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Closed-form expressions for the first three terms in the perturbation expansion of the exact energy
and Hartree–Fock energy of the lowest singlet and triplet states of the Hooke’s law atom are found.
These yield elementary formulas for the exact correlation energiess−49.7028 and −5.807 65 mEhd
of the two states in the high-density limit and lead to a pair of necessary conditions on the exact
correlation kernelGswd in Hartree–Fock–Wigner theory. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1862237g

I. INTRODUCTION

The correlation energyEC of an electronic system is the
difference between its exact energyE and its Hartree–Fock
sHFd energy EHF.

1–3 Systems for which all three of these
energies are knownexactly are rare but they are valuable
because they shed light on the mathematical description of
electron correlation.

In the early days of quantum mechanics, Hylleraas4 un-
dertook a pioneering study of the ground state of the helium-
like ion sa system with a nucleus of chargeZ and two elec-
tronsd and showed that it is possible to expandE as a power
series inZ−1. The first two terms can be found easily but the
third has not yet been reported in closed form. The best
numerical value to date

E = − Z2 + 5
8Z − 0.157 666 429 469 14 +OsZ−1d s1d

can be found in the work of Bakeret al.5

However, Linderberg showed6 that one can find a
closed-form expression for the corresponding term in the
analogous expansion ofEHF. His result

EHF = − Z2 + 5
8Z + s 9

32 ln 3
4 − 13

432d + OsZ−1d s2d

also implies that the correlation energy of the heliumlike ion
is

EC = − 0.046 663 253 999 48 +OsZ−1d, s3d

which tends to a constant asZ→`. Such behavior is
expected7 because, in this limit, the ground state of the ion
remains nondegenerate.

Soon after Linderberg’s work, Kestner and Sinanoglu in-
troduced a hypothetical atom8 in which two electrons repel
coulombically but are bound within a harmonic potential.
The Schrödinger equation in atomic units for this atom,
which we have called hookium,9 can be written as
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whereZ4 is the harmonic force constant. Its wave functions
and energies take relatively simple forms10,11 for certain val-

ues ofZ. If Z=1/Î2, the lowest singlet state hasE=2 and
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If Z=1/2, thelowest triplet state hasE=5/4 and

C = sz1 − z2dS1 +
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8
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Our present interest, however, lies primarily in the high-
density limit whereZ=`.

In appropriately scaled lengths and energies,6 the
Schrödinger equation for hookium becomes
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which can be treated by perturbation theory, expanding in the
parameterZ−1. In this paper, we show that the first three
terms in the expansions ofE, EHF, andEC for lowest singlet
and triplet states of hookium can be found in closed form,
thereby providing exact expressions for the associated corre-
lation energies in the high-density limit. Some of the singlet
results were obtained long ago by Byers Brown and
co-workers12,13 but the present approach is more transparent
and reveals a connection between the exact and HF energies
that is not apparent in the earlier work.

Our approach also allows us easily to study the conver-
gence behavior ofEC with respect to the excitation ordern in
a basis set of unperturbedsi.e., harmonic oscillatord wave
functions. It is interesting to compare this with the conver-
gence behavior with respect to angular momentuml which
underpins the extrapolation schemes of Peterssonet al.,14

Feller,15 and Helgakeret al.16

Finally, we note that the action intracule17 of any state of
hookium in the high-density limit can also be found in closed
form and we exploit this to determineab initio values of the
parameters in a correlation kernel for computing correlation
energies from intracules.18 Atomic units are used throughout.

II. EXACT ENERGY OF SINGLET HOOKIUM

The perturbation expansion of the exact ground-state en-
ergy of singlet symmetry isadElectronic mail: peter.gill@anu.edu.anu
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E = Es0d + Es1d + Es2d + ¯

= 3Z2 +Î 2

p
Z + o

m

kC0ur12
−1uCml2

E0 − Em
+ ¯ , s8d

where the sum includes all singly and doubly excited states,
and the unperturbed wave functions and orbitals are

C0 = c0sx1dc0sy1dc0sz1dc0sx2dc0sy2dc0sz2d, s9d

Cm = casx1dcbsy1dccsz1dcpsx2dcqsy2dcrsz2d, s10d

cksxd = s2kk ! Îpd−1/2Hksxdexps− x2/2d. s11d

Here Hk is the kth Hermite polynomial andEm−E0=a+b
+c+p+q+r =2n is the excitation level, i.e., the number of
nodes inCm. It can be shown that

kC0ur12
−1uCml =Î 2

p

fsa,pdfsb,qdfsc,rd
2n + 1

, s12d

fsa,pd = 5 ia−psa + p − 1d!!
Î2a+pa!p!

