Radial Quadrature for Multiexponential Integrands
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Abstract: We introduce a Gaussian quadrature, based on the polynomials that are orthogonal with respect to the
weight function In”x on the interval [0, 1], which is suitable for the evaluation of radial integrals. The quadrature is exact
if the non-Jacobian part of the integrand is a linear combination of a geometric sequence of exponential functions. We
find that the new scheme is a useful alternative to existing approaches, particularly for integrands that exhibit

multiexponential behavior.
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Introduction

We live in a three-dimensional world, and problems in chemical
physics therefore often demand the evaluation of three-dimen-
sional integrals:

too [ 4o [ 4w
I=J f J' F(x,y,z)dxdydz 1)

If the physical problem possesses a natural origin, it is generally
convenient to transform eq. (1) into spherical polar coordinates to
obtain the radial integral

1= fx r*f(r) dr 2)
0

where the Jacobian factor 7> arises from the coordinate transfor-
mation and

T 2w
flr) = f f F(r sin 6 sin ¢, r sin 0 cos ¢, r cos 0)sin 0 do d
0 0

3)

is the spherical average of F(x, y, z). If the integrals (2) and (3)
can be performed in closed form, it is usually beneficial to do so.
However, in general, this is not possible and one must turn instead
to approximations. If detailed mathematical properties of F(x, y,
z) or f(r) are known, it may be possible to design approximations
that specifically exploit these. More often, however, only global

properties may be known, for example that f(r) is analytic almost
everywhere, decays exponentially, and so forth. In such cases,
there is no option but to utilize generic methods. It is these that are
our present concern.

The generic numerical approach to integrals such as (2) and (3)
is to suppose that the integrand can be approximated accurately by
expansion in a suitable basis set and develop a quadrature rule
from this. For the angular integral (3), which corresponds to a
proper integration over the surface of a sphere, the spherical
harmonics form a natural basis and this leads to a family of n-point
quadrature formulae:

n 27 n
f f h(6, )sin O dd db = >, wih(6,, $,) @)

0o Yo i=1

that has been investigated by several workers.'~® Such formulae
are exact if &(6, ¢) is a linear combination of spherical harmonics
whose orders do not exceed L ~ \/(3n) — 1. The improper radial
integral (2) is more problematic. We would like to approximate it
by the n-point quadrature:

n

1= wif(r) )

i=1

but what is a good basis for the determination of the roots r; and
weights w,?

In the next section, we review some of the approaches that have
been suggested previously. The section New Radial Grid intro-
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duces a new approach, specifically tailored to functions f(r) with
components that decay on different length scales. The section
Roots and Weights compares the roots and weights of the old and
new schemes, and the section Conditions for Exactness discusses
the types of integrands for which each scheme is exact. Finally, in
the section Examples, we assess relative accuracies for a selection
of examples.

Previous Radial Grids

The classical approach to the radial quadrature problem is to
combine the transformation’
r = xR 6)

IR f " 200 d ™
0

with Gauss-Laguerre quadrature® to obtain the Laguerre grid:

ri = xR 8)
dople)

Y= G L ®

x; = ith zero of L,(x) (10)

where L,(x) is the nth Laguerre polynomial.®
In 1988, Becke® suggested that the transformation

1+x
L R 1)
X +1(1+x)2

1

be combined with Chebyshev quadrature of the second kind® to
obtain the Becke grid:

1+ x;

:1—x,~

r

i

(13)

2w (1 +x)¥? ,
TR R (19

B im 15
X = cos\ o~ (15)

In 1993, Murray et al.'® combined the transformation

xZ

r:mR (16)

. S
I=2R = x)7f(r) dx a7
0

with the Euler-Maclaurin summation formula® (which, in this
context, is equivalent to the extended trapezoidal rule®) to obtain
the Handy grid:

2

Xi
r, = mR (18)
_ 2x] s
Wi= (n+ 1)1 —x)7 R (19
i
xX; = (20

In 1995, Treutler and Ahlrichs studied some of the weaknesses
of the Laguerre, Becke, and Handy quadratures and decided in-
stead to combine'! the transformation

1 @ 1 —
o gLt m( x) @)

In2 2

a ) 1—x
71+xln > r)dx (22)

with Chebyshev quadrature of the second kind to obtain the
Ahlrichs grid:

_ (1+x,~)‘“1 1 —x )
= R Il 23)

Wi

T (1 +x,-)“"[ mln2<] ;x,-)

“hr1l w2 | \1-x
1—x,~1 ) 1 —x R 4
@ l-i—x,n 2 24

B imT )
X = cos\ - 25)

On the basis of extensive atomic calculations, these authors rec-
ommended o = 0.6 and concluded that the Ahlrichs grid is more
accurate than those of Becke and Handy.

