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We present a radical approach to the calculation of electron correlation energies. Unlike

conventional methods based on Hartree–Fock or density functional theory, it is based on the two-

electron phase-space information in the Omega intracule, a three-dimensional function derived from

the Wigner distribution. Our formula for the correlation energy is isomorphic to the Hartree–Fock

energy expression but requires a new type of four-index integral. Preliminary results, obtained using

a model that is based on the known correlation energies of small atoms, are encouraging.

1. Introduction

Coulomb’s Law seems straightforward: particles of the same

charge repel; opposites attract. But the deceptive simplicity of

inverse-square laws yields surprising complexity even in very

small systems. The classical three-body problem defeated the

brightest minds of the 19th century and the quantum analogue

proved equally resistant in the 20th. In the helium atom, for

example, the two electrons dodge and weave as they seek to

remain close to the nucleus but far from each other and,

despite 80 years of work, an exact mathematical description of

their motion still remains undiscovered.

Although an exact solution to the electronic Schrödinger

equation1 appears unlikely, the development of effective ap-

proximations brings rich rewards since the ability to calculate

molecular energies accurately allows the ab initio determina-

tion of structure, bonding and reactivity and has ramifications

within biochemistry, materials science and medicine.

In the early days of quantum theory, Hartree introduced the

orbital approximation2 wherein each electron is assumed to

move independently in the mean field of all others and this was

subsequently modified by Fock3 to accommodate the require-

ments of the Pauli principle. Though the Hartree–Fock (HF)

model is simpler than the Schrödinger formulation, the asso-

ciated integro-differential equations are still difficult to solve in

polyatomic systems. However, if the orbitals are expanded in a

finite basis set, the more tractable Roothaan–Hall eigenvalue

equations emerge4,5 and intensive efforts over the last thirty

years have led to algorithms6 for these whose computational

cost grows only linearly with the size of the molecular system.

Using such methods and a standard PC, one can now perform

a finite-basis HF calculation on a system with a few hundred

atoms in a few hours.7

HF theory often yields fairly accurate predictions of mole-

cular structure but it is less satisfactory for most other proper-

ties. In particular, its mean-field treatment of electron motion

cannot account properly for the formation of an electron pair

during bond formation and it is therefore usually necessary to

go beyond the HF model and explicitly include the fact that

the motions of the electrons are correlated. Allowing the

electrons to avoid one another stabilizes the system and the

difference between its exact many-body energy and its HF

energy is known8 as the correlation energy Ec. The task of

calculating it is known as ‘‘the correlation problem’’ and has

been the single greatest challenge to the progress of quantum

chemistry since the subject’s inception in 1927.

Models of electron correlation fall into two broad classes.

Those in the first class, which include configuration interac-

tion, Møller–Plesset perturbation theory and coupled cluster

theory,9 are based on the mathematical observation that an

improved wavefunction can be formed by linearly combining

eigenfunctions of the HF Hamiltonian. Although in the limit

these methods provide exact results, they are intrinsically

inefficient because they have to approximate the derivative

discontinuities in the exact wavefunction10 by sums of smooth

functions. As a consequence, their computational costs be-

come prohibitive even for quite small systems. This is the price

that one pays for using a mathematically, rather than physi-

cally, motivated model.

The second class of models comprise the density-functional

theories (DFT) and are based on the Hohenberg–Kohn theo-

rem11 which states that the exact energy of the ground state of

a system is a unique functional of the exact electron density

r(r). Because r(r) is a much simpler object than the wavefunc-

tion, DFT calculations are relatively inexpensive and have

become the most popular tools in quantum chemistry. How-

ever, although the existence of the unique Hohenberg–Kohn

functional is proven, its form is unknown and the search for

useful surrogates continues and has become increasingly em-

pirical in recent years.12 Many functionals are now available,

each with its own strengths and weaknesses, but none entirely

satisfactory. Moreover, it appears unlikely that one-electron

DFT models will ever be able to treat intrinsically two-electron

phenomena such as dispersion energies.13
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Although the pursuit of more accurate functionals is un-

likely to cease for some time, it is worth pausing to ask

whether r(r) is really the best starting point for calculations

of electron correlation. After all, r(r) measures the probability

of finding one electron at the point r and yet electron correla-

tion is concerned with the stabilization achieved when two

electrons manage to avoid each other. Isn’t it more natural, as

Hylleraas emphasized when he used a wavefunction for the

helium atom that explicitly includes the interelectronic dis-

tance,14 to base an electron correlation model on the two-

electron density? The answer is that, although this is certainly

an attractive idea, a mechanism must be found by which two-

electron information can be included without significantly

degrading the computational advantages enjoyed by DFT.

This has proven to be a major challenge.

If it is agreed that information about pairs of electrons is

useful for understanding electron correlation, one must then

ask which property of the two electrons should be included

and how this is best incorporated. The most obvious candidate

is the interelectronic distance u ¼ |r1 � r2 | for one instinctively

expects electrons that are close together to be strongly corre-

lated. However, the naı̈veté of this expectation becomes clear

when one considers the sequence of ground-state helium-like

ions H�, He, Li1, . . ., whose exact and HF energies are

known15,16 to be

Eexact ¼ �Z2 þ 5
8
Z � 0:15767þOðZ�1Þ ð1:1Þ

EHF ¼ �Z2 þ 5
8
Z � 0:11100þOðZ�1Þ ð1:2Þ

where Z is the nuclear charge of the ion. It follows from these

that Ec ¼ �0.04667 þ O(Z�1) and the correlation energy

therefore tends toward a constant as the nuclear charge

increases. Thus, for example, although the two electrons in

the U901 ion are generally much closer together than those in

the Ne81 ion, the resulting correlation energies are almost

equal. This counterintuitive discovery clearly reveals the in-

sufficiency of u as a correlation indicator.

A few years ago, Rassolov argued17 that not only the

separation u, but also the relative momentum v ¼ |p1 � p2 |,

of two electrons influence the extent of their correlation.

