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ABSTRACT: Using the recently introduced maximum overlap method and
Hartree–Fock Perturbation Theory (HFPT), we compute Hartree–Fock (HF) wavefunctions
for triplet 1s ns states of the helium atom. Comparison with near-exact results from
Nakatsuji’s free ICI method reveals that HF theory provides a simple route to accurate
energies of these Rydberg states, especially for large n. © 2009 Wiley Periodicals, Inc. Int J
Quantum Chem 109: 1915–1919, 2009
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1. Introduction

D uring an illustrious career, Hirao has made
many contributions to the discipline of quan-

tum chemistry. One of his recent contributions
concerns the development of systematic meth-
ods for improving the poor treatment of Rydberg
and charge-transfer excitations afforded by time-
dependent density functional theory (TD-DFT) with
traditional functionals. Several years ago, he and his
coworkers introduced [1] long-range-corrected den-
sity functional theory (LC-DFT) in which the Ewald
[2–5] or erfgau [6, 7] partition is used to separate
the Coulomb operator into a short-range part that
is treated by density functional theory [8] and a
long-range part that is treated using conventional
wavefunction approaches [9]. As a result of Hirao’s
work, which has subsequently been adopted and
adapted by several other groups, it is now possible
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to use TD-DFT to model both Rydberg and charge-
transfer excitations with an accuracy comparable
with that of valence excitations.

While Hirao was developing LC-DFT, Nakatsuji’s
group was introducing and exploring two impres-
sive new approaches—the ICI method [10] and the
free ICI method [11]—that yield near-exact solutions
to the Schrödinger equation for small atomic and
molecular systems. Recently, they have applied their
approach to compute the ground-state energy of the
helium atom to an astonishing 43 decimal digits
[12] and also to obtain spectacularly accurate ener-
gies [13] for its singlet and triplet 1s ns states, for
n = 2, 3, . . . , 24.

In those states where n � 1, the electrons are
spatially well separated and one might anticipate
intuitively that they will be weakly correlated and
that the Hartree-Fock (HF) method, which neglects
such effects, may be an excellent approximation.
Until recently, it has been difficult to test such predic-
tions because traditional self-consistent field (SCF)
algorithms struggle to locate highly excited solu-
tions, tending instead to collapse to the lowest SCF
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solution with the same spin and spatial symmetry as
the initial guess.

However, with the advent of the maximum
overlap method (MOM) [14–16] and Hartree–Fock
Perturbation Theory [17] for finding and refining
excited-state solutions to SCF equations, one can
now examine this prediction with relative ease. In the
remainder of this article, we therefore investigate the
accuracy with which the conceptually and computa-
tionally straightforward HF method approximates
the exact energies of the 1s ns states of the helium
atom, confining our attention to the triplet states to
avoid the fundamental difficulties associated with
the single-determinant description of open-shell sin-
glets. Atomic units are used throughout.

2. Zeroth-order approximation

Before examining the performance of HF theory, it
is illuminating to consider an even simpler indepen-
dent particle model. In a 1s ns state where n � 1, the
nuclear shielding by the inner electron is almost per-
fect and one can imagine electrons 1 and 2 occupying
the He+ 1s orbital and an H ns orbital, respectively.

This physical picture corresponds to partitioning
the full Hamiltonian
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and a perturbative correction
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H(0) is a sum of two hydrogenic Hamiltonians and
standard solutions yield

�(0)
n (r1, r2) = a(r1)bn(r2) (4)

E(0)
n = −2 − 1/(2n2) (5)

where

a(r) = (π/8)−1/2 exp(−2r) (6)

bn(r) = (n5π)−1/2 exp(−r/n)L1
n−1(2r/n) (7)

and Lm
n is an associated Laguerre polynomial [18].

The wavefunction (4) can be antisymmetrized, as
appropriate for a triplet state, but the zeroth-order
energy (5) is unaffected by this.

