
Computer Physics Communications 128 (2000) 170–177
www.elsevier.nl/locate/cpc

Parallelization of SCF calculations within Q-Chem✩

Thomas R. Furlania,∗, Jing Kongb, Peter M.W. Gillc
a Center for Computational Research, University at Buffalo, Buffalo, NY 14260-1800, USA

b Q-Chem, Inc., Four Triangle Lane, Export, PA 15632, USA
c School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK

Abstract

We have incorporated MPI based parallelism withdynamic load balanceinto the Hartree–Fock and DFT modules of Q-Chem.
A series of benchmark calculations consisting of bothsingle point energy and gradient calculationswere carried out to gauge
the performance of the parallel modules. Calculations were carried out on two different parallel computers, namely a shared
memory Silicon Graphics Origin2000 and a distributed memory Cray T3E, to show the flexibility of the code and demonstrate
the great utility of MPI. Scalability for the DFT and Hartree–Fock modules is demonstrated for up to 64 processors. 2000
Elsevier Science B.V. All rights reserved.

Keywords:Parallel SCF; Parallel DFT; Q-Chem; Parallel Hartree–Fock

1. Introduction

Quantum chemical methods (i.e. those which ex-
plore and explain chemical phenomena directly from
rigorous quantum physics) have established them-
selves as valuable tools in the arsenals of many
chemists and biochemists. Indeed, the award of the
1998 Nobel Prize in Chemistry to Professors John
Pople and Walter Kohn for their seminal contribu-
tions to the development of quantum chemistry serves
to underscore the significance of quantum chemical
methods for modeling molecular problems. The ex-
plosive growth in the application of such methods can
be traced to remarkable advances in both computer
hardware and software. In addition to the dramatic
improvements in algorithms that have taken place in
recent years, modern single-processor computers are

✩ This paper is published as part of a thematic issue on Parallel
Computing in Chemical Physics.
∗ Corresponding author. E-mail: furlani@ccr.buffalo.edu.

now orders of magnitude faster than their predecessors
of only a decade ago. Together, these improvements
have allowed useful calculations on molecular systems
containing tens to hundreds of atoms to be routinely
carried out. It is widely recognized, however, that a
significant further increase in the speed of modern su-
percomputers is more likely to come from increasing
the number of processors than from increasing proces-
sor speeds. Even the remarkable advances of the past
decade in the development of new computer hardware
have not resulted in an order of magnitude improve-
ment in CPU speed over that of the early CRAY with
its 12 nanosecond clock. In fact, present technology
is already close to fundamental limits. On the other
hand, it is entirely feasible and cost effective to build
machines with hundreds of inexpensive, air cooled
scalar or vector processors that are connected together
in a shared or distributed memory architecture, and
which function autonomously and asynchronously.
These parallel computers hold great promise for large
scale scientific computing. Indeed, the availability of

0010-4655/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(00)00059-X



T.R. Furlani et al. / Computer Physics Communications 128 (2000) 170–177 171

commercial parallel computers in the late 1980’s sig-
naled the beginning of the long awaited “revolution” in
scientific computing and spurred code development ef-
forts in many scientific fields, including computational
chemistry [1–14]. For example, quantum chemistry
codes such as Q-Chem [14], GAMESS [9], Jaguar [8]
and Gaussian [13] have been modified to function in a
variety of parallel computing environments.

Here we report the performance of the density func-
tional theory (DFT) and Hartree–Fock modules of the
ab initio quantum chemistry code Q-Chem on both
an SGI/CRAY T3E and an SGI Origin2000. These
computers were selected because they represent the
two most common parallel computer architectures in
existence today, namely distributed memory (T3E)
and shared memory (Origin2000). The parallel per-
formance of Q-Chem, as measured by the ratio of the
execution time on a single processor to that on mul-
tiple processors (speed-up), was studied for bothsin-
gle point energy and gradient calculationson up to 64
processors of each machine.

The following section contains a detailed descrip-
tion of Q-Chem, including the linear scaling DFT and
Hartree–Fock modules. The scheme used for paral-
lelization of Q-Chem is discussed in Section 3, in-
cluding a description of parallel two-electron integral
routines and the parallel DFT numerical integration
scheme. Section 4 presents results from benchmark
calculations and Section 5 summarizes our findings.