a + p even

0 a + p odd
6 , s13d

and we therefore have
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where s1/2dn is a Pochhammer symbol19 and the ground
state is implicitly excluded in the first three lines. The last
expression was also obtained by Benson and Byers Brown
but it is convenient for our purposes to write it as

Es2d = −
2

p
fF0s1d − F1s1dg, s15d

where we have introduced the functions

F0sxd = o
n=1

`
s1/2dn

2n
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= − lnS1 +Î1 − x2

2
D , s16d
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sin−1 x
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− 1, s17d
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Thus, the exact energy of singlet hookium is

E = 3Z2 +Î 2

p
Z + F1 −

2

p
s1 + ln 2dG + OsZ−1d s19d

which is the analog of Eq.s1d. White and Byers Brown12 and
Cioslowski and Pernal20 also found Eq.s19d but employed a
more complicated approach.

III. HF ENERGY OF SINGLET HOOKIUM

The perturbation expansion of the HF energy6 of the
lowest singlet state is

EHF = EHF
s0d + EHF

s1d + EHF
s2d + ¯

= 3Z2 +Î 2

p
Z + 2o

m

kC0ur12
−1uCml2

E0 − Em
+ ¯ , s20d

where the sum now includes only the singly excited states

Cm = casx1dcbsy1dccsz1dc0sx2dc0sy2dc0sz2d s21d

andEm−E0=a+b+c=2n is the excitation level. Proceeding
as for the exact energy, we obtain

EHF
s2d = −

4

p
o
m

fsa,0d2fsb,0d2fsc,0d2

2ns2n + 1d2

= −
4

p
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This sum overn does not appear in the papers by Byers
Brown but comparing it with Eq.s14d reveals a beautiful
connection between the exact and HF energies of the singlet.
We can write this as

EHF
s2d = −

4

p
fF0s1/2d − F1s1/2dg s23d

and the HF energy of the lowest singlet state of hookium is
therefore

EHF = 3Z2 +Î 2

p
Z +

4

3
−

4

p
f1 + ln 2 + 2 lnsÎ3 − 1dg

+ OsZ−1d, s24d

which is the analog of Eq.s2d. White and Byers Brown also
obtained this but followed a complicated route12 that does
not involve Eq.s22d.

It follows from the results above that the correlation en-
ergy of singlet hookium is

EC =
2

p
f1 + ln 2 + 4 lnsÎ3 − 1dg −

1

3
+ OsZ−1d s25d

and we note that its limiting value

ES = − 0.049 702 833 165 773. . . s26d

which has been reported previously by Ivanovet al.21 is
similar to that of the singlet heliumlike ion, Eq.s3d.
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IV. EXACT ENERGY OF TRIPLET HOOKIUM

The perturbation expansion of the exact energy of the
lowest triplet state is

E = 4Z2 +
2

3
Î 2

p
Z + o

m

kC0ur12
−1uCml2

E0 − Em
+ ¯ , s27d

where the sum includes all singly and doubly excited states,
and the unperturbed wave functions and orbitals are

C0 = Âfc0sx1dc0sy1dc1sz1dc0sx2dc0sy2dc0sz2dg, s28d

Cm = Âfcasx1dcbsy1dccsz1dcpsx2dcqsy2dcrsz2dg. s29d

Here Â is the antisymmetrizer andEm−E0=a+b+c+p+q
+r −1=2n is the excitation level. One can show that

kC0ur12
−1uCml =Î32

p

fsa,pdfsb,qdfsc,r + 1dÎr + 1

s2n + 1ds2n + 3d
s30d

and combinatorial identities yield

Es2d = −
16

p
o
m

fsa,pd2fsb,qd2fsc,r + 1d2sr + 1d
2ns2n + 1d2s2n + 3d2

= −
8

3p
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n=1

`
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1

n!
. s31d

As before, it is convenient to write this as

Es2d = −
8

9p
FF0s1d −

3

2
F1s1d +

1

2
F3s1dG s32d

and it follows that the exact energy of the lowest triplet state
of hookium is

E = 4Z2 +
2

3
Î 2

p
Z + F5

9
−

8

27p
s4 + 3 ln 2dG + OsZ−1d.

s33d

V. HF ENERGY OF TRIPLET HOOKIUM

The perturbation expansion of the HF energy of the low-
est triplet state is

EHF = 4Z2 +
2

3
Î 2

p
Z + 2o

m

kC0ur12
−1uCml2

E0 − Em
+ ¯ , s34d

where the sum now includes only the singly excited states
andEm−E0=a+b+c−1=2n is the excitation level. Proceed-
ing as for the exact energy, we obtain