3. Hartree–Fock approximation

The Fock operator [19] for the 1s ns triplet state is

F = −∇2

2
− 2

r
+ J1 − K1 + Jn − Kn (8)

and iterative diagonalization of F in a complete basis,
using the MOM [15] to guide convergence, yields the
exact HF energy EHF

n .
We have used even-tempered Slater-type basis

functions

χk(r) = exp(−αβkr) (9)

with α = 2 and β = 160/173 and k = 0, 1, . . . , 69.
Although such a basis cannot be complete [20], we
have found empirically that it is sufficiently large
to yield energies for the triplet 1s ns states that are
within a few nanohartrees of the HF limits for n =
2, 3, . . . , 24. The basis is almost linearly dependent
and we have therefore performed the HF calcula-
tions using extended precision in the Mathematica
package [21].

Suppose that we use the zeroth-order orbitals (6)
and (7) as the initial guesses for an HF calculation.
The extent to which they will change during the SCF
procedure depends on the extent to which the poten-
tials assumed in the zeroth-order Hamiltonian H(0)

are incorrect. This is illustrated for the n = 10 case in
Figures 1 and 2.

The outer orbital b10(r) would remain unchanged
if the inner electron shielded the nucleus perfectly

FIGURE 1. Radial density (×200) of the outer orbital
b10(r ) (solid) and Va(r ) − 1/r (dotted).

1916 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 109, NO. 9



RYDBERG STATES OF THE HELIUM ATOM

FIGURE 2. Radial density (×0.01) of the inner orbital
a(r ) (solid) and V10(r ) (dotted).

or, in other words, if the Coulomb potential

Va(r) =
∫

a(r′)2

|r − r′|dr′ (10)

of the inner orbital were exactly 1/r. However, as
Figure 1 reveals, Va(r) significantly underestimates
1/r in a region close to the nucleus where there is
a small component of the outer orbital’s density.
As a result of this imperfect shielding, the outer
orbital contracts towards the nucleus during the SCF,
leading to a slight lowering of the system’s energy.

The inner orbital a(r) would remain unchanged
if the outer electron had no effect on it or, in other
words, if the Coulomb potential

Vn(r) =
∫

bn(r′)2

|r − r′|dr′ (11)

of the outer orbital is constant in the region where the
inner electron is found. By constructing the Taylor
series of Vn(r) around r = 0, it can be shown that,
near the nucleus, this potential is given by

Vn(r) = 1
n2

− 2r2

3n3
+ 2r3

3n3
− · · · (12)

and, as Figure 2 demonstrates, it is remarkably flat
within the inner region. As a consequence, the inner
orbital is essentially unaffected by the SCF and the
optimized HF orbital remains extremely close to (6).

The inertness of the inner orbital greatly sim-
plified our HF calculations because, by comparing
our iterated energies with exact results for n ≤ 9
from the Hartree–Fock Applet of Froese Fischer and
Saparov [22], we found that its relaxation can be
safely neglected for n > 5. We could then find the

outer orbital by performing a single diagonalization
of the orthogonalized reduced Fock operator

F = −∇2

2
− 2

r
+ J1 − K1 (13)

in our large Slater basis. This “frozen core” approach
is, in fact, a special case of the Hartree–Fock Perturba-
tion Theory (HFPT) that we have recently developed
[17].

4. Numerical results

In Table I, we compare the zeroth-order ener-
gies from Eq. (5), our Hartree-Fock energies and the
exact energies from the free ICI method [13] for the
lowest triplet 1s ns states of the helium atom. For
convenience, we also give the resulting zeroth-order
errors �(0)

n = E(0)
n − Eexact

n and correlation energies
Ecorr = �HF

n = EHF
n − Eexact

n .
It is clear that the zeroth-order energies capture

the essential behavior of the exact energies and that,
as n grows they become increasingly accurate.At n =
24, the error of the zeroth-order energy is only 22 µEh

and the predicted ionization energy (868 µEh) differs
from the exact value (890 µEh) by less than 3%.

It is also clear that the HF energies follow the exact
energies very faithfully and that �HF

n is typically
almost two orders of magnitude smaller than �(0)

n .
At n = 24, the error of the HF energy (i.e., the corre-
lation energy) is less than 0.3 µEh and the predicted
ionization energy (889.6 µEh) differs from the exact
value (889.9 µEh) by only 0.03%. Evidently, if one is
interested in such highly excited 1s ns states, the sim-
ple Hartree-Fock approximation will be sufficiently
accurate for many purposes.