Rassolov’s insight immediately explains the similarity in the

correlation energies of the helium-like ions: as Z increases, the

mean separation hui decreases as 1/Z, but the mean relative

momentum hvi grows as Z and, evidently, these two effects

cancel rather precisely. On this basis, we speculate that the

variable s¼ uvmay be a useful correlation indicator and, more

generally, we are led to consider models that make use of both

position and momentum information.

However, although a simple Fourier transform allows us to

interconvert the position-space wavefunction C(r1,. . .,rn) and

momentum-space wavefunction F(p1,. . .,pn) of an n-electron

system, a basic tenet of quantum mechanics forbids the

construction of a joint position–momentum wavefunction.

This intrinsic limitation is intimately connected with the

Heisenberg uncertainty principle and is one of the key features

that distinguishes classical mechanics from its quantum

successor. Likewise, the position-space probability density

function |C(r1,. . .,rn) |
2 and its momentum-space analogue

|F(p1,. . .,pn) |
2 are unproblematic but there is no comparable

joint probability density.

One might imagine, therefore, that an electron correlation

model based simultaneously in both position and momentum

space would be fraught with fundamental difficulties! None-

theless, in this article, we develop Rassolov’s idea into an

approach for estimating the correlation energy in any system.

Our starting point is Wigner’s phase-space distribution, from

which we derive a number of simpler functions called intra-

cules, which we then use as the foundations for a variety of

electron correlation models. We have implemented and tested

the simplest of these and present results for a number of atoms

and the H2 molecule. Except where otherwise noted, the

6-311G basis set and atomic units are used throughout.

2. Wigner distributions and intracules

2.1. Wigner distribution

Although a quantum mechanical joint position–momentum

probability density does not exist, Szilard and Wigner were

undeterred by this discouraging news and, in a triumph of

mathematics over physics, managed to construct a function

Wn(r1,. . .,rn,p1,. . .,pn) ¼ p�3n
R

. . .
R
c(r1 þ q1,. . .,rn þ qn)

*c(r1 � q1, . . ., rn � qn)e
2i(p1 � q11. . .1pn � qn) dq1. . .dqn (2.3)

that behaves, in many ways, as the notional joint probability

density should.18 One of its chief weaknesses is that, although

it is everywhere real, it is not everywhere positive. Nonetheless,

as Wigner wrote, Wn(r1,. . .,rn,p1,. . .,pn) ‘‘cannot be really

interpreted as the simultaneous probability for coordinates

and momenta [but] this must not hinder the use of it in

calculations as an auxiliary function which obeys many rela-

tions we would expect from such a probability.’’ Such splendid

optimism (in which physics trumps mathematics) will also be

our unashamed policy throughout this article.

A distribution that possesses some, but not all, of the

mathematical properties required of a probability density is

often called a ‘‘quasi-probability’’ density. The Wigner distribu-

tion is such an object, and so are most of the intracules discussed

below. However, for the sake of brevity, we will usually drop the

prefix and use the term ‘‘probability’’ throughout this article. We

hope that the reader will tolerate our laxity.

We note in passing that, although it is the oldest, the Wigner

distribution is not the only possible phase-space distribution and

several others have been developed over the years. We will not

consider these alternatives in this article but it is worth pointing

out that the Husimi distribution19–22 is everywhere positive and,

in a sense, more Heisenberg-friendly. There are two reasons for

preferring theWigner distribution to the Husimi analogue. First,

the Husimi distribution contains an adjustable parameter (called

k in ref. 40) but it is not clear how to assign a value to this.

Second, the Husimi distribution is somewhat more mathemati-

cally complicated than the Wigner one.

2.2. Reduced Wigner distribution W2(r1,r2,p1,p2)

The n-electron Wigner distribution is a complicated function

of 6n coordinates (excluding spin) and it is even less intelligible

than the 3n-coordinate wavefunctions to which it is equivalent.
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However, since our interest lies primarily in the behaviour of

pairs of electrons, it is sensible to ask whether a two-electron

function can be distilled out of the Wigner distribution. The

distillation turns out to be easy,23 requiring only an integration

over all of the uninteresting variables, and yielding the second-

order reduced Wigner distribution

W2(r1,r2,p1,p2) ¼
R

. . .
R
Wn(r1,. . .,rn,p1,. . .,pn) dr3. . .drn

dp3. . .dpn (2.4)

which can be interpreted as the joint probability of the

positions and momenta of two electrons in the n-electron

system. Unfortunately, this distribution also has many nega-

tive regions and has received little attention but the first-order

reduced Wigner distribution

W1(r, p) ¼
R R

W2(r, r0, p, p0) dr0 dp0 (2.5)

has been studied. Following pioneering work by Dahl and

Springborg, W1(r,p) has been calculated for a variety of small

atoms and molecules.24–30

2.3. Omega intracule X(u,v,x)

The reduced Wigner distribution W2(r1,r2,p1,p2) is a much

simpler object than the full Wigner distribution

W(r1,. . .,rn,p1,. . .,pn) but is nonetheless a function of 12 vari-

ables and remains a conceptually formidable entity. Once

again, we ask whether it is possible to effect another reduction

without losing important information.

A key insight comes from the recognition that the physics of

electron correlation depends less on the absolute positions and

momenta of two electrons than on their relative position r12 ¼
r1 � r2 and relative momentum p12 ¼ p1 � p2. Further thought

along these lines leads one to suspect that the absolute direc-

tions of the vectors r12 and p12 are less important than their

magnitudes r12 and p12 but that the dynamical angle yuv
between them may be significant. We argue therefore that

most of the important information in W2(r1, r2, p1, p2) is

captured by the three key variables, r12, p12 and yuv, whose
joint probability density is

Oðu; v;oÞ ¼
Z

W2ðr1; r2; p1; p2Þdðyuv � oÞ

� dðr12 � uÞdðp12 � vÞdr1 dr2 dp1 dp2

¼ 1

p6

Z
r2ðr1 þ q1; r1 � q1; r2 þ q2; r2 � q2Þ

� e2iðp1�q1þp2�q2Þdðyuv � oÞdðr12 � uÞ

� dðp12 � vÞdr1 dr2 dp1 dp2 dq1 dq2

¼ 1

p6

Z
r2ðrþ q1; r� q1; rþ uþ q2; rþ u� q2Þ

� e2iðp�q1þðpþvÞ�q2Þdðyuv � oÞdrdpdq1 dq2 dXudXv

¼ 1

8p3

Z
r2ðr; rþ q; rþ uþ q; rþ uÞ

� eiq�vdðyuv � oÞdrdqdXudXv

ð2:6Þ

where Xu and Xv are the angular parts of u and v, respectively,

and r2 is the spinless second-order reduced density matrix31 or

2-RDM. We call this the Omega intracule.

