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ABSTRACT: We present optimal formulae for two-center two-electron
replusion integrals (ERIs) over Cartesian Gaussian basis functions. Floating-point
operations (flop) counts reveal that two-center ERIs are often an order of
magnitude cheaper than their four-center analogues. c© 2000 John Wiley &
Sons, Inc. J Comput Chem 21: 1505–1510, 2000
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Introduction

T he award of the 1998 Nobel Prize for Chem-
istry to Kohn and Pople acknowledged that

the quantum chemical investigation of chemical
problems is now a mature branch of the field.
Nonetheless, there is still much to be done and,
in particular, there remains a dearth of generally
applicable methods that yield quantitative accu-
racy for large biochemical or biological systems. If
quantum chemistry hopes eventually to provide a
first-principles solution to Grand Challenge prob-
lems such as protein folding, it must first undergo a
radical reformation, and almost all of its traditional
computational framework must be reconsidered.

Fortunately, the writing on the wall has been vis-
ible for some time, and a large number of groups
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have been contributing to the reformation process.
Twenty years ago, the introduction1 of direct meth-
ods by Almlöf et al. dramatically altered the range
of applicability of Hartree–Fock theory and laid
the conceptual foundation for the subsequent de-
velopment of analogous integral-driven schemes in
configuration interaction, perturbation theory, and
MCSCF theory.2 – 6

In more recent times, the design of so-called
linear methods has become fashionable, and has at-
tracted a number of researchers from both the phys-
ical and chemical communities. Such approaches,
which are also called O(n) methods, seek to com-
pute the energy of a system via computational work
that scales only linearly with the system’s size.
By alleviating some of the key bottlenecks in den-
sity functional theory (DFT) and Hartree–Fock (HF)
calculations, these methods have significantly en-
hanced the range of applicability of these types of
calculation.

The Fast Multipole Method7 (FMM) of Green-
gard and Rokhlin is an O(n) algorithm for com-
puting the Coulomb energy of an ensemble of n
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point charges, and underlies the CFMM algorithm
introduced8 into quantum chemistry by White et al.
and later embraced by several groups.9, 10 The
Quantum Chemical Tree Code11 (QCTC) of Challa-
combe et al., the various KWIK algorithms12 – 14 from
our group, and the Recursive Bisection Method15

(RBM) of Pérez–Jordá and Yang are other linear, or
near-linear, approaches to the Coulomb problem.

The development of linear methods for the eval-
uation of the Fock exchange energy has proven to
be a more difficult task, and the ONX and LinK
schemes16 – 18 in current use show linear cost scal-
ing only for systems where the HOMO–LUMO gap
is large. A similar caveat applies to the method19 of
Ayala and Scuseria for MP2 and coupled-cluster cal-
culations.

Notwithstanding the ingenious tricks and short-
cuts that underlie this impressive array of fast tech-
niques, it is sobering to observe that every one of
them still requires the notorious two-electron inte-
grals (ERIs)

(ab|cd) =
∫ ∫

φa(r1)φb(r1)ϑ(r12)φc(r2)

×φd(r2) dr1 dr2 (1)

φa(r) = (x− Ax)ax(y−Ay)ay(z−Az)az

×
Ka∑

i= 1

Daie−αi |r−A|2 (2)

that have haunted quantum chemistry ever since its
birth. The stubborn persistence of ERIs has fueled
an on-going interest in their computation, and the
last 3 decades have witnessed the development of
several efficient algorithms.20 – 30

It follows from the Schwarz inequality

(ab|cd)2 ≤ (ab|ab)(cd|cd) (3)

that, if either of the distributions φaφb and φcφd is
small, the ERI (ab|cd) will also be small. Conversely,
if A = B and C = D, the integral (1) reduces to a
two-center ERI of the form

(a|c) =
∫ ∫

φa(r1)ϑ(r12)φc(r2) dr1 dr2 (4)

and is often large. The efficient generation of these
concentric integrals is our present concern.

The preeminence of two-center integrals has
been known, or assumed, for years, and is the ba-
sic premise of the Pople approximations wherein
differential overlap (i.e., nonconcentric φµφν dis-
tributions) is either neglected (NDDO31) or pro-
jected onto nearby nuclei (PDDO32). Although these
approximations are rarely used in their original

Hartree–Fock context, a variant of the PDDO ap-
proximation has become a popular technique33 – 35

in DFT calculations where the electron density is ex-
panded in an auxiliary nuclear-centered basis.

