �u1

0

j�PðuÞjdu, ð5Þ

where Z is the nuclear charge.
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There have, however, been occasional reports of
Coulomb holes (in the helium atom and other systems)
with somewhat richer behaviour [4–8]. Although these
calculations agree that �P(u) is negative for small u
and positive for larger u, they predict that there is
a second root �u2 and a second minimum at ŭ2, giving
a secondary hole whose strength we will define as

S2 ¼ Z

Z 1
�u2

j�PðuÞjdu: ð6Þ

The existence of a secondary hole would imply that
correlation reduces the probability that electrons will
be found at large separations (u4 �u2) but this pre-
diction is sufficiently counterintuitive that secondary
holes have usually been dismissed as artefacts arising
from inaccurate estimates of P(u) or PHF(u).

In this paper, we use highly accurate calculations to
hunt for secondary holes in helium-like ions and to
attempt to find the definitive answer to the question:
Does correlation ever draw electrons closer together?
Atomic units are used throughout.

2. Correlated wavefunction and intracule

Some of the most accurate wavefunctions available for
the helium atom are of the explicitly correlated form

�ðr1, r2Þ ¼ e��ðr1þr2Þ
XN
i¼1

ci ðr1 þ r2Þ
liðr1 � r2Þ

2miuni , ð7Þ

pioneered by Hylleraas [9] in the early days of quantum
mechanics. The exponents li, mi, and ni are non-
negative integers and, along with the nonlinear
parameter � and the linear parameters ci, these are
optimized using the Variation Theorem. The wave-
function that we have used has N¼ 204 and was
developed by Koga et al. [10], who showed that it
reproduces the exact ground-state energy of the helium
atom [11] to within 3 nanohartrees.

The intracule of the 204-term Hylleraas wavefunc-
tion (7) reduces [12] to

PðuÞ ¼ 4pu2 exp ð�2�uÞ
X30
i¼0

diu
i, ð8Þ

and Koga et al. have tabulated the coefficients di.
By comparing this intracule with the analogous one
from an N¼ 168 term Hylleraas wavefunction, Koga
found that

Z 1
0

½P204ðuÞ � P168ðuÞ�
2 du

� �1=2

5 10�6, ð9Þ

which we interpret as an estimate of the maximum
error in the N¼ 204 intracule. Koga also showed

subsequently that P204(u) is almost identical to those

derived from even more accurate wavefunctions [13].

3. Hartree–Fock wavefunction and intracule

Given the accurate exact intracule (8), the next step is

to construct a comparably accurate exact HF intracule

PHF(u). To achieve this, we have used the Q-CHEM

package [14] to calculate the intracule from the HF

wavefunction of the helium atom using a series of

even-tempered basis sets devised by Schmidt and

Ruedenberg [15]. These basis sets employ Gaussian

primitives with exponents

�k ¼ ��
k, k ¼ 1, 2, . . . ,K, ð10Þ

where

ln� ¼ a lnð�� 1Þ þ a0, ð11Þ

ln ln� ¼ b lnKþ b0, ð12Þ

and, having adopted the Schmidt–Ruedenberg values

for a, a0, b and b0, one needs then only to choose K.

We have explored basis sets with up toK¼ 60 primitives

and the largest of these reproduces the exact HF energy

of the helium atom [16] to within 4 nanohartrees.
It is straightforward to construct the HF intra-

cule from our even-tempered HF wavefunctions

and, by comparing the K¼ 60 and K¼ 50 intracules,

we find that

max
u40
jPHF

60 ðuÞ � PHF
50 ðuÞj ¼ 3:5� 10�6, ð13Þ

which we interpret as an estimate of the maximum

error in the K¼ 60 intracule.

4. Coulomb holes

4.1. Helium atom

Figure 1 shows the Coulomb hole (3) derived from

the 204-term Hylleraas wavefunction (7) and our

60-term HF wavefunction. Its gross features (a mini-

mum at ŭ1¼ 0.52, a root at �u1¼ 1.1 and a maximum at

û1¼ 1.6) are similar to those reported by Coulson and

Neilson [2] but, in addition, we confirm the existence

of a second root at �u2¼ 3.6 and a second minimum at

ŭ2¼ 4.1 which is clearer in the magnified inset plot.

Evidently, we should speak of two holes, the primary

associated with the decrease in probability of finding

the electrons close together, and the secondary with

the decrease in probability of finding the electrons

far apart.

