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We recently presented a correlation method based on the
Wigner intracule, in which correlation energies are calculated
directly from a Hartree-Fock wavefunction. We now describe
a self-consistent form of this approach which we term the
Hartree-Fock-Wigner method. The efficacy of the new scheme
is demonstrated using a simple weight function to reproduce
the correlation energies of the first- and second-row atoms
with a mean absolute deviation of 2.5 mE,,

Introduction

The electron correlation problem remains a central research area for
quantum chemists, as its solution would provide the exact energies for arbitrary
systems. Today there exist many procedures for calculating the electron
correlation energy (/), none of which, unfortunately, is both robust and
computationally inexpensive. Configuration interaction (CI) methods provide a
conceptually simple route to correlation energies and a full CI calculation will
provide exact energies but only at prohibitive computational cost as it scales
factorially with the number of basis functions, N. Truncated CI methods such as
CISD (N cost) are more computationally feasible but can still only be used for
small systems and are neither size consistent nor size extensive. Coupled cluster
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(CC) methods, which have largely superseded CI methods, in the limit can also
be used to give exact solutions but again with same prohibitive cost as full CL
As with CI, CC methods are often truncated, most commonly to CCSD (N
cost), but as before these can still only be applied to systems of modest size.
Finally, Moller-Plesset (MP) perturbation theory, which is usually used to
second order (MP2 has a N° cost), is more computationally accessible but does
not provide as robust results.

We have recently introduced the Wigner intracule (2), a two-electron phase-
space distribution. The Wigner intracule, W (4, v), is related to the probability of
finding two electrons separated by a distance » and moving with relative
momentum v. This reduced function provides a means to interpret the
complexity of the wavefunction without removing all of the explicit multi-body
information contained therein, as is the case in the one-electron density.

Electron correlation is inherently a multi-electron phenomenon, and we
believe that the retention of explicit two-electron information in the Wigner
intracule lends itself to its description (3). It has been well established that
electron correlation is related to the inter-electronic distance, but it has also been
suggested (4) that the relative momentum of two electrons should be considered
which led us to suggest that the Hartree-Fock (HF) Wigner intracule contains
information which can yield the electron correlation energy. The calculation of
this correlation energy, like HF, formally scales as N°.

Although the HF Wigner intracule can be used to estimate correlation
energies, the resulting energy is not variational with respect to the molecular
orbital (MO) coefficients, so gradients, which are needed to perform geometry
optimizations and frequency calculations, are complicated. The calculation of
such gradients is made more straightforward when using a set of MOs which
have been self-consistently optimized taking the corrections due to the
correlation energy into account. A self-consistent scheme such as this, which we
term the Hartree-Fock-Wigner (HFW) method, will now be described.

Theory

We have recently proposed (3) that the correlation energy can be estimated
from equations of the form

E = [ [P (4,)Gie (1, v)dudv (1)
0
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where Wyr (u, v) is the Wigner intracule derived from a HF wavefunction and
Gur (u, v) is a weight function. If the MOs are expanded within a basis set, the
correlation energy becomes

1
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where P;, and Pﬂ are elements of the a and # HF density matrices, P, isan
element of the total HF density matrix P =P, +P" and (uvio)g is the 10-
dimensional correlation integral

WAo)s =55 [ OAE +Dh(r+a+ 0 ()
xv? j, (qv)G(u,v)drdqdudy
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where ¢(r) is a basis function and j(x) is the zeroth-order spherical Bessel

function (5).
The HF energy is given by
Ey=) P, H, Z [P~ BoBs—BERE Juviic) @)
uv ywla

where (,uv|/10') are the usual Coulomb integrals. This expression may trivially
be combined with equation 2 to yield the HFW energy

Eppw = ZPWH v
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where (,uvllo*)HFw —(yvlla)+(,uwla)0andP is no longer a HF density
matrix element but rather a density matrix element obtained when a self-
consistent calculation is performed with the inclusion of the Wigner
perturbation.

When implementing the HFW method the extra computational cost incurred
is that of evaluating and digesting the correlation integrals. The details (6) of
calculating the (#vAo); integrals depends on the choice of G(u, v), and i in this
work gaussian  weight functions in wv and u G(u,v)= Ae ™ and

G(u,v) = Be~ mu , were chosen as these permit the 10-dimensional correlation
integral (equation 3) to be reduced to a one-dimensional integral in u. The
remaining integration is then performed by quadrature (6). Several quadrature
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schemes have been explored to approximate this final integral and it has been
found that the recently introduced MultiExp grid (7) is particularly efficient. The
form of the integrand is suitable for use with this grid as it is the product of a
power, a gaussian and a modified spherical Bessel function (5) in % and can be
approximated well by a sum of exponentials which MultiExp integrates exactly.