The electron count, Coulomb energy, and ex-
change energy in a system are given by

n =
∑
µ

∑
ν

PµνSµν (5)

J = 1
2

∑
µ

∑
ν

∑
λ

∑
σ

PµνPλσ (µν|λσ ) (6)

K = 1
2

∑
µ

∑
ν

∑
λ

∑
σ

PµλPνσ (µν|λσ ) (7)

where Pµν and Sµν are elements of the density ma-
trix and overlap matrix, respectively. The parts of
these quantities originating exclusively from the
concentric φµφν are

nNDDO =
∑
(µν)

PµνSµν (8)

JNDDO = 1
2

∑
(µν)

∑
(λσ )

PµνPλσ (µν|λσ ) (9)

KNDDO = 1
2

∑
(µν)

∑
(λσ )

PµλPνσ (µν|λσ ) (10)

where the notation (µν) implies that only concentric
φµφν are included in the sum. The data in Table I
show that, although concentric φµφν are relatively
rare, they are disproportionately important. They
account for between 70 and 100% of the electron
count in typical molecules and similarly dominate
both the Coulomb and exchange energies, yet com-
puting the concentric (µν|λσ ) occupies only about
1% of the total ERI time in medium-sized mole-
cules.

Notation

We use square and round brackets for primi-
tive and contracted integrals, respectively. Thus, the
four-center ERI (ab|cd) is a sum of primitive ERIs
[ab|cd] and we have

(ab|cd) =
Kbra∑

[ab|cd) (11)

[ab|cd) =
Kket∑

[ab|cd] (12)

where Kbra and Kket are the number of bra and ket
primitives, respectively. In the recursive schemes pi-
oneered by Obara and Saika,23 recurrence relations
(RRs) are used to construct the [ab|cd] from s-type
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TABLE I.
Electron Counts, Coulomb, and Exchange Energies, ERI Timings, and Their Concentric Fractions.a

nNDDO JNDDO KNDDO TNDDO

Molecule n n J J K K T

H2 2 0.595 1.303 0.354 0.651 0.354 b

LiH 4 0.800 5.587 0.801 2.141 0.865 b

BeH2 6 0.712 11.388 0.681 3.454 0.787 b

BH3 8 0.709 20.142 0.641 4.930 0.751 b

CH4 10 0.721 32.649 0.638 6.582 0.736 b

NH3 10 0.819 39.075 0.769 7.664 0.836 b

OH2 10 0.899 46.706 0.876 8.941 0.917 b

FH 10 0.956 55.854 0.949 10.443 0.967 b

C6H6 42 0.767 312.428 0.652 33.239 0.805 0.038
C6H14 50 0.766 356.726 0.647 36.153 0.782 0.036
Camphor 84 0.808 907.295 0.699 65.856 0.827 0.011
Caffeine 102 0.854 1264.452 0.763 88.404 0.871 0.015
Diazepam 148 0.837 2183.515 0.742 136.883 0.874 0.012

a Based on HF/6-31G∗ calculations. Geometries available upon request.
b Measured timings too short to yield a reliable ratio.

ERIs [00|00](m) which we denote by [m] and which
can be found very efficiently.25 The Obara–Saika al-
gorithm is thereby an OLC path30

[m]→ [ab|cd]→ [ab|cd)→ (ab|cd) (13)

In the PRISM methods,26, 28, 30 recurrence rela-
tions are used to build the (ab|cd) from scaled and
contracted s-type ERIs that we denote by a′b′p′ (m)c′d′q′
and which are defined by

a′b′p′ (m)c′d′q′ =
Kbra∑ (2α)a′(2β)b′

(2ζ )p′ [m)c′d′q′ (14)

[m)c′d′q′ =
Kket∑ (2γ )c′(2δ)d′

(2η)q′ [m] (15)

where ζ = α+ β and η = γ + δ. This corresponds to
an OCL path30

[m]→ [m)c′d′q′ → a′b′p′ (m)c′d′q′ → (ab|cd) (16)