Choosing u to be the polar axis of v and integrating over

Xv yields

Oðu; v;oÞ ¼ v2 sino
4p2

Z
r2ðr; rþ q; rþ uþ q; rþ uÞ

� J0ðqv sino sin yÞeiqv coso cos ydrdqdXu

ð2:7Þ

(where J0(x) is the usual Bessel function) from which it is

trivial to prove that O(u,v,o) ¼ O(u,v,p � o), as required by

time-reversal symmetry.32 Likewise, all of the intracules con-

sidered below also inherit this property.

Notwithstanding its questionable credentials, the Omega

intracule is a versatile function that often behaves as if it were

a proper probability density. For example, if it is constructed

from a HF wavefunction, it yields the two-electron energy

EJ þ EK ¼ hViO ¼
Z 1
0

Z 1
0

Z p

0

Oðu; v;wÞ 1
u
dodvdu ð2:8Þ

and the relative-motion component of the kinetic energy

Erel
T ¼ hTiO
¼
Z 1
0

Z 1
0

Z p

0

Oðu; v;wÞ v2

2ðn� 1Þ dodvdu ð2:9Þ

(but not the smaller centre-of-mass component33) as expecta-

tion values of the traditional operators. Later in this article, we

will speculate that the correlation energy can be written

similarly, in terms of an analogous correlation operator G.

In determinant-based quantum chemical calculations using

one-electron basis functions fa(r), the spinless second-order

density matrix can be written as

r2ðr01; r02; r1; r2Þ ¼
X
abcd

Gabcdfaðr01Þfbðr02Þfcðr1Þfdðr2Þ ð2:10Þ

where Gabcd is a two-particle density matrix element. Thus, we

have

Oðu; v;oÞ ¼
X
abcd

Gabcd ½abcd�O ð2:11Þ

where we have introduced the ten-dimensional Omega integral

½abcd�O ¼
1

8p3

Z
faðrÞfbðrþ qÞfcðrþ uþ qÞfdðrþ uÞ

� eiq�vdðyuv � oÞdrdqdXudXv

ð2:12Þ

These are more difficult than the analogous [ab |cd] Coulomb

integrals but the usual approach,34 in which the fundamental

[ssss]O integral is found and differentiated with respect to the

coordinates of the Gaussians, remains applicable. We return

to this later in this article.

As well as being an interesting function in its own right,

O(u,v,o) is the progenitor of a family (Fig. 1) of other

intracules of which only two, the Position and Momentum

intracules, had been discussed in the literature prior to 2003.

The remainder of this section discusses several of the members

of this family.

This journal is �c the Owner Societies 2006 Phys. Chem. Chem. Phys., 2006, 8, 15–25 | 17



2.4. Wigner intracule W(u,v)

There are several ways in which the Omega intracule can be

reduced further. The most obvious is simply to integrate over

one of its three arguments. For example, integration over the

dynamical angle yields a function

Wðu; vÞ ¼
Z p

0

Oðu; v;oÞdo

¼ 1

8p3

Z
r2ðr; rþ q; rþ uþ q; rþ uÞ

� eiq�vdrdqdXudXv

ð2:13Þ

that we have previously called the Wigner intracule.35 This can

be interpreted as the joint probability density of r12 and p12,

without regard to o. We have shown how W(u,v) can be

calculated for Hartree–Fock wavefunctions employing Gaus-

sian basis functions,36 and we have applied this to perform

detailed studies of the helium and hookium atoms37,38 (in

hookium the electron–electron interaction is Coulombic but

the electron–nuclear interactions follow Hooke’s law) and to

survey a range of atomic and molecular ground and excited

states.36,39

The Wigner intracules of most systems are found to possess

small negative regions. This reminds us that they are not bona

fide probability densities and it also prompts us to ask whether

such negative regions are an essential feature of phase-space

distributions. One of us has recently shown40 how to condense

the reduced Husimi distribution Z2(r1,r2,p1,p2) to the Husimi

intracule H(u,v) and has argued that the latter, which is

everywhere non-negative, can be interpreted rigorously as a

joint probability distribution.

2.5. Lambda intracule K(s,x)

The Omega intracule can also be reduced by combining two of

its variables. Since the product s ¼ uv appears to be important

in the context of electron correlation, it is of interest to

combine the u and v coordinates in this way to yield a novel

two-dimensional function

Lðs;oÞ ¼
Z 1
0

Oðu; s=u;oÞu�1 du ð2:14Þ

that gives the joint probability density of s and o.

2.6. Position intracule P(u)

The two-dimensional Wigner and Lambda intracules are reduced

forms of O(u,v,o) but, as Fig. 1 shows, each can itself be further

reduced to yield various one-dimensional intracules. For exam-

ple, integrating the Wigner intracule over v yields the function

PðuÞ ¼
Z 1
0

Wðu; vÞdv

¼
Z

r2ðr; r; rþ u; rþ uÞdrdXu ð2:15Þ

that gives the probability density of finding two electrons at a

distance u. This was the original intracule and was discussed in

the seminal paper by Coulson and Neilson.41 Unlike most of the

others discussed in this article, it is a rigorous probability density

and has been widely studied; see ref. 35 and 42 and references

therein.