1090 J.K. Pearson et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
u
s
t
r
a
l
i
a
n
 
N
a
t
i
o
n
a
l
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
1
:
5
1
 
2
 
J
u
n
e
 
2
0
0
9



The existence of the secondary hole deepens our
understanding of the effects of correlation. The simple
picture in which correlation acts to push electrons
slightly further apart than in the mean-field description
is found to be incomplete and, although correlation
does reduce P(u) for small u and increase it for
moderate u, it also reduces it slightly for large u.

Because the secondary hole is small, it has either
been missed in previous studies [2] or has been dismis-
sed as a finite-basis artefact [4–8] that will disappear
as the basis set approaches completeness. In contra-
diction of this expectation, Figure 2 (which uses the
same scale as the inset plot of Figure 1) shows that
the secondary hole emerges as the quality of the
Schmidt–Ruedenberg basis for the HF calculation
is improved and, indeed, does not appear until at
least six Gaussians are used. We are obliged to con-
clude that the presence of the secondary hole is the
signature of a good basis, not a poor one.

We have also explored the extent to which the

secondary hole is affected by imperfections in

the correlation treatment underlying the exact P(u).

Figure 3 shows that, if the exact intracule P(u) is

approximated by various small-basis MP2 intracules,

the secondary hole is significantly overestimated.

This suggests that a reliable description of the secon-

dary hole requires a balanced treatment of the exact

and HF intracules.
This is supported by the inset plot of Figure 1,

which compares the exact secondary hole with that

derived from HF and Full Configuration Interaction

(FCI) calculations using a [7s6p5d] basis set [17].

Although the FCI/[7s6p5d] treatment is modest in

comparison with the Hylleraas one, and a treatment

using only seven s-type Gaussians fails to reach the

HF limit, the fact that they use the same basis set

yields a secondary hole that agrees surprisingly well

with the exact one.
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Figure 1. The Coulomb hole in the ground-state helium
atom. The inset plot compares this hole (solid line) with one
computed using a [7s6p5d] basis set (dashed line).
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Figure 2. Approximate Coulomb holes in the helium atom
calculated from an accurate correlated wavefunction
and approximate HF wavefunctions employing bases of
four (– � – � –), five (� � �� � �), six (– – – –), seven (— —), and
60 (——) s-type Gaussians.
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Figure 3. Approximate Coulomb holes in the helium
atom calculated from an accurate HF wavefunction
and the MP2/6-31G (� � � � � �), MP2/6-311G (– – – –),
MP2/6-311G(d, p) (— —), and exact (——) correlated
wavefunctions.
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Figure 4. Coulomb holes in the ground-state helium-like ions.
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4.2. Helium-like ions

Is the secondary Coulomb hole peculiar to the helium
atom? To answer this, we have explored the effect
of varying the nuclear charge from its value (Z¼ 2) in
the helium atom. The Coulomb holes of the resulting
helium-like ions were constructed in the same way
as that of helium, using Hylleraas wavefunctions from
Koga et al. [10] and HF wavefunctions with even-
tempered Schmidt–Ruedenberg basis sets (10). Like
Cioslowski and Liu [18], we found that it is hard to
obtain satisfactorily converged results for the hydride
ion H� and we therefore excluded it from our study.

Figure 4 shows the Coulomb holes for He, Liþ,
Be2þ, B3þ, and Ne8þ. As Z increases, the electrons are
drawn closer to the nucleus and their intracules and
Coulomb holes contract toward the origin. The inset
plot magnifies the region 6�Zu� 14 and, in this scaled
representation, the secondary holes are similar.

Table 1 lists the minima, roots, maxima and
strengths of the Coulomb holes in the helium-like
ions. As Z increases, the holes contract and the
locations of the minima, roots and maxima scale as
O(Z�1). The strengths of the primary and secondary
holes decrease monotonically but, whereas S1 appears
to approach a non-zero limit, S2 decays more rapidly
and may vanish completely in the Z¼1 limit.
This question could be addressed through 1/Z pertur-
bation theory.

5. Concluding remarks

We have calculated the Coulomb hole in the helium
atom and several helium-like ions using a 204-term
Hylleraas wavefunction and a [60s] HF wavefunction.
These Coulomb holes, which are among the most
accurate published to date, exhibit a primary hole at
small u and a secondary hole at larger u. The existence
of the latter reveals that electron correlation reduces
the probability that the two electrons will be found
at large separations, thus contradicting the naı̈ve
idea that correlation always acts to increase

interelectronic separation. We have also demonstrated

that, as the nuclear charge Z increases, the secondary

hole diminishes.
It is possible that additional holes may exist at

even larger values of u. However, to investigate this

possibility with confidence, one would need to employ

even more accurate exact and HF wavefunctions than

those used in the present study.
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