In 1996, Mura and Knowles suggested'? that the transformation

r=—RIn(l — x°) (26)

e XIn%(1 — x%)
1=3R ijﬂr) dx (27)
0
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be combined with the Euler-Maclaurin formula to obtain the
Knowles grid:

r;=—RIn(1 —x}) (28)
3xiIn*(1 — x)
Y =) R @
i
xX; = (30)

Mura and Knowles studied its accuracy in atomic applications and
found it slightly better than Ahlrichs’ grid (especially for small )
and considerably better than Handy’s.

None of the quadrature schemes discussed above are perfect,
and each can be criticized on both aesthetic and practical grounds.
The Becke, Handy, Ahlrichs, and Knowles schemes all map the
semi-infinite domain [0, %) onto a finite domain and then apply
either Chebyshev or trapezoidal quadrature. However, the combi-
nations of mapping and quadrature are not convincingly justified
and, as we will show in the section Conditions for Exactness, each
yields a grid that is exact for functions f(r) that rarely arise in
chemical physics. Laguerre quadrature is more direct, but the end
result is the same.

In the next section, we take the opposite approach, deliberately
constructing a quadrature that is exact for an important class of
integrands. By proceeding in this way, we ensure that the resulting
scheme will be ideal for at least one important type of integral.

New Radial Grid

The Gaussian quadrature rule of the form

f g(x)In? x dx = Eaig(xi) (€2
0

i=1

is related to the system of polynomials Q,(x) orthogonal on the
interval [0, 1] with respect to the weight function In*x. This system
does not appear to have been studied previously'? but, by inverting
the Cholesky triangle of the associated Gram matrix,'* we have
constructed'® the Q,,(x) for 1 = n < 27. The associated roots (x,)
and weights (a;) for n = 1-6, 8, 10, 15, 20 are listed in Table
1.

For the radial quadrature problem, we then propose that the
transformation

r=—Rlnx (32)

I=R? J X Yf(r)In® x dx (33)
0

be combined with the “log-squared” quadrature (31) to obtain the
MultiExp grid:

r;= —Rlnx; (34)

w; = (a/x,) R® (35)

Roots and Weights

It is informative to compare the roots and weights from the various
quadrature schemes. There is some ambiguity in this because the
roots given by eqgs. (8, 13, 18, 23, 28, 34) are proportional to
arbitrary scale factors R (not necessarily the same) and the weights
given by egs. (9, 14, 19, 24, 29, 35) are proportional to R°.
Therefore, for the purposes of comparison, we choose the R values
so that the middle root of each quadrature is unity. We call the
resulting values the standardized roots and weights and they are
listed, for n = 1, 3, 5, 7, 9, and 11, in Tables 2 and 3. The
weights in Table 3 are given in scientific notation, the power of ten
being shown in parentheses.

We note first that the Ahlrichs and Knowles grids are strikingly
alike, especially near the middle of the grid. This is initially
surprising because their derivations are superficially very different.
However, because both were specifically optimized for use in
atomic quadrature, their apparent similarity is perhaps not entirely
unexpected.

The most obvious difference between the sets of roots in Table
2 is their spread about the median value of unity. We illustrate this
in the case of 11-point quadrature by plotting the logs of the roots
in Figure 1. Our standardization ensures that the curves coincide at
the middle root (log r, = 0), but the Handy and Becke grids
extend further out, and the Ahlrichs and Knowles grids extend
further in than the others. The Laguerre and MultiExp grids have
the narrowest range of the six.

Table 3 shows analogous behavior for the weights. There is an
infallible correlation between the size of a root and its weight:
small roots have very small weights, large roots have very large
weights. Thus, although the middle standardized weight is always
close to unity, the spread about this varies greatly from one grid to
another. The greatest variation, and the largest values, are found in
the Handy grids (the n = 11 weights span 12 orders of magnitude,
and the largest is greater than 10°) and the least variation in the
Laguerre and MultiExp grids (the n = 11 weights span only six
orders of magnitude). The smallest weights arise in the Ahlrichs and
Knowles grids (the least of the n = 11 weights is less than 10~°).