2.7. Momentum intracule M(v)

If, instead, the Wigner intracule is integrated over u, one

obtains the function

MðvÞ ¼
Z 1
0

Wðu; vÞdu ð2:16Þ

that gives the (rigorous) probability density of finding two

electrons with relative momentum v. This intracule was intro-

duced by Banyard and Reed43 and has been investigated by a

number of researchers, especially Koga; see ref. 35 and 44 and

references therein.

2.8. Action intracule A(s)

If the Lambda or Wigner intracule is appropriately integrated,

it affords the function

AðsÞ ¼
Z p

0

Lðs;oÞdo ¼
Z 1
0

Wðu; s=uÞu�1 du ð2:17Þ

that gives the probability distribution of s and which we have

called the Action intracule. We have calculated it for HF

wavefunctions of the He, Li and Be atoms,35 the Kellner

wavefunction of the He-like ions,38 and the exact wavefunctions

of the lowest singlet and triplet states of hookium in the high-

density limit.45 (The high-density limit is where the Hooke’s law

force constant tends to infinity.) In each of these cases,A(s) turns

out to be a disarmingly dull unimodal function.

2.9. Dot intracule D(x)

The Lambda intracule can also yield the probability density

D(x) of the dot product

x ¼ u � v ¼ d

dt

1

2
mu2

� �
ð2:18Þ

which, in a classical picture, gives the rate of change of r212. It is

not difficult to show that D(x) is even and that

DðxÞ ¼
Z 1
x

Lðs;oÞ
s sino

ds ðx � 0Þ ð2:19Þ

Fig. 1 Hierarchical relationships between intracules.
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2.10. Angle intracule ! (x)

If the Lambda intracule is integrated over s, one obtains the

function

UðoÞ ¼
Z 1
0

Lðs;oÞds ð2:20Þ

that gives the probability density of finding two electrons with

dynamical angle o.

2.11. Omega intracule for n particles in a harmonic well

The Omega intracule of the ground state of n non-interacting

fermions in a harmonic well can be found in closed form and it

is illuminating to construct it for a few values of n. If n ¼ 2,

both particles occupy the c0(x)c0(y)c0(z) orbital and the

wavefunction is

Cðr1; r2Þ ¼
2a
p

� �3=2

exp½�aðr21 þ r22Þ� ð2:21Þ

We therefore obtain

Oðu; v;oÞ ¼ a3

p6

Z
exp½�aðr2 þ jrþ qj2 þ jrþ uþ qj2 þ jrþ uj2Þ�

� eiq�vdðyuv � oÞdrdqdXudXv

¼ a3

p6

Z
exp½�aðu2 þ q2 þ 4 jrþ ðuþ qÞ=2j2Þ�

� eiq�vdðyuv � oÞdrdqdXudXv

¼ 1

8p3
exp �au2 � v2

4a

� � Z
dðyuv � oÞdXudXv

¼ u2v2 sino
p

exp �au2 � v2

4a

� �
ð2:22Þ

This intracule is atypical in two ways: first, it is non-negative

everywhere; second, it is a product of a function of u, a

function of v and a function of o implying that, in this system,

the three variables are statistically independent.

The Omega intracules for 3r nr 8 can be found similarly.

The ground state is usually degenerate but, in each case, we

have chosen the spin multiplicity and configuration that

most closely resemble the analogous ground-state atom. Each

intracule turns out to be a linear combination of the six

normalized integrals

ðssssÞO ¼
u2v2e�z sino

p
ð2:23Þ

ðxxssÞO ¼
u2v2e�z sino

3p
z ð2:24Þ

ðsxxsÞO ¼
u2v2e�z sino

3p
ð3� zÞ ð2:25Þ

ðxxyyÞO ¼
u2v2e�z sino

15p
z2 þ u2v2 sin2 o

2

� �
ð2:26Þ

ðxyyxÞO ¼
u2v2e�z sino

15p
z2 � 10zþ 15þ u2v2 sin2 o

2

� �
ð2:27Þ

ðxxxxÞO ¼
u2v2e�z sino

15p
ð3z2� 10zþ15� u2v2 sin2 oÞ ð2:28Þ

where z ¼ au2 þ n2/4a, and the intracules, together with

their multiplicities and configurations, are listed in

Table 1. One finds that all share the trivial o-dependence
found in the n ¼ 2 case but this simplicity is peculiar to

uncoupled harmonic oscillators. They can be integrated to

obtain the lower intracules in Fig. 1 and some of these are also

listed in the Table.

Such harmonic ensembles are sufficiently simple that all

of their intracules and related properties can be found

in closed form and yet their intracules are surprisingly

similar to those of qualitatively analogous atoms. The n ¼ 8

case, for example, has an outer shell of six particles in three

orbitals and can be viewed as a crude model of the Ne atom.

Its Action and Dot intracules, which are plotted in Fig. 2 and

3, are

AðsÞ ¼ 2s2

p
½s2K2ðsÞ þ 7sK1ðsÞ � 8K0ðsÞ� ð2:29Þ

DðxÞ ¼ 1

p
½x3K3ðxÞ þ 7x2K2ðxÞ � 8xK1ðxÞ� ð2:30Þ

where the Kn are modified Bessel functions of the third kind.

A(s) is positive for most values of s and decays exponentially

for large s but is slightly negative for s t 0.5, reminding us

that Action intracules are not proper probability densities.

D(x) is almost bell-shaped but has a small dip around x ¼ 0.