The digestion of the HFW integrals differs from that of HF integrals as the
(uvAo); integrals possess lower permutational symmetry than their HF
counterparts. Correlation integrals, like the Wigner integrals which make up the
Wigner intracule and unlike the conventional Coulomb integrals, have only
four-fold permutational symmetry (8)

(uvAo) = (VuoA), = (oAv) = (Aouv)g
(uvoR)g =(viAo)s = (TApv)g =(Aovig

and hence an HFW calculation is roughly twice as expensive as the same HF
calculation. When the HFW integrals are being assembled, clearly we do not wish to
compute the Coulomb integrals twice, so care must be taken to combine the correct
Coulomb and correlation integrals. It should also be pointed out that a negligibly
small Coulomb integral does not imply that the corresponding correlation integral is
negligibly small, so we currently evaluate all of the HFW integrals. A cutoff
criterion for discarding correlation integrals, analogous to the Schwarz inequality for
Coulomb integrals, would be a desirable tool and is being investigated (9).

After the HFW integrals have been assembled, we then move on to the self-
consistent field (SCF) procedure. For the most part this is the same as the HF
version (10), with the exception of constructing the Fock matrix. The Fock
matrix elements for an unrestricted HFW calculation are analogous to their HF
counterparts and are given by

6

Fl =H3C+Y P (VA )ypw — Pi (HAVO )iy, (7
Ao

F,ﬁ, = Hz(:/m + ZPAU (UVAO )ppw — PA’; (UAVO )iy )
Ao

The method usually employed to build the Fock matrix is an integral-driven
algorithm in which each integral contributes to six elements of the Fock matrix.
Due to the lower symmetry of the HFW integrals, each one contributes to only
four elements of the Fock matrix. For a given integral (#vAo ),y the upper or
lower diagonal of the o Fock matrix is built up as follows

F:v = F:lv + Pla(ﬂV/lo.).HFW

/1aa' = Zr + va(luV/lo-)'HFW

Fi =F +P5 (UVAT) pw

®

a a a '
va = Ejp + P (UVAC )ypw
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where the prime indicates that the integrals have been scaled by the number of
permutationally equivalent integrals and then by 1. After this Fock matrix is
calculated it must be corrected by multiplying the diagonal elements by a factor
of two. The # Fock matrix is constructed analogously.

Results

Currently the Hartree-Fock-Wigner method is implemented as a standalone
program, but work is underway to integrate this method into the Q-Chem (//)
package. Using a gaussian weight function, (uvAo)g has been formulated for all
s- and p-type basis functions, and is readily extensible to functions of higher
angular momentum. The results that will be considered are those for a G(u,v)
which aims to reproduce the energies of the atoms of the first and second rows.
To accomplish this, the four parameters, 4, B, { and n, in the gaussian weight
function G(u,v) = Ae™>"" +Be™™ will be fitted.

We have found that the Wigner intracule is quite insensitive to basis set size
and we expect the derived correlation energies to be similarly insensitive. In
stark contrast to the post-HF methods mentioned in the introduction, we expect
similar Wigner correlation energies from both moderate and large basis sets and
thus estimates (made using accurate experimental and theoretical data) to the
exact non-relativistic correlation energies (/2) are used in the fitting routine. The
Hartree-Fock energy, however, is much more sensitive to basis set so the target
of the HFW method will be to calculate the sum of the Hartree-Fock energy for
a given basis set and the “exact” correlation energy.

We will now examine the results obtained when the parameters of G(u,v)
are optimized for both non-SCF Wigner correlation and HFW using the 6-311G
basis set. The parameters were optimized using the BFGS quasi-Newton method
given in ref (13). The two resulting weight functions are as follows

Gigr (u,v) = —0.135433¢03030895™% | 04 8303254560 (10)
Gipw (,v) = ~0.13541060303715¢ | () 0423270 344968 (n

Table I shows the energies obtained when non-SCF and HFW calculations
are performed using each of the functions given in equations 10 and 11.
Excellent agreement is seen between the exact and calculated values when using
the appropriate function for a given calculation type, with mean absolute
deviations of 2.6 mE, and 2.5 mE; and the maximum absolute deviations being
6.8 mE; and 7.1 mE, in the case of the nitrogen atom.