Formulae for Two-Center Integrals

Equation (97) of our review28 is a modified ver-
sion of the eight-term Obara–Saika RR. In the con-
centric A = B = P and C = D = Q case, four of the
terms vanish to yield

p′(p+ 1i|q)(m)
q′ = Ri p′+1(p|q)(m+1)

q′

+ qi p′+1(p|q− 1i)
(m+1)
q′+1

+ pi
[

p′+1(p− 1i|q)(m)
q′

− p′+2(p− 1i|q)(m+1)
q′

]
(17)

where R = Q − P is simply an internuclear vector.
Like the 10-term RR that underpins the L2 step30 of
COLD PRISM, the four-term RR (17) yields compact
explicit ERI formulae, for example,

(s|s) = 0(0)0 (18)

(pi|s) = Ri 1(1)0 (19)

(pi|pj) = −RiRj 1(2)1 + δij 1(1)1 (20)

(dij|s) = RiRj 2(2)0 + δij
[

1(0)0 − 2(1)0
]

(21)

Each of these expressions can be interpreted in
terms of simple multipole–multipole interactions.
Specifically, (s|s), (p|s), (p|p), and (d|s) integrals de-
scribe charge–charge, dipole–charge, dipole–dipole,
and quadrupole–charge interactions, respectively.
Because axial d functions also contain an s-like
component, the (d|s) expression also includes the
charge–charge term 1(0)0.

Expressions for higher ERI classes are easy to de-
rive from (17), but mixed terms, like that in (21),
arise frequently, and it proves convenient to define
the angle bracket s-type ERIs

0〈m〉0 = a(m)c (22)

1〈m〉0 = a−1(m− 1)c − a(m)c

0〈m〉1 = a(m− 1)c−1 − a(m)c
(23)
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TABLE II.
Explicit Formulae for Two-Center ERI Classes.

Class Formula

(s|s) 0〈0〉0
(pi|s) Ri 0〈1〉0
(dij|s) RiRj 0〈2〉0 + δij 1〈1〉0
(pi|pj) −RiRj 0〈2〉0 + δij 0〈1〉0
(fijk|s) RiRjRk 0〈3〉0 + (δijRk + δikRj + δjkRi)1〈2〉0
(dij|pk) −RiRjRk 0〈3〉0 − δijRk 1〈2〉0 + (δikRj + δjkRi)0〈2〉0
(gijkl|s) RiRjRkRl 0〈4〉0 + (δijRkRl + δikRjRl + δilRjRk + δjkRiRl + δjlRiRk + δklRiRj)1〈3〉0 + (δijδkl + δikδjl + δilδjk)2〈2〉0
(fijk|pl) −RiRjRkRl 0〈4〉0 − (δijRkRl + δikRjRl + δjkRiRl)1〈3〉0 + (δilRjRk + δjlRiRk + δklRiRj)0〈3〉0

+ (δijδkl + δikδjl + δilδjk)1〈2〉0
(dij|dkl) RiRjRkRl 0〈4〉0 + δijRkRl 1〈3〉0 + δklRiRj 0〈3〉1 − (δikRjRl + δilRjRk + δjkRiRl + δjlRiRk)0〈3〉0

+ δijδkl 1〈2〉1 + (δikδjl + δilδjk)0〈2〉0

2〈m〉0 = a−2(m− 2)c − 2a−1(m− 1)c + a(m)c

1〈m〉1 = a−1(m− 2)c−1 − a−1(m− 1)c

− a(m− 1)c−1 + a(m)c

0〈m〉2 = a(m− 2)c−2 − 2a(m− 1)c−1 + a(m)c

(24)

Table II lists ERI formulae in this notation for all
classes with total angular momentum L ≤ 4.

Flop Counts

The ERI formulae in Table II appear simpler than
their four-center analogues, which can be derived
from the 10-term RR that underpins the L2 step30 of
the COLD PRISM. But how much practical differ-
ence does this make? Do we expect the construction
of two-center ERIs to be 50% faster than that of
four-center ERIs? Or a factor of two? Or more? It
is traditional to quantify the difference by compar-
ing the number of floating-point operations (flops)
required to form classes of two- and four-center

ERIs from [m] integrals. Following earlier work,24

we write the total costs in the form

Cost = xKtot + yKbra + z (25)

where Ktot = Kbra ∗Kket is the total degree of con-
traction, and x, y, and z are the numbers of flops
expended in the primitive, half-contracted and fully
contracted parts of the algorithm, respectively. Be-
fore presenting the flop counts, however, we illus-
trate our strategy for the case of a two-center (pp|ss)
ERI class. The six steps of our recipe are based on
the (dij|s) entry in Table II and are summarized in
Table III.