We have examined these observations analytically by deter-
mining the dependence of the innermost and outermost roots and
weights on n. The results, which are given in Table 4, show that
the Ahlrichs and Knowles grids run from small roots (with very
small weights) to moderately large roots. The Becke and Handy
grids run from moderately small roots to large roots (with very
large weights). The MultiExp grid runs from moderately small
roots to moderately large roots.

In practical applications, unless f(r) is singular at the origin,
small roots with very small weights will usually make negligible
contributions to the quadrature. Similarly, unless f(r) decays very
slowly, large roots with very large weights will also contribute
negligibly. Such roots can, of course, be systematically neglected
within computer programs, but we agree with Mura and Knowles
that it is preferable to use more appropriate grids from the outset.'?
All things being equal, this philosophy predisposes us toward grids
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Table 1. Roots and Weights for n-Point Quadrature on [0, 1] with the Weight Function In’x.

n X; a; n X; a;
1 0.1250000000 2.0000000000 15 0.0031568454 0.3253137565
2 0.0598509925 1.6691361082 0.0214217428 0.3961243562
0.4536625210 0.3308638918 0.0567152146 0.3593522229
3 0.0362633111 1.3638303836 0.1082790024 0.2926536989
0.2731486024 0.5658154596 0.1744898369 0.2219588508
0.6537110896 0.0703541567 0.2530501060 0.1582926857
4 0.0246451318 1.1330156422 0.3411169468 0.1061466261
0.1831933310 0.6612166786 0.4354309056 0.0665501730
0.4610171077 0.1857929500 0.5324530702 0.0385929320
0.7655906466 0.0199747293 0.6285097879 0.0203475527
5 0.0179624485 0.9588537970 0.7199410768 0.0094938596
0.1317184306 0.6830020585 0.8032477673 0.0037511449
0.3395971926 0.2815660272 0.8752323216 0.0011607732
0.5945982935 0.0695856412 0.9331298792 0.0002398218
0.8320575996 0.0069924762 0.9747402975 0.0000215456
6 0.0137303290 0.8247373524 20 0.0019241239 0.2308490189
0.0994431475 0.6701662035 0.0128189043 0.3027886725
0.2596678762 0.3457959549 0.0338360585 0.2986810329
0.4685229897 0.1269936018 0.0647886177 0.2678766357
0.6874245835 0.0294555188 0.1051527594 0.2274158666
0.8742037763 0.0028513686 0.1541448603 0.1852655647
8 0.0088308098 0.6343476124 0.2107591088 0.1455612505
0.0626470137 0.6078905783 0.2737989508 0.1104305753
0.1653937470 0.4036485580 0.3419087328 0.0808087449
0.3076475309 0.2184654657 0.4136071132 0.0568766276
0.4738811643 0.0959319490 0.4873224017 0.0383323430
0.6449256028 0.0320637571 0.5614294486 0.0245782243
0.8005576159 0.0069997943 0.6342874604 0.0148581882
0.9222020825 0.0006522851 0.7042779985 0.0083614715
10 0.0061869147 0.5075100632 0.7698423653 0.0043003770
0.0431849645 0.5377370883 0.8295175821 0.0019659640
0.1143932978 0.4101581499 0.8819702175 0.0007640520
0.2157443263 0.2686821571 0.9260275322 0.0002333787
0.3400163758 0.1544536152 0.9607063554 0.0000477502
0.4777530668 0.0768964762 0.9852482390 0.0000042614
0.6181540046 0.0319269841
0.7500277506 0.0102578456
0.8627655156 0.0021782820
0.9472975116 0.0001993384
like Laguerre and MultiExp, but we must first ascertain whether or " .
not they are sufficiently accurate to be useful. f g(x)exp(—x) dx =~ E aig(x) (36)
0 i=1
Conditions for Exactness +1 "
j g(x) NI X2 dx = E a;g(x,) (37)

In the last section, we compared the six quadrature schemes by
visual comparison of their roots and weights. This is informative
but gives little insight into the type of integrands for which each
quadrature is accurate. Unfortunately, this question is not well
defined so, in this section, we ask: for what set of integrands is
each quadrature exact?

