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ABSTRACT: The Kellner wavefunction for a helium-like ion is the Hartree–Fock
solution wherein the orbital is a Slater-type function with the variationally optimal
exponent � � Z � 5/16. The Wigner intracule W(u, v) of a system gives the joint
quasiprobability of finding two electrons whose position space and momentum space
separations are �r1 � r2� � u and �p1 � p2� � v, respectively. In this article, we extend
Wigner intracule theory beyond Gaussian-type functions by deriving W(u, v) for the
Kellner helium-like ions. Although we have not been able to express W(u, v) in closed
form, our formulation reduces it to a two-dimensional integral that can be treated by
quadrature. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem 100: 166–171, 2004

1. Introduction

H erbert Jones devoted much of his research
career to the development of methods for the

incorporation of Slater-type functions (STFs), rather
than Gaussian-type functions (GTFs), into molecu-
lar orbital theory (see [1–4] and references therein).
It has long been appreciated that, since the exact
electronic wavefunctions of molecules are known to
possess cusps at the nuclei [5] and to decay expo-
nentially at large distances [6], STFs are more ap-
propriate basis functions than GTFs for the expan-
sion of such wavefunctions and one probably needs
fewer STFs than GTFs to generate high-quality mo-
lecular orbitals. There can therefore be little doubt
that the development of highly efficient software

for quantum chemical calculations using STFs
would be beneficial.

The Schrödinger equation (in atomic units) for a
helium-like ion with nuclear charge Z is
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and finding a variationally optimal wavefunction
for the ground state of this system is a textbook
example of the use of the variation theorem. In
1927, Kellner showed that the lowest-energy wave-
function of the “screened hydrogenic” form [7]

�Kellner�r1, r2� � ��3/��exp���r1�exp���r2� (1.2)

has � � Z � 5/16. Eckart [8], Hylleraas [9], Ki-
noshita [10], Pekeris [11], and many others more
recently [12] have subsequently explored more so-Correspondence to: P. Gill; e-mail: peter.gill@nottingham.ac.uk

International Journal of Quantum Chemistry, Vol 100, 166–171 (2004)
© 2004 Wiley Periodicals, Inc.



phisticated approximate wavefunctions but all used
this as their starting point.

We have recently initiated an investigation into
the generation, properties and usefulness of a class
of two-electron density functions called intracules
[13–20]. The position intracule P(u) is the spheri-
cally averaged probability density for the position
space distance r12 � �r1 � r2� between two electrons
in a quantum mechanical system, and we have
shown [13, 14] that it can be computed efficiently
for moderately large molecules. The momentum
intracule M(v) is the analogous probability density
for the momentum space distance p12 � �p1 � p2�
between two electrons, and we have shown [15]
that the cost of computing M(v) is roughly twice
that of computing P(u). The Wigner intracule W(u,
v) can be interpreted [16] as the joint probability
density for r12 and p12 and we have shown [17] that
it is significantly more expensive to calculate than
M(v). The action intracule A(w) can be interpreted
[16] as the probability density for the product r12p12
and appears to be even more computationally de-
manding than W(u, v). We note that both W(u, v)
and A(w) are quasi-probability, not true probability,
densities [16].

We have applied our intracule methods to study
electron correlation effects in hookium and helium
[18] and the effects of electronic excitation in meth-
anal and butadiene [19]. We have also shown how
the construction of the Wigner intracule can be
embedded within an SCF procedure, yielding an
approach that we have termed Hartree–Fock–
Wigner theory [20]. However, all of our work on
Wigner intracules has pertained to wavefunctions
that are expanded in GTFs, and it is interesting to
examine the issues that arise when one attempts to
calculate W(u, v) for a wavefunction based on STFs.
In this article, we report our first attempt in this
direction: the calculation of the Wigner intracule for
the Kellner wavefunction.

2. Theory

The Hartree–Fock wavefunction for a helium-
like ion is

�HF�r1, r2� � ��r1���r2�, (2.1)

where �(r) is a spherically symmetric spatial or-
bital. The resulting position, momentum, Wigner
and action intracules [16] are defined by

P�u� � � ��r�2��r � u�2drd�u (2.2)

M�v� � � �̂�p�2�̂�p � v�2dpd�v (2.3)

W�u, v� �
v2

2�2 � ��r���r � q���r � q � u�

� ��r � u� j0�qv�drdqd�u (2.4)
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where �̂(p) is the Fourier transform of �(r).
If the orbital is a Gaussian function

��r� � �2�

� �3/4

exp���r2� (2.6)

�̂�p� � � 1
2���

3/4

exp��
p2

4�� (2.7)

the integrals in (2.2)–(2.5) can all be solved in closed
form, yielding [16]

P�u� � ��

��
3/ 2

4�u2exp���u2� (2.8)
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2u2v2

�
exp���u2 �

v2
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A�w� �
2w2

�
K0�w� (2.11)

where K0 is a modified Bessel function of the second
kind.