32

Table I: Errors in Non-SCF and HFW Energies *

Calc. Type Non-SCF HFW

Function ijpeb Total Gyr Gurw Gyr Gurw
He -2.9019 -0.8 -0.8 -0.8 -0.8
Li -7.4096 0.8 0.7 1.0 0.9
Be —14.6662 -0.7 -0.7 -0.6 -0.6
B —24.6519 0.6 0.6 0.6 0.7
C -37.8424 3.1 33 32 3.3
N -54.5863 6.8 7.0 6.9 7.1
(0] —75.0604 -0.6 -04 -0.5 -0.3
F -99.7186 -4.0 -3.9 -3.9 -39
Ne -128.9130 -6.2 -6.3 -6.1 -6.2
Na -162.2416 -3.7 —4.1 -3.0 -34
Mg -200.0448 2.6 2.1 2.9 2.4
Al -242.3396 3.0 2.5 33 2.8
Si -289.3528 2.1 1.8 2.3 2.0
P -341.2476 2.1 2.1 2.3 2.3
S ~398.0999 2.3 -2.0 2.1 -1.8
Cl -460.1355 =33 2.7 -3.2 -2.5
Ar —527.5287 1.0 1.9 1.2 2.1
Mean” 2.6 2.5 2.6 2.5
Max® 6.8 7.0 6.9 7.1

“ Total energies in Eh and errors in mE,

®From equations 10 and 11

¢ Sum of HF/6-311G and exact correlation energies
¢ Mean Absolute Deviation

¢ Maximum Absolute Deviation
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Table II: Errors in HFW/STO-3G Energies®

Total’ HFW
He —2.8498 ~0.6
Li ~7.3609 5.3
Be -14.4462 -0.2
B -24.2738 0.5
C —37.3548 1.9
N -53.9073 5.0
o} ~74.0621 -1.3
F -98.311 -3.1
Ne -126.995 -3.3
Na -160.064 20.2
Mg -197.4456 17.4
Al -239.328 11.8
Si -285.9712 4.1
P -337.409 -0.2
S -393.735 -7.7
Cl —455.2082 -9.1
Ar —521.945 -6.9
Mean® 5.8
Max? 20.2

“ Total energies in £, and errors in m&,

® Sum of HF/STO-3G and exact correlation energies
¢ Mean Absolute Deviation

¢ Maximum Absolute Deviation

As expected only minor differences are seen between the results obtained
when the correct and incorrect fits are used for each calculation type and this is
reflected in the similarity of the weight functions.

We predicted above that the Wigner correlation energies should not be very
sensitive to the basis set used. The validity of this will now be examined. Table
IT shows the result of using the HFW weight function optimized for the 6-311G
basis set applied to the STO-3G basis set. Again, we cannot expect to reproduce
the HF/6-311G energy at the STO-3G level so the total energies now use the
HF/STO-3G energy add to the exact correlation energy. Good agreement is seen
with the mean absolute deviation increasing to 5.8 mEy, and the maximum
absolute deviation being 20.2 mE;, in the case of the sodium atom.

To investigate the magnitude of the effect that the inclusion of the
correlation integrals has, we will look at the change in the density matrix. It is
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expected that the change induced on going from HF to HFW will be small so the
ratio of a HF density matrix element to its HFW counterpart should be close to
unity. Because the maximum deviation in energy occurs in the case of the N
atom, it has been chosen to exemplify the change in the density matrix. Our
prediction that the induced change will be small is correct with the largest
deviation from unity being 0.9854 in the case of the most diffuse p-functions.

Conclusions

We have described a self-consistent field method for calculating correlation
energies based on the Wigner intracule. This method involves a perturbation to
the usual two-electron integrals. The implementation of this method is very
similar to the HF method and complications arise only from the calculation of
the new correlation integrals and from the low permutational symmetry of the
HFW integrals. It has been shown that HFW, using a simple weight function,
can accurately estimate the correlation energies of the first- and second-row
atoms with a mean absolute deviation of 2.5 m£E,. This weight function is used
only to highlight some of the features of this new method and we are investing
much effort into findings forms of G(»,v) which work more generally. We are
considering spin-separated weight functions as it is known that the majority of
the correlation energy arises from pairs of electrons with opposite spins. Hence,
we use one weight function for the parallel-spin intracule and another for the
antiparallel-spin intracule. This a straightforward extension of the method
described above. Work is also underway to see how derivatives from the HFW
method perform when used to optimize geometries and calculate vibrational
frequencies (/4).
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