In order to study this, one must know the types of integrand for
which Gauss-Laguerre, Chebyshev, and trapezoidal rules are ex-
act. The Gauss-Laguerre and Chebyshev rules

1 i=1

are exact if g(x) is a polynomial P,, _,(x) of degree 2n — 1 or
less. The extended trapezoidal rule

1 (R i
f 8(x) d“ng<n+1) 38
0
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Table 2. Standardized Roots (r;) for Radial Quadrature.

n Laguerre Becke Handy Ahlrichs Knowles MultiExp
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 0.1812 0.1716 0.1111 0.1093 0.1179 0.3276

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2.7416 5.8284 9.0000 3.8201 4.1036 2.5559
5 0.0733 0.0718 0.0400 0.0299 0.0348 0.1702
0.3930 0.3333 0.2500 0.2738 0.2826 0.4814
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.9702 3.0000 4.0000 2.5509 2.6316 1.8769
3.5148 13.9282 25.0000 5.6704 6.4735 3.7218
7 0.0394 0.0396 0.0204 0.0119 0.0146 0.1050
0.2095 0.1716 0.1111 0.1093 0.1179 0.2902
0.5240 0.4465 0.3600 0.3987 0.4057 0.5779
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.6697 2.2398 2.7778 2.0599 2.0961 1.6226
2.5986 5.8284 9.0000 3.8201 4.1036 2.6115
3.9580 25.2741 49.0000 6.9830 8.3009 4.6255
9 0.0245 0.0251 0.0123 0.0058 0.0075 0.0714
0.1301 0.1056 0.0625 0.0536 0.0602 0.1952
0.3232 0.2596 0.1837 0.1957 0.2050 0.3823
0.6098 0.5279 0.4444 0.4899 0.4953 0.6441
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.5106 1.8944 2.2500 1.8021 1.8224 1.4850
2.1702 3.8518 5.4444 3.0070 3.1459 2.1699
3.0353 9.4721 16.0000 4.8358 5.3728 3.2296
4.2505 39.8635 81.0000 7.9935 9.7778 5.3542
11 0.0168 0.0173 0.0083 0.0032 0.0043 0.0517
0.0886 0.0718 0.0400 0.0299 0.0348 0.1407
0.2193 0.1716 0.1111 0.1093 0.1179 0.2732
0.4116 0.3333 0.2500 0.2738 0.2826 0.4544
0.6697 0.5888 0.5102 0.5581 0.5623 0.6924
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.4123 1.6984 1.9600 1.6442 1.6570 1.3981
1.9217 3.0000 4.0000 2.5509 2.6316 1.9235
2.5538 5.8284 9.0000 3.8201 4.1036 2.6497
3.3579 13.9282 25.0000 5.6704 6.4735 3.7582
4.4604 57.6955 121.0000 8.8138 11.0145 5.9604
is exact if g(x) equals L(x), a continuous function that is linear 1 r—R
between the roots x; = i/(n + 1) and which vanishes at x = 0 and fir) = 7(r + R)? Pzn*l(,, T R) (41

x = 1.
Using eq. (36), one finds that the Laguerre grid (8—10) is exact
if

f(r) = r%exp(=r/R) Py, (r) (39)

The grid also works well when eq. (39) is approximately true, but
it becomes less satisfactory when f(r) either decays more slowly
than an exponential or contains multiple exponential components
with significantly different rates of decay.'®

The Chebyshev-based Becke grid is exact if

(1 + x)? 1
(1 _ x)4f(r) \/1 _ x2 = PZM*I(X) (40)

which implies

In general, such f(r) possess a 1/r*?

decay as 1/r°'2 for large r.
The trapezoidal-based Handy grid is exact if

singularity at the origin and

(=0 = 1) “2)

which implies

3 1 ( \ﬁ ) 4
f(’)_rm(\ﬂ+ @)2[4 \/;+\/§ )

In general, such f(r) possess a 1/r* singularity at the origin and
decay as 1/r7’2 for large r.