Table 1 Intracules for n fermions in a harmonic well

n Multiplicity Configuration Oðu; v;oÞ= u2v2e�zsino
p AðsÞ= 2s2

p DðxÞ= 1
p

2 Singlet s2 1 K0 K1

3 Doublet s2x1 z K1 K2

4 Triplet s2x1y1 8
3
z� 2 8

3
K1 � 2K0

8
3
K2 � 2K1

5 Quartet s2x1y1z1 5z � 5 5K1 � 5K0 5K2 � 5K1

6 Triplet s2x2y1z1 1
3
z2 þ 16

3
z� 5 1

3
K2 þ 5K1 � 5K0

1
3
K3 þ 5K2 � 5K1

7 Doublet s2x2y2z1 2
3
z2 þ 19

3
z� 6 2

3
K2 þ 17

3
K1 � 6K0

2
3
K3 þ 17

3
K2 � 6K1

8 Singlet s2x2y2z2 z2 þ 8z � 8 K2 þ 7K1 � 8K0 K3 þ 7K2 � 8K1

z ¼ au2 þ v2/(4a) Kn � snKn(s) Kn � xnKn(x)
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These descriptions also apply to the corresponding intracules

of the Ne atom which are, of course, much more complicated

to compute.

2.12. Fundamental Omega integral [ssss]X

The Omega integral over four s-type Gaussian functions is

more difficult. If their centres are {A,B,C,D} and exponents

are {a,b,g,d}, it is helpful to introduce the scalars

l2 ¼ ad
aþ d

þ bg
bþ g

ð2:31Þ

4m2 ¼ 1

aþ d
þ 1

bþ g
ð2:32Þ

Z ¼ a
aþ d

� b
bþ g

ð2:33Þ

x ¼ a þ b þ g þ d (2.34)

R ¼ adjA�Dj2

aþ d
þ bgjB � C j2

bþ g
ð2:35Þ

and the vectors

P ¼ 2adðA�DÞ
aþ d

þ 2bgðB � CÞ
bþ g

ð2:36Þ

Q ¼ aAþ dD

aþ d
� bB þ gC

bþ g
ð2:37Þ

V ¼ ðgþ dÞuþ ðbþ gÞq� ðaAþ bB þ gC þ dDÞ
aþ bþ gþ d

ð2:38Þ

and to define w to be the angle between P and Q. We can then

write

½ssss�O ¼
1

8p3

Z
expð�ajr� Aj2 � bjrþ q� Bj2 � gjrþ uþ q� C j2Þ

� expð�djrþ u�Dj2Þeiq�vdðyuv � oÞdrdqdXudXv

¼ 1

8p3

Z
exp �R� l2u2 � P � u� jqþQ þ Zuj2

4m2
� xjrþ V j2

" #

� eiq�vdðyuv � oÞdrdqdXudXv

¼ expð�R� l2u2 � m2v2 � iZuv cosoÞ
8ðaþ dÞ3=2ðbþ gÞ3=2

�
Z

expðP � uþ iQ � vÞdðyuv � oÞdXudXv

¼p2u2v2 sinoexpð�R� l2u2 � m2v2 � iZuv cosoÞ
ðaþ dÞ3=2ðbþ gÞ3=2

� 1

p

Z p

0

i0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ y cos t
p

Þdt

ð2:39Þ

where

x ¼ (Pu)2 þ (iQv)2 þ 2(Pu)(iQv) cos w cos o (2.40)

y ¼ 2(Pu)(iQv) sin w sin o (2.41)

and i0(x) ¼ x�1sinh x. We have not been able to evaluate

the integral over t in closed form, but it seems to respond

well to equal-weight n-point quadrature using

tk ¼ cos½ðk� 1
2
Þp
n
�.

We note that, in general, [ssss]O is complex but its conjugate

occurs elsewhere in the sum (2.11) and the total intracule

O(u,v,o) is therefore real.

Because the number of Omega integrals grows with

the fourth power of the size of the basis set, it is essential to

be able to determine quickly that an individual integral is

negligible so that its computation can be avoided. To this end,

one requires a simple but rigorous upper bound on the

magnitude of [abcd]O and, for example, it is possible to show

that

½ssss�O
�� �� � p2u2v2 sino expð�R� l2u2 � m2v2 � iZuv cosoÞ

ðaþ dÞ3=2ðbþ gÞ3=2
i0ðPuÞ

�����
�����

ð2:42Þ

However, this bound is not uniformly tight and improved

versions are being sought.46

If A, B, C and D are collinear, we have y ¼ 0 and eqn (2.39)

reduces to

½ssss�O ¼
p2u2v2 sino expð�R� l2u2 � m2v2 � iZuv cosoÞ

ðaþ dÞ3=2ðbþ gÞ3=2
i0ð

ffiffiffi
x
p
Þ

ð2:43Þ

Integration of eqn (2.43) over o yields the collinear funda-

mental Wigner integral and this can be reduced to a messy

expression involving the complex error function.36

Fig. 2 Action intracule for eight fermions in a harmonic well.

Fig. 3 Dot intracule for eight fermions in a harmonic well.
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If A, B, C and D are concentric, we have x ¼ y ¼ R ¼ 0 and

eqn (2.39) reduces to

½ssss�O ¼
p2u2v2 sino expð�l2u2 � m2v2 � iZuv cosoÞ

ðaþ dÞ3=2ðbþ gÞ3=2

ð2:44Þ

3. Intracule-based correlation models

If it was clear after Section 1 that it is desirable to improve our

attack upon the electron correlation problem by admitting

two-electron information, but unclear how precisely to do this,

the foregoing Section reveals that we now suffer from an

embarrassment of riches!

Suppose that we have derived the Omega intracule from the

HF wavefunction of a system. Then—provided that we are

willing to blur the distinction between a true probability

density and a quasi-probability density—we have an impress-

ively detailed picture of the dynamical behaviour of the

electrons within the system. We know, for any given values

of u, v and o, the likelihood of finding two electrons at a

distance u and moving with a relative speed v at a dynamical

angle o. But how can we exploit this to predict correlation

energies?

Gilbert’s theorem47 is the reduced density matrix analogue

of the Hohenberg–Kohn theorem, assuring us that the first-

order reduced density matrix (1-RDM) contains sufficient

information to reconstruct the Hamiltonian and, therefore,

all other properties of the system. The corresponding theorem

for the Omega intracule, which would guarantee that

Ec ¼ F[O(u,v,o)] (3.45)

for some universal functional F, has not yet been proven but

we hope that this deficiency will be rectified in the near future.