If the orbital is an exponential function, as in the
Kellner wavefunction (1.2),

��r� � ��3

��
1/ 2

exp���r� (2.12)

�̂�p� �
2�2 �5/ 2

��p2 � �2�2 (2.13)
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the position and momentum intracules are readily
obtained [21] as

P�u� �
�3u2

6 �3 � 6�u � 4�2u2�exp��2�u� (2.14)

M�v� �
64�5

3�

1584�4v2 � 88�2v4 � 3v6

�4�2 � v2�6 (2.15)

but the integrals in W(u, v) and A(w) are more
challenging. We consider the case where � � 1
because W(u, v) can be obtained in the general case
by the simple coordinate scaling

W�u, v; �� � W��u, ��1v�, (2.16)

and the action intracule is independent of �.
We begin by writing each of the four exponen-

tials in (2.4) as its Gaussian transform [22]
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which yields
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where W�	
� is the Wigner integral over Gaussians
with exponents �2, 	2, 
2, and �2, which is [17]
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If the last factor in (2.19) is written in the integral
representation

j0� x� �
1
2 �

�1


1

exp�ixz�dz, (2.20)

the integrand of (2.18) factorizes and we obtain

W�u, v� �
2u2v2

� �
0

1

f�u, v, z�2dz (2.21)
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0
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0
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After transforming to polar coordinates, this be-
comes
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(2.23)

If we integrate over r and then let x � cos �, we
obtain

f�u, v, z� �
3
2 �

0

1

t�5�1 � ut �
u2t2

3 �
� exp��ut��1 � x2�cos�uvxz

2 �dx (2.24)

t � �1 �
v2

4 �1 � x2�� 1/ 2

. (2.25)

We have not been able to integrate (2.24) in closed
form but, for specified values of u and v, one can
evaluate W(u, v) to any desired accuracy by apply-
ing nested one-dimensional quadratures to (2.21)
and (2.24).

The action intracule for the Kellner wavefunction
is independent of � and is given by

A�w� �
2w2

� �
0

� 1
u �

0

1

f�u,
w
u , z� 2

dzdu. (2.26)
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For a specified value of w, this can be evaluated by
quadrature but, because the integrand with respect
to u decays slowly, accurate quadrature requires
many points and is relatively slow.

3. Results

The Wigner intracules of atoms and molecules
are positive over most of their domain, but some-
times possess small negative regions near to the
origin [16, 18, 19] that are associated with electrons
of parallel spin and are therefore quasiprobability,
not true probability, densities. However, although
we have not obtained a closed-form expression for
W(u, v) in the Kellner helium-like ions, it is clear
from (2.21) that, like (2.10), it is nowhere negative.

It is interesting to compare the intracules from
the Gaussian orbital (2.6) with those from the expo-
nential orbital (2.12) but it is not immediately clear
which values of � and � should be employed in
such a comparison. One solution is to use the values

�opt �
33 � 8�2

9�
(3.1)

�opt �
27
16 (3.2)

that minimize the energy of the helium atom; Fig-
ures 1 and 2 show contour plots of the Wigner
intracules (2.10) and (2.21) that result from using
these exponents. Each intracule possesses only a
single maximum but, although these occur at sim-
ilar locations, the intracules are otherwise different.
The intracule for the Kellner wavefunction decays
more slowly in the u direction than that for the
Gaussian wavefunction, implying that the electrons
are more likely to be well separated in the Kellner

FIGURE 1. Wigner intracule W(u, v) for the helium
atom using a GTF orbital with � � (33 � 8�2)/9�.
u is plotted horizontally; v is plotted vertically.

FIGURE 2. Wigner intracule W(u, v) for the helium
atom using a STF orbital with � � 27/16. u is plotted
horizontally; v is plotted vertically.

FIGURE 3. Action intracules A(w) for the helium atom
using: a GTF orbital with � � (33 � 8�2)/9� (dashed
line); a STF orbital with � � 27/16 (solid line).
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wavefunction and reflecting the greater diffuseness
of the STF orbital. Similarly, the Kellner intracule
decays more slowly in the v direction than the
Gaussian intracule, implying that the electrons are
more likely to be found with high relative velocity
in the Kellner wavefunction and reflecting the ex-
istence of cusps in the STF orbital. The shape of the
Kellner intracule is, in fact, similar to that of the
HF/6-311G intracule shown in Figure 3 of Ref. [16]
demonstrating that the triple-zeta Gaussian basis
can mimic an exponential orbital quite well.

Figure 3 shows the action intracules (2.11) and
(2.26) that result from the Gaussian and Kellner
wavefunctions, respectively. (As mentioned above,
both intracules are independent of the exponents
chosen.) The action intracule for the Kellner wave-
function reaches a slightly higher maximum than
that from the Gaussian wavefunction, and then de-
cays slightly more quickly, but their respective
maxima occur at almost exactly the same value of w
and, in light of the significant differences between
the associated Wigner intracules, the similarity be-
tween the derived action intracules is striking. The
surprising insensitivity of action intracules to de-
tails of the underlying orbitals is a feature that we
have noted previously [16].

The locations and magnitudes of the maxima in
the Wigner and action intracules are summarized in
Table I. It follows from these results that, as � is
varied in (2.6), the maximum in the resulting
Wigner intracule moves along the hyperbola uv � 2
and, as � is varied in (2.12), the maximum in the
resulting Wigner intracule moves along the hyper-
bola uv � 1.832.

4. Conclusion

We have shown that it is possible to compute
both Wigner and action intracules for the Kellner
wavefunctions of helium-like ions. Although we
have not been able to write these in closed form, the

integrals in Eqs. (2.21) and (2.24) submit to standard
quadrature methods and provide a computation-
ally feasible route to the evaluation of W(u, v) and
A(w) at arbitrary points.

In order to attack the eight-dimensional integral
(2.4), we have found it useful to write the STF as the
Gaussian transform (2.17) and this technique [22]
should be applicable to more complicated STF-
based wavefunctions than those considered here. In
particular, the extension to the Eckart wavefunction
[8]

��r1, r2� � exp���r1�exp��	r2�

� exp��	r1�exp���r2�, (4.1)

which allows for some radial correlation (but no
angular correlation) would be straightforward us-
ing the same approach.
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