Radial Quadrature for Multiexponential Integrands 737

Table 3. Standardized Weights (w,) for Radial Quadrature.

n Laguerre Becke Handy Abhlrichs Knowles MultiExp
1 (+0)2.72 (+0)3.14 (+0) 4.00 (+0)3.21 (+0)3.21 (+0) 1.78
3 (—2)1.54 (—=2)1.12 (—3)3.66 (—3)4.17 (—3)4.96 (—2)4.92

(+0) 1.20 (+0) 1.57 (+0) 2.00 (+0) 1.60 (+0) 1.60 (—1)9.48
(+1)1.83 (+2) 4.40 (+3)1.94 (+1) 6.59 (+1)9.20 (+1)1.72
5 (—3) 1.01 (—4)7.75 (—4)1.54 (—5)8.58 (—4)1.26 (—3) 6.67
(—2)7.04 (—2)4.48 (—2)2.34 (=2)3.27 (—2)3.45 (—2)9.29
(=1)7.70 (+0) 1.05 (+0) 1.33 (+0) 1.07 (+0) 1.07 (-1)6.58
(+0) 4.66 (+1)3.26 (+1)9.60 (+1)1.39 (+1) 1.64 (+0)4.12
(+1)2.48 (+3)5.66 (+4)3.75 (+2) 1.47 (+2)2.59 (+1)4.24
7 (—4)1.57 (—4)1.27 (=5) 1.94 (—6) 5.44 (—6)9.42 (=3)1.55
(—2) 1.05 (—3)5.61 (—3)1.83 (—3)2.09 (—3)2.48 (—2)1.96
(—1)1.07 (—=2)7.57 (—2)4.98 (—2)6.74 (—2)6.86 (-1 1.16
(=1)5.66 (-1)7.85 (+0) 1.00 (—1)8.02 (—1)8.02 (-1)5.07
(+0)2.19 (+0)9.55 (+1)2.29 (+0)5.75 (+0) 6.38 (+0) 2.01
(+0) 7.41 (+2)2.20 (+2)9.72 (+1)3.30 (+1) 4.60 (+0) 8.83
(+1)2.69 (+4)3.31 (+5)2.69 (+2)2.22 (+2) 4.49 (+1)7.08
9 (—5)3.80 (—5)3.21 (—6)4.18 (—=17)6.40 (—6)1.26 (—4)4.83
(—3) 251 (=3)1.26 (—4)3.05 (—4) 2.46 (—4)3.28 (—3)5.87
(=2)2.49 (—2) 1.36 (—3)5.90 (—3)7.97 (—3)8.73 (=2)3.25
(—1)1.25 (=2)9.72 (—2)7.32 (—2)9.38 (—2)9.42 (—1)1.26
(—1)4.47 (—1)6.28 (—1) 8.00 (—1)6.42 (—1)6.42 (—1)4.13
(+0) 1.32 (+0) 4.49 (+0)9.49 (+0)3.18 (+0)3.43 (+0) 1.25
(+0)3.53 (+1)4.44 (+2)1.54 (+1)1.32 (+1) 1.66 (+0) 3.89
(+0)9.22 (+2)9.08 (+3)5.12 (+1)5.35 (+1)8.51 (+1)1.43
(+1)2.73 (+5)1.29 (+6) 1.18 (+2)2.88 (+2) 6.42 (+1)9.96
11 (=5)1.21 (—=5) 1.05 (—6)1.23 (=7 1.11 (=7)2.44 (—4)1.83
(—4)7.93 (—4)3.88 (—5)7.68 (—5)4.29 (—5)6.31 (—3)2.18
(=3)7.74 (—3)3.74 (=3)1.22 (—3) 1.39 (—3) 1.65 (-2) 1.16
(—2)3.80 (—2)2.24 (=2)1.17 (—2)1.64 (—=2)1.73 (—2)4.29
(-1 131 (=D 1.11 (=2)9.11 (=1 1.11 (=D 1.11 (=1 1.30
(—=1)3.69 (=1)5.24 (-1)6.67 (=1)5.35 (-1)5.35 (—1)3.48
(—1)9.12 (+0) 2.66 (+0)5.16 (+0) 2.06 (+0)2.18 (—1)8.87
(+1)2.09 (+1)1.63 (+1)4.80 (+0)6.93 (+0) 8.19 (+0)2.25
(+0) 4.61 (+2) 1.47 (+2) 6.48 (+1)2.20 (+1)3.07 (+0)6.11
(+1) 1.04 (+3)2.83 (+4)1.88 (+1)7.36 (+2) 1.29 (+1)2.02
(+1)2.70 (+5) 3.89 (+6) 3.87 (+2)3.48 (+2)8.31 (+2)1.28
Unfortunately, because the transformation (21) cannot be con- which implies

veniently inverted, we have not been able to find the set of

functions f(r) for which the Ahlrichs grid is exact. .