In the meantime, we will proceed presumptively and see what

can be achieved.

Inspired by second-order perturbation theory, we posit that

the exact correlation energy is the sum of contributions from

each of the n(n � 1)/2 pairs of electrons in the system and, by

analogy with eqns (2.8) and (2.9), we conjecture that it can be

written

Ec ¼ Gh iO¼
Z1
0

Z1
0

Zp
0

Oðu; v;oÞGðu; v;oÞdodvdu ð3:46Þ

where the correlation kernel G(u,v,o) is a universal function.

Substituting eqns (2.11) and (2.12) into eqn (3.46), one finds

that the correlation energy is

Ec ¼
X
abcd

Gabcd ½abcd�G ð3:47Þ

where we have introduced the correlation integrals

½abcd�G ¼
1

8p3

Z
faðrÞfbðrþ qÞfcðrþ uþ qÞ

� fdðrþ uÞeiq�vGðu; v;oÞdrdqdudv

ð3:48Þ

These last two equations embody one of the key ideas of this

article.

If we assume that our conjecture is either correct or nearly

so, the practical usefulness of this approach to the electron

correlation problem depends simply on the degree to which the

correlation integrals in eqn (3.48) can be computed both

accurately and efficiently. It follows from the penultimate line

of eqn (2.39) that the fundamental Gaussian correlation

integral is

½ssss�G ¼
1

½4ðaþ dÞðbþ gÞ�3=2
ZZ

expð�l2u2 � m2v2 � iZu

� v� P � u� iQ � v� RÞ � Gðu; v;oÞdudv

ð3:49Þ

which has a very pleasing symmetry. Integrals of higher

angular momenta can be constructed from this by differentia-

tion with respect to the coordinates of the Gaussian centres.34

We do not know how to construct the exact G(u,v,o) but it
is possible to derive properties that it must satisfy45 and we

anticipate that, much as in DFT, these will be used to guide the

construction of progressively more accurate approximations.

One elementary property, that G(u,v,o) ¼ G(u,v,p � o), is a
consequence of time-reversal symmetry.

Special cases emerge for constrained approximations to the

kernel. For example, if the correlation kernel depends on

s ¼ uv but is independent of o, (2.46) becomes

Ec ¼ hGiA ¼
Z1
0

AðsÞGðsÞds ð3:50Þ

This particular simplification was originally motivated by the

observations of Section 1 and we have explored it in depth.

Accordingly, although Fondermann et al. have deduced from

numerical evidence that this form of G may be insufficiently

flexible to describe changes in Ec during bond stretching,48 we

will focus on it for the remainder of this article.

Using thought-experiment as our guide, what can we say

about the likely form of G(s)? Suppose that we were able to

‘‘switch off’’ the HF approximation so that the electrons in our

system were suddenly able to avoid one another. It seems

likely that the electrons most inclined to exploit this new

freedom would be those that are close together and moving

relatively slowly, that is, those for which s is small. In contrast,

we anticipate the weakest correlation effects for electrons that

are far apart and moving relatively quickly, that is, those for

which s is large. Thus, we expect G(s) to be a decaying function

of s.

4. Numerical results

4.1. Illustrative intracules

We have previously reported intracules for various atoms and

molecules, in ground and excited states,35,37–39,45 but some

illustrations at this point may nonetheless be helpful. Fig. 4

shows the HF/6-311G Wigner intracule for a ground-state

beryllium atom whose 1s and 2s orbitals are each doubly

occupied. Suppose that two of the electrons are observed. If
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both are in the 1s orbital, they will tend to be close together

and moving rapidly, yielding the peak at (u,v) E (0.55,3.3). If

both are in the 2s orbital, they will usually be further apart and

moving relatively slowly, yielding the peak at (u,v) E
(3.0,0.68). If one is in the 1s and the other is in the 2s orbital

(which is four times as likely as either of the other possibi-

lities), intermediate u and v values arise, giving the peak at

(u,v) E (2.1, 2.2).

Fig. 5–7 show the Angle, Lambda and Dot intracules of the

Be atom. Their symmetries about o ¼ p/2 and x ¼ 0 are

obvious but these plots do not otherwise appear as immedi-

ately informative as Fig. 4. Nonetheless, the rather bland

Angle intracule implies that the electrons in this atom spend

most of their time ‘‘orbiting’’ (o E p/2), rather than moving

away from (o ¼ 0) or towards (o ¼ p) each other and the

Lambda intracule resolves this picture further, its asymmetric

contours revealing that, although the angular momentum of

this orbital motion is most often s E 2.2�h, much larger values

are not uncommon. The Dot intracule completes the story by

showing that rapid changes in the interelectronic distance r12,

though not very probable, do sometimes occur.

Insofar as we can imagine the motion of electrons in an

atom, all of these classical portraits seem intuitively reason-

able.

4.2. Simple correlation kernels

The simple argument in Section 3 suggested that G(s) should

be a decaying function of s and so we explored a number of

plausible candidates, including exponentials and Gaussians.

To our surprise, we found that the most successful elementary

choice is

G(s) ¼ Cj0(zs) (4.51)

where j0(x) ¼ x�1 sin x. This kernel does decay, but very

slowly, and it is highly oscillatory. We do not yet understand

why it works as well as it does but we are fortunate because

this choice of G(s) also leads to relatively simple [abcd]G
integrals. Moreover, it is easy to show that the [ssss]G/C values

that result are always positive.

There are, of course, many ways to assign precise values to

C and z. An elegant approach is to require that they yield the

correct correlation energies for the lowest singlet and triplet

states of high-density hookium, for both the correlation

energies and the Action intracules of these states are known

exactly in closed form.45 This leads to

G1(s) ¼ �0.119106 j0(0.889244s) (4.52)

Alternatively, the parameters can be chosen to reproduce the

correlation energies of the He and Ne atoms. This strategy is

not as clean as the first, because neither the correlation

energies nor the Action intracules of these atoms are known

exactly. However, by basing the calculations on HF/6-311G

wavefunctions, this approach yields

G2(s) ¼ �0.0992 j0(0.893s) (4.53)

A third scheme finds the parameters by a least-squares fit to

the correlation energies of all the atoms from H to Ar. This is

even more ambiguous than the second approach, because the

Fig. 4 Wigner intracule for the beryllium atom (u ¼ |r1 � r2 | and

v ¼ |p1 � p2 |).