EHF
s2d = −

32

p
o
m

fsa,0d2fsb,0d2ffsc + 1,1d2 + 2fsc,2d2g
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16

15p
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which can be written as

EHF
s2d = −

16

9p
FF0s1/2d −

21

20
F1s1/2d +

1

20
F3s1/2dG s36d

and the HF energy of the lowest triplet state of hookium is
therefore

EHF = 4Z2 +
2

3
Î 2

p
Z +

76

135
−

4

135p
s62 − 3Î3d

−
16

9p
fln 2 + 2 lnsÎ3 − 1dg + OsZ−1d. s37d

It follows from the results above that the correlation en-
ergy of the lowest triplet state of hookium is

EC =
4

135p
s22 − 3Î3d +

8

9p
fln 2 + 4 lnsÎ3 − 1dg −

1

135

+ OsZ−1d s38d

and we note that its limiting value

ET = − 0.005 807 652 539 920. . . s39d

is an order of magnitude smaller than the value for the sin-
glet state. This is physically reasonable for two reasons.

s1d The 2pz orbital is larger than the 1s orbital and the
electrons are therefore generally further apart in the triplet.

s2d The Fermi hole in the triplet prevents the electrons
from approaching as closely as they do in the singlet.

VI. DISCUSSION

Although Eqs.s14d, s22d, s31d, ands35d are superficially
similar, their respective sums converge at significantly differ-
ent rates. More precisely, the asymptotic expansion

s1/2dn

n!
,

1
Îpn

s40d

reveals that thenth term in the four sums isOsn−5/2d, Os4−nd,
Osn−7/2d, andOs4−nd, respectively. We can make a number of
observations from this. First, the HF energies of both states
converge as 4−n which is consistent with empirical
studies15,16,22that find that molecular HF energies converge
exponentially with basis set sizeN. Second, the exact ener-
gies sand therefore the correlation energiesd of the singlet
and triplet converge only asn−3/2 and n−5/2, respectively,
which is consistent with observations16,23,24that the correla-
tion energy converges only as an inverse power ofN. Third,
the exact energy of the triplet converges more rapidly than
that of the singlet, which is consistent with the fact25 that the
leading terms in the partial-wave expansions of the triplet
and singlet areOfsl +1/2d−6g andOfsl +1/2d−4g, respectively.

In the high-densitysi.e., Z→`d limit, the exact wave
functions of the scaled Schrödinger equation are symme-
trized or antisymmetrized sums of products of uncoupled
harmonic oscillator wave functions. In particular, the lowest
singlet and triplet wave functions are

CS = p−3/2 expF−
r1

2 + r2
2

2
G , s41d
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CT = p−3/2 expF−
r1

2 + r2
2

2
Gsz1 − z2d, s42d

and the corresponding Wigner intracules

WSsu,vd =
2u2v2

p
expF−

u2 + v2

2
G , s43d

WTsu,vd =
2u2v2

p
expF−

u2 + v2

2
GSu2 + v2

3
− 1D , s44d

and action intracules

ASswd =
2w2

p
K0swd, s45d

ATswd =
4w3

3p
K1swd −

2w2

p
K0swd s46d

swhereKn is a modified Bessel function of the second kind19d
are simple functions.17

We have conjectured18 that the correlation energy and
action intracule of an electronic system are related by

EC =E
0

`

AswdGswddw, s47d

whereGswd is a universalsbut currently unknownd function
that we have called the correlation kernel. If the conjecture is
true for singlet and triplet hookium in the high-density limit,
then it follows that the exactGswd must satisfy the two con-
ditions

E
0

`

w2K0swdGswddw =
p

2
ES, s48d

E
0

`

w3K1swdGswddw =
3p

4
sES + ETd, s49d

whereES andET are the limiting singlet and triplet correla-
tion energies derived above. While the exactGswd remains
unknown, such conditions may be helpful as guides for con-
structing useful approximations.

To test their utility, we have determined the two param-
eters in the empirical correlation kernel18

Gswd = Cj0szwd s50d

so that it satisfies the conditions. The required integrals

E
0

`

ASswd j0szwddw =
1

s1 + z2d3/2, s51d

E
0

`

ATswd j0szwddw =
1 − z2

s1 + z2d5/2 s52d

are straightforward and yield the unique solution

C = S 2ES

ES + ET
D3/2

ES, s53d

z = SES − ET

ES + ET
D1/2

. s54d

The discovery that the resulting valuessC=−0.119 andz
=0.889d are similar to thosesC=−0.099 andz=0.894d ob-
tained by fitting to the correlation energies of the helium and
neon atoms18 is intriguing and suggests that the two neces-
sary conditions above may indeed be of practical value.
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