The trapezoidal-based Knowles grid is exact if fr) = E ciexp(—kr/R) 47)

XIn’(1 — x%)
o f=LW (44)

which implies

—r/lR

fr) = W L[(1 = e™)"] (45)

In general, such f(r) possess a 1/r"?

decay exponentially.
The MultiExp grid is exact if

singularity at the origin and

xilf(") = Py,_1(x) (46)

k=1

Obviously, such f(r) are linear combinations of exponential func-
tions.

The accuracy with which a quadrature scheme estimates the
value of an integral depends on how close the integrand is to the
set of functions for which the quadrature is exact. Our principal
interest lies in the development of efficient quadrature schemes for
the types of integral that arise in atomic and molecular calculations
using density functional theory.'” Because of shell structure, the
radial electron density around an atom can usually be modeled
well by a sum of exponential functions with a variety of decay
constants.'® It has previously been noted'®!! that such multiex-
ponential character may limit the usefulness of the Laguerre grid,
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Log rj
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Figure 1. Logarithms (base 10) of the standardized roots for the 11-point Handy, Becke, Knowles, Ahlrichs, MultiExp, and Laguerre grids.

but it is clear that the MultiExp grid is well suited to such
problems.

Examples

Whereas the theoretical results of the foregoing section are rigor-
ous, the task of selecting specific numerical examples to illustrate
quadrature accuracy is a vexed one, for one can always select
examples to make a given scheme look as good, or as bad, as one
wishes. For this reason, we advise the reader not to attach too
much significance to the handful of examples that we discuss

Table 4. Innermost and Outermost Roots and Weights for n-Point

Quadrature.
Innermost Outermost

Root Weight Root Weight
Laguerre on™ b on?) o(n) o(n?)
Becke o(n=3?) o(n=° o(n?) o(n®)
Handy o(n~?) o(n=% o(n*) 0(n°)
Ahlrichs o(n33?) o(n %% O(In n) O(In’n)
Knowles o(n3) on~?°) O(In n) 0(In’n)
MultiExp o(n?) o(n™° O(In n) O(Inn)
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Table 5. Quadrature Accuracy.”

fr) n Laguerre Becke Handy Ahlrichs Knowles MultiExp
exp(—r?) 3 1.3 0.5 0.2 0.5 0.5 1.2
5 2.3 1.5 0.8 2.5 2.5 2.8
7 3.8 1.3 1.4 1.9 1.7 39
9 5.7 3.1 1.3 38 45 4.3
11 6.8 2.3 2.0 37 33 4.9
exp(—r?) + 10 3 2.2 0.8 0.4 1.1 1.0 2.2
exp(—107r%) 5 1.5 22 1.3 1.5 1.6 24
7 2.7 1.5 2.2 1.7 2.0 3.1
9 33 2.5 1.5 2.5 2.5 4.3
11 4.9 2.5 24 32 3.7 4.8
exp(—r?) + 10 9 2.1 2.5 1.5 2.0 2.0 24
exp(—10r%) + 100 11 3.0 2.5 24 24 2.3 3.1
exp(—1007r%) 13 37 34 2.3 3.0 2.8 39
15 38 3.6 2.9 33 49 4.8
17 43 4.1 35 35 39 5.6
He atom density HF/6- 9 3.4 23 23 2.4 24 4.3
311G 13 4.9 32 2.5 4.5 4.6 55
17 5.9 4.2 3.6 5.0 5.2 6.6
21 7.2 52 4.7 6.4 6.3 7.6
25 4.9 6.0 52 6.9 73 8.7
Ne atom density HF/6- 9 3.6 3.1 2.0 2.6 2.5 3.7
311G 13 38 39 2.5 3.6 3.6 3.7
17 4.6 3.7 3.7 3.6 3.6 4.5
21 4.2 5.2 4.1 4.0 4.2 4.7
25 4.5 6.2 4.8 5.1 5.4 5.7
Ar atom density HF/6- 9 2.0 2.6 29 24 3.1 2.8
311G 13 33 32 2.7 3.7 35 3.6
17 39 4.2 34 35 35 4.2
21 4.6 45 39 4.8 43 4.6
25 4.3 49 4.8 4.9 43 53
/(1 + rh 9 0.8 2.5 2.6 1.1 1.2 0.9
13 0.8 2.7 34 1.1 1.3 1.0
17 0.8 2.9 34 1.2 1.3 1.0
21 0.8 3.1 35 1.2 1.3 1.1
25 0.8 33 3.7 1.2 1.4 1.1

“See eq. (48) for definition of accuracy.

below. They are included, not because they are conclusive, but
because they are interesting.