Fig. 5 Angle intracule for the beryllium atom.

Fig. 6 Lambda intracule for the beryllium atom.

Fig. 7 Dot intracule for the beryllium atom.
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energies and intracules of the second-row atoms are not

known very accurately, but it is the most pragmatic way to

proceed and might be expected to yield the best kernel for

chemical purposes. Basing the construction on UHF/6-311G

wavefunctions, one obtains

G3(s) ¼ �0.0925 j0(0.88s) (4.54)

It is interesting that the three methods yield very similar values

for z.

4.3. Atomic results

The correlation integral required for atomic calculations em-

ploying Gaussian s functions is found by letting P ¼ Q ¼ 0,

R ¼ 0 and G(u,v,o) ¼ Cj0(zuv) in eqn (3.49). This yields

½ssss�G ¼
Cp3

½ðaþ dÞðbþ gÞ�3=2

� ½4l
2m2 þ ðz� ZÞ2��1=2 � ½4l2m2 þ ðzþ ZÞ2��1=2

2zZ

ð4:55Þ

which reduces, in the special case where Z ¼ 0, to

½ssss�G ¼
Cp3

½ðaþ dÞðbþ gÞð4l2m2 þ z2Þ�3=2
ð4:56Þ

The higher integrals, e.g. [pppp]G, are similar but contain a

number of such terms.

We have used these formulae to compute the correlation

energies for the ground states of each atom from H to Ar,

basing all of our calculations on UHF/6-311G wavefunctions.

Table 2 compares the exact unrestricted correlation energies49

with the estimates obtained using each of the three parameter

choices described above. We emphasize that, although our

calculations are based on Hartree–Fock wavefunctions using a

modest basis set, they yield estimates of the exact (full CI,

infinite-basis) correlation energies. In this sense, they resemble

traditional density-functional calculations, not wavefunction-

based ones.

The G1(s) parameters are exact for the lowest singlet and

triplet states of high-density hookium but they systematically

overestimate atomic correlation energies by more than 20%

and the C parameter is primarily responsible for this. The

mean absolute deviation (MAD) is 78 mEh.

The G2(s) parameters are exact for He and Ne and yield

satisfactory energies for other atoms (MAD ¼ 6 mEh) but still

overestimate in most cases. This is not entirely unexpected,

because both He and Ne have completely filled shells and their

electrons are therefore more strongly correlated than those of

most other atoms.

The G3(s) parameters are tailored to give good overall

performance for all of the atoms considered and they yield

encouraging correlation energies (MAD o 3 mEh), particu-

larly for the second-row atoms. This model is much more

accurate than the popular LYP functional (MAD ¼ 15 mEh)

and it is remarkable that the simple correlation scheme defined

by eqns (3.50) and (4.51) yields such an accurate account of

correlation in these many-electron systems.

The chemistry of atoms is not very exciting but it is

interesting to examine the effectiveness of the G3(s) model

Table 2 Atomic correlation energies (in mEh) and errors of the Gn(s) models

H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar MADa

�Exact 0 42 45 94 121 151 185 249 318 391 396 438 465 500 540 597 658 723
DLYP 0 2 9 1 5 9 7 9 4 �7 12 22 30 31 26 33 33 28 15
DG1 0 9 11 14 25 38 54 64 74 86 93 108 120 121 127 140 155 170 78
DG2 0 0 2 �5 �1 5 10 7 4 0 5 10 15 9 6 7 8 8 6
DG3 0 �2 0 �9 �5 1 7 3 �2 �6 �2 2 7 1 �1 �1 �1 0 3

a Mean absolute deviation.

Table 3 Atomic ionization energies (mEh) and errors of various models

H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar MAD

Exact 500 904 198 343 305 414 535 500 641 794 189 281 220 300 387 381 477 582
DHF 0 �42 �2 �47 �13 �16 �20 �62 �64 �65 �7 �38 �18 �19 �18 �48 �42 �39 31
DLSDA �22 �12 3 �11 11 15 16 10 15 17 8 3 1 3 4 5 10 9 10
DBLYP �2 7 5 �13 10 4 �3 14 3 �5 8 �1 �5 �8 �11 �1 �1 �6 6
DB3LYP 2 12 8 �8 14 10 4 15 6 0 10 3 0 �2 �3 4 5 2 6
DG3 0 �2 3 �9 16 18 19 �5 �3 0 �2 �1 9 7 17 8 19 26 9

Table 4 Correlation energies (in mEh) of He-like ions

H� He Li1 Be21 B31 C41 N51 O61 F71 Ne81

�Exact 39.82 42.04 43.50 44.27 44.74 45.05 45.28 45.45 45.59 45.69
�LYP 31.01 43.78 47.55 49.05 49.72 50.03 50.17 50.22 50.23 50.21
�G2(s) 40.94 42.00 42.15 42.21 42.24 42.25 42.27 42.28 42.48 42.49
�G3(s) 38.91 39.92 40.06 40.12 40.14 40.16 40.17 40.18 40.19 40.19
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for the prediction of atomic ionization energies. Table 3

compares the exact (non-relativistic clamped-nucleus) ioniza-

tion energies50,51

I(A) ¼ E(A1) � E(A) (4.57)

with the corresponding HF, G3(s), LSDA, BLYP and B3LYP

estimates, all using the 6-311G basis set. The overall accuracy

of the G3(s) model is comparable to that of the local density

DFT model but is about 50% worse than the gradient-

corrected and hybrid DFT methods. All of them are much

more accurate than HF theory.