Figure 3 shows log–log plots of the variation of
�(0)

n and �HF
n with n, and reveals that both errors

decay as O(n−3). As we have discussed earlier, the
zeroth-order errors result primarily from the neglect
of the relaxation of the outer orbital and we note,
therefore, that first-order perturbation corrections
will not give useful improvements. However, almost
all of the error disappears at the HF level and the
tiny remaining error (which is simply the electron
correlation energy) can probably be understood by
a Drude or London model.

5. Concluding remarks

As this work was nearing completion, we dis-
covered an article by Kuriyan and Pritchard [23]
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TABLE I
0th-order, HF, and exact energies of triplet 1s ns states of He atom.

n −E (0)
n −E HF

n −E exact
n �

(0)
n �HF

n

2 2.125 000 00 2.174 250 78 2.175 229 38 5.0 × 10−2 9.8 × 10−4

3 2.055 555 56 2.068 484 95 2.068 689 07 1.3 × 10−2 2.0 × 10−4

4 2.031 250 00 2.036 436 42 2.036 512 08 5.3 × 10−3 7.6 × 10−5

5 2.020 000 00 2.022 582 62 2.022 618 87 2.6 × 10−3 3.6 × 10−5

6 2.013 888 89 2.015 357 34 2.015 377 45 1.5 × 10−3 2.0 × 10−5

7 2.010 204 08 2.011 117 58 2.011 129 92 9.3 × 10−4 1.2 × 10−5

8 2.007 812 50 2.008 419 01 2.008 427 12 6.1 × 10−4 8.1 × 10−6

9 2.006 172 84 2.006 595 90 2.006 601 52 4.3 × 10−4 5.6 × 10−6

10 2.005 000 00 2.005 306 75 2.005 310 79 3.1 × 10−4 4.1 × 10−6

11 2.004 132 23 2.004 361 69 2.004 364 70 2.3 × 10−4 3.0 × 10−6

12 2.003 472 22 2.003 648 33 2.003 650 63 1.8 × 10−4 2.3 × 10−6

13 2.002 958 58 2.003 096 67 2.003 098 47 1.4 × 10−4 1.8 × 10−6

14 2.002 551 02 2.002 661 30 2.002 662 73 1.1 × 10−4 1.4 × 10−6

15 2.002 222 22 2.002 311 68 2.002 312 84 9.1 × 10−5 1.2 × 10−6

16 2.001 953 13 2.002 026 69 2.002 027 64 7.5 × 10−5 9.5 × 10−7

17 2.001 730 10 2.001 791 33 2.001 792 12 6.2 × 10−5 7.9 × 10−7

18 2.001 543 21 2.001 594 71 2.001 595 38 5.2 × 10−5 6.6 × 10−7

19 2.001 385 04 2.001 428 77 2.001 429 34 4.4 × 10−5 5.6 × 10−7

20 2.001 250 00 2.001 287 45 2.001 287 93 3.8 × 10−5 4.8 × 10−7

21 2.001 133 79 2.001 166 10 2.001 166 52 3.3 × 10−5 4.1 × 10−7

22 2.001 033 06 2.001 061 14 2.001 061 50 2.8 × 10−5 3.6 × 10−7

23 2.000 945 18 2.000 969 73 2.000 970 04 2.5 × 10−5 3.1 × 10−7

24 2.000 868 06 2.000 889 65 2.000 889 92 2.2 × 10−5 2.8 × 10−7

which includes accurate HF calculations of 1s ns
states of helium. Their energies agree well with ours
for n < 20 but, beyond this, there are growing dis-
crepancies and their values imply that the correlation
energy �HF

n begins to grow. Their HF energy for
the 1s24s state, for example, implies the correlation
energy �HF

24 = 1.8 µEh, which is almost an order of

FIGURE 3. Variation of log �
(0)
n (upper) and log �HF

n
(lower) with log n.

magnitude too large. For this reason, we believe that
our energies are more accurate than theirs.
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