In Step 1, we construct the [0], [1], and [2] in-
tegrals. We have discussed an efficient algorithm
for this elsewhere,25 and do not reproduce our
methodology here. However, we note that, unlike
the four-center case, all of the primitives in a two-
center contracted shell quartet share the same R
and, if this is fully exploited, it leads to significant
computational savings. For further efficiency, we

TABLE III.
Strategy for Forming a Two-Center (pp|ss) Class from [m] Integrals.

Step Agenda Flop Cost Method

1 2[0]0, 2[1]0, 2[2]0 — refs. 25 and 26
2 2[0)0, 2[1)0, 2[2)0 3Ktot eq. (15)
3 1(0)0 − 2(1)0, 2(2)0 Kbra eq. (14)
4 1(pi|s)(1)

0 3 eq. (17)
5 (dij|s) 9 eq. (17)
6 (pipj|ss) 0 (pipj|ss) ≡ (dij|s)

1508 VOL. 21, NO. 16
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TABLE IV.
Flop-Cost Parameters for Forming an ERI Class from [m] Integrals.

A 6= B and C 6= D A = B and C = D

Class x y z x y z

(ss|ss) 1 0 0 1 0 0

(ps|ss) 6 8 15 1 0 3

(ds|ss) 12 24 78 3 1 12
(pp|ss) 12 30 93 3 1 12
(ps|ps) 16 28 93 2 0 12

(fs|ss) 20 56 305 3 1 24
(dp|ss) 20 76 411 3 1 24
(ds|ps) 30 76 411 3 1 36
(pp|ps) 30 94 477 3 1 36

(gs|ss) 30 116 1032 5 3 49
(fp|ss) 30 162 1230 5 3 49
(dd|ss) 30 176 1467 5 3 49
(fs|ps) 48 166 1230 4 2 85
(dp|ps) 48 224 1698 4 2 85
(ds|ds) 68 198 1467 10 3 115
(ds|pp) 80 242 1698 10 3 115
(pp|pp) 80 296 2349 10 3 115

apply principal scaling26 to the shell-pair data. In
the (pp|ss) case, this means that we begin with 2[0]0,
2[1]0, and 2[2]0 integrals.

Step 2 is the ket contraction to form 2[0)0, 2[1)0,
and 2[2)0. Because the scalings do not change, the
contraction (15) involves only an add (no multiply)
for each of the Ktot primitives and, consequently, the
flop cost for this step is 3Ktot.

Step 3 is the bra contraction step to form 1〈1〉0 and
0〈2〉0. To form the required 1(0)0 integral, the 2[0)0

integrals (of which there are Kbra) are scaled by 2ζ in
contraction (14) and, as a result, the flop cost for this
step is Kbra.

In Step 4, we use the RR (17) to form the three
1(pi|s)(1)

0 integrals. Only the first term of the RR sur-
vives, and thus, each application requires only a
single multiply. Consequently, the flop cost for the
step is 3.

Step 5 again uses the RR, this time to form the six
(dij|s) integrals. Like the 1(pi|s)(1)

0 in Step 4, each of the
three (dij|s) with i 6= j needs only a single multiply. In
contrast, each of the (dii|s) requires both a multiply
and the Kronecker addition. In total, nine flops are
expended.

In Step 6, the desired (pipj|ss) are identified with
the (dij|s), and the task of forming a two-center

(pp|ss) class from [m] integrals is complete, having
cost 3Ktot + Kbra + 12 flops.

By tabulating such flop costs for a selection of
two-center and four-center ERI classes, Table IV
invites and facilitates direct comparisons between
equivalent classes. The precise ratio between the
costs of a four-center and a two-center class depends
on Ktot and Kbra, but it is clear that the ratio grows
quickly as the total angular momentum L rises, from
1.0 for (ss|ss) to approximately 10.0 for (pp|pp).

Concluding Remarks

We have introduced a highly efficient algorithm
for the construction of two-center ERIs, and have
shown that these can be computed several times
more efficiently than their four-center analogues.
Although two-center ERIs are much less numerous
than four-center ERIs in normal ab initio quantum
chemical calculations, they are the most common in-
tegrals in semiempirical NDDO-based models, and
the existence of this new algorithm provides a major
incentive for the future evolution of such models.
We are currently developing such models and will
report our progress in the near future.
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