In order to afford good ionization energies, a quantum

chemical method must make the same correlation energy error

when applied to the neutral and cationic species. This can be a

harsh test, for the removal of an electron can sometimes lead

to qualitative changes in the correlation behaviour in a system.

For example, it is known52 that, whereas the correlation

energies of some atoms (He, Li, N–Na) are ‘‘normal’’, those

of other atoms (Be, B, C, Mg–Ar) are ‘‘anomalous’’ in that

they increase linearly, without bound, as the nuclear charge Z

is increased. This is illustrated by the similar correlation

energies of He and Li1 (42 and 43 mEh, respectively) and

the very different correlation energies of Be and B1 (94 and

111 mEh, respectively). Careful inspection of Table 3 reveals

that the G3(s) model performs well for the normal atoms but

more poorly for the anomalous ones and suggests that an

important topic of future research will be to devise a modified

Hartree–Fock–Wigner scheme that does not suffer from this

weakness. We note that Perdew pointed out long ago that this

is also a major challenge for density functional theories.53

Finally, we turn to the subtle variations in correlation

energies of the He-like ions discussed in the Introduction.

Table 4 and Fig. 8 compare the LYP, G2(s) and G3(s) estimates

(using HF-limit wavefunctions) with the exact values54 for

nuclear charges 1 r Z r 10. It is clear that, whereas LYP is

over-sensitive to Z, the Gn(s) models are almost independent of

it, perhaps reflecting an intrinsic deficiency of the action-only

ansatz (3.50).

4.4. Molecular results

Although the choice G(u,v,o) ¼ Cj0(zuv) leads to some sim-

plifications, we have not yet been able to obtain the resulting

general four-centre correlation integral (3.49) in closed form.

However, in the case where the centers A, B, C and D are

collinear, we have found

½ssss�G ¼
Cp3

½ðaþ dÞðbþ gÞ�3=2
exp �Rþ P �Q

2Z

� �
p1=2

2

� erfcðazÞ � erfcðbzÞ
2zZz

� � ð4:58Þ

where

z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2Q2 þ 4l2m2 þ z2 � Z2

2Z

� �
P �Q � m2P2

s
ð4:59Þ

a ¼ [4l2m2 þ (z þ Z)2]�1/2 (4.60)

b ¼ [4l2m2 þ (z � Z)2]�1/2 (4.61)

and erfc(x) is the complementary error function. As P, Q, R

and z tend to zero, eqn (4.58) reduces to eqn (4.55). In the

special case where Z ¼ 0, it can be shown that eqn (4.58)

reduces to

½ssss�G ¼
Cp3

½ðaþ dÞðbþ gÞð4l2m2 þ z2Þ�3=2

� exp �Rþ m2P2 � l2Q2

4l2m2 þ z2

� �
i0

zPQ

4l2m2 þ z2

� �
ð4:62Þ

Fig. 8 Correlation energy Ec in the He-like ions as a function of

nuclear charge Z. LYP (stars), exact (diamonds), G2(s) (squares), G3(s)

(triangles).

Fig. 9 Correlation energy Ec in the H2 molecule as a function of bond

length R. Exact (solid), G3(s) (dashed), LYP (dotted).

Table 5 Correlation energy (in mEh) of H2 at various bond lengths R (in a0)

R 1.0 1.1 1.2 1.3 1.35 1.4 1.45 1.5 1.6 1.7 1.8 2.0

�Exact 39.40 39.61 39.91 40.33 40.57 40.85 41.15 41.49 42.24 43.11 44.11 46.52
�LYP 40.16 39.68 39.21 38.77 38.55 38.33 38.12 37.91 37.49 37.09 36.68 35.91
�G3(s) 39.95 39.83 39.70 39.55 39.46 39.38 39.29 39.20 39.00 38.79 38.56 38.07
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and, as P, Q and R tend to zero, this obviously yields

eqn (4.56).

Eqns (4.58) and (4.62), and their derivatives, allow us to

compute the correlation energy (3.47) with G(u,v,o) ¼ Cj0(zuv)
for linear molecules with nuclear-centred Gaussian basis func-

tions. We have not yet performed a systematic study of a large

set of such molecules and here we report only a few indicative

results for the prototypical hydrogen molecule.

Near-exact energies of the clamped-nucleus, non-relativistic

Schrödinger equation for H2 are available from the Hylleraas-

type calculations of Kolos et al.55 and these reveal that, at the

equilibrium bond length (1.4 a0), the exact correlation energy

is 40.8 mEh. Using the HF/6-311G wavefunction, the G3(s)

model yields Ec ¼ 39.4 mEh, which is encouraging. However,

as Rassolov et al. have noted,56 this achievement is almost

matched by the LYP density functional (for which Ec ¼ 38.3

mEh) and the more serious challenge is to reproduce the

variation in the correlation energy as the bond length is varied.

Table 5 and Fig. 9 compare the exact correlation energy with

the G3(s) and LYP estimates over a range of bond lengths.

Rassolov et al. noted that LYP fails to predict the growth in Ec

as R increases and we see that G3(s) fails similarly, albeit less

dramatically. As with the He-like ions, the misbehaviour can

probably be traced48 to the action-only ansatz (3.50).

5. Concluding remarks

The calculation of correlation energies at a low computational

cost is one of the major goals of quantum chemistry. In this

article, we have introduced a radical approach that is distin-

guished from conventional post-Hartree–Fock and density

functional methods by its explicit dependence on two-electron

phase-space information. In order to accomplish this, we have

defined a number of two-electron probability densities (intra-

cules), some of which may be of interest in their own right. The

new correlation method requires the computation of four-

index integrals of a novel type but, apart from this, can be

easily appended to a HF calculation. Furthermore, the entire

procedure can be performed self-consistently57 to yield a

scheme that is reminiscent of Kohn–Sham density functional

theory. The method is conceptually simple and provides a new

perspective on the phenomenon of electron correlation. Pre-

liminary results, using a simple two-parameter correlation

kernel, are encouraging and we are confident that the accuracy

of the method can be improved further by refinement of this

kernel.
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