The results in Table 5 were obtained using the standardized
roots and weights of Tables 2 and 3. In each case, we measure the
quality of a quadrature estimation (“Approx”) of an integral by
comparing it with the exact value (“Exact”) using

Approx ’

Accuracy = —log,, (48)

Exact

The resulting values are essentially the number of correct digits in
the quadrature result.

The first f(r) that we tested was a Gaussian with unit exponent.
Although this is a simple and important function, it is not treated
exactly by any of the radial quadratures that this article has
considered. (We note that two-point Hermite quadrature® would be
exact.) For this integrand, Table 5 reveals that the grids may be
ranked as

Handy < Becke < Ahlrichs = Knowles
< MultiExp < Laguerre (49)

We then explored the effect of adding a second, tighter Gaussian.
This improves the Handy accuracy and worsens the Ahlrichs and
Laguerre accuracies, yielding the ranking
Handy =~ Becke < Ahlrichs < Knowles

< Laguerre < MultiExp (50)
Adding a third, even tighter Gaussian to f(r) leads to deterioration

in the Ahlrichs, Knowles, Laguerre, and MultiExp accuracies and
narrows the spread of the six grids to yield

Handy < Ahlrichs = Knowles < Becke
< Laguerre < MultiExp (51)
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These first three examples are artificial so we next consider more
realistic f(r) functions.

To this end, we have selected the first three inert gas atoms (He,
Ne, and Ar) and have used quadrature to estimate the electron
count integral:

J 47r’p(r) dr = N (52)

0

where p(r) is an electron density and N is the total number of
electrons. The density of the He atom is a monotonically decreas-
ing function of r and is well approximated by a linear combination
of exponential functions. It is therefore not surprising to find that
the MultiExp grids are the most accurate of the six. Table 5 shows
that the grid ranking in this case is

Handy < Becke < Ahlrichs = Knowles
< Laguerre < MultiExp (53)

but we note that the 25-point Laguerre grid performs surprisingly
poorly. The density of the Ne atom contains one component that
decays rapidly (due to the core electrons) and another that decays
more slowly (due to the valence electrons). This multiscale behav-
ior reduces the accuracy of most of the grids, but not Becke’s. The
grid ranking here is

Handy < Laguerre = Ahlrichs = Knowles
< MultiExp = Becke (54)

The density of the Ar atom has three components, the innermost of
which decays very rapidly and, as before, this tends to lower the
accuracy of the grids. Although it is no longer possible to rank
them unambiguously, we note that the MultiExp grid remains
competitive.

Finally, we sound a note of caution. Any quadrature scheme, if
applied uncritically to an inappropriate integrand, can yield spec-
tacularly bad results. To illustrate this, we have used each of the
six grids to estimate the slowly converging radial integral

T dr = T 55
1+~ 2 \/E 63
0
and the results are shown in the final rows of Table 5. The grid

ranking

Laguerre < MultiExp < Ahlrichs < Knowles < Becke < Handy
(56)

is the reverse of that obtained when integrating a single Gaussian
and reflects the size of the outermost root (Table 2). The Becke and

Handy grids (which sample the integrand at large r) perform much
better than the relatively compact grids, which struggle to obtain
even one significant digit. We do not recommend the MultiExp
grid for such integrals.

Concluding Remarks

Radial integrals are ubiquitous in chemical physics and are fre-
quently estimated using quadrature. We have reviewed a number
of radial quadrature schemes and have introduced a new one
(MultiExp) that is explicitly constructed to be exact when the
non-Jacobian part of the integrand is a linear combination of
geometrically spaced exponential functions. The roots and weights
of the new scheme are given in eqs. (34) and (35), and the
associated “log-squared” roots and weights are listed in Table 1.
Preliminary numerical investigations suggest that the new radial
quadrature scheme may be useful in physical applications. We are
constructing a new standard grid (SG-0) for use in density func-
tional theory, and the radial part of this will use MultiExp quadra-
ture. We will publish this elsewhere.'®
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