2. The Q-Chem package

Q-Chem 1.2 was released in March 1999. It is
a general-purpose package for performing quantum
chemical calculations using contracted Gaussian ba-
sis sets and is designed to be particularly effective for
large systems. It is capable of ground-state calcula-
tions using density functional theory (DFT), Hartree–
Fock (HF) and MP2 theory and excited-state calcula-
tions using CIS,CIS(D) and related methods. It can
compute gradients at most levels of theory and analytic
second derivatives at the HF and CIS levels. It contains
a recent version of the Baker OPTIMIZE package for
the exploration of potential energy surfaces.

Attempts in the early 1990s to apply traditional
quantum chemistry packages to large molecular sys-
tems were largely disappointing because the computa-

tional costs of conventional ab initio algorithms scale
steeply as the sizeN of the Gaussian basis set in-
creases. For example, conventional DFT and HF cal-
culations scale asN2, MP2 asN5, CCSD asN6,
and CCSD(T ) and MP4 asN7. The recognition that
these formidable bottlenecks had to be overcome be-
fore quantum chemistry could become a useful tool
for biochemical problems has fueled a major research
effort within several groups and has led to a number
of significant advances during the last few years. Be-
cause the present paper is concerned with the Q-Chem
package, we do not attempt to review here the impor-
tant contributions of the Almlof, Arias, Friesner, Par-
rinello, Payne, Scuseria, St. Amant and Yang groups
but focus instead on the contributions from the Q-
Chem collaborators.

In most DFT calculations, the exchange-correlation
energy is expressed as an integral over the molecular
volume and, because the integral is not generally an-
alytically evaluable, three-dimensional quadrature is
used [15]. In 1992, Johnson et al. developed a com-
plete quadrature algorithm [16] whose cost scales only
linearly with the number of grid points and this was
implemented in Q-Chem the following year. The stan-
dard grid in Q-Chem 1.2 is the SG-1 grid [17] and
consists of roughly 2500 points per atom. It combines
Euler–Maclaurin radial quadrature with Lebedev an-
gular quadrature and has been systematically “pruned”
of unimportant points.

In 1994, White et al. published the first algo-
rithm [18] that computes the Coulomb energy of an
ensemble ofM overlapping Gaussian charge distri-
butions in work that scales only linearly withM.
This scheme, which was dubbed the “Continuous Fast
Multipole Method (CFMM)”, was an important first
step towards the removal of the so-called “Coulomb
bottleneck” and enabled Q-Chem to perform a self-
consistent DFT energy calculation on a segment of
RNA with more than 12,000 basis functions using
only a mid-sized workstation. Details of DFT calcu-
lations using the CFMM were reported [19,20] two
years later.

The CFMM achieves its high computational effi-
ciency by splitting the Coulomb problem into near-
field and far-field parts. The former, which con-
cerns the interactions of pairs of charge distributions
that overlap strongly, is treated via two-electron in-
tegrals [21,22] or the J-matrix engine [23]. The lat-



172 T.R. Furlani et al. / Computer Physics Communications 128 (2000) 170–177

ter, which concerns non-overlapping distributions, is
treated via exact multipole expansions. Dombroski
et al. have shown [24] that it is also useful to split
the Coulomb operator itself into short- and long-range
parts and Lee et al. have discovered the optimal par-
tition [25]. Approaches based on such partitions are
known as KWIK methods.

Encouraged by success with the Coulomb problem,
the Q-Chem collaborators turned to the more difficult
task of computing the Fock exchange energy. This is
a non-classical problem and remains an active area
of research. However, in 1997, Challacombe et al.
reported a scheme [26,27] that leads to linear-scaling
exchange calculations in insulating systems with fairly
large HOMO-LUMO separations (bandgaps). Their
scheme, which was termed ONX, was later improved
and led to the LinK and ONX-2 methods. Although
none of these is more efficient than conventional
two-electron approaches when applied to delocalized
molecules, they have allowed hybrid DFT calculations
to be undertaken on insulating systems with several
thousand basis functions.

3. Q-Chem parallelization overview

Message Passing Interface (MPI) [28] based paral-
lelism with dynamic load balancehas been incorpo-
rated into both the Hartree–Fock and DFT modules
of Q-Chem. MPI, which was developed jointly by re-
searchers from industry, government laboratories and
universities, was selected because it is easy to use,
widely accepted and supported throughout the scien-
tific community, available on all major platforms (in-
cluding both shared and distributed memory archi-
tectures), and functions on a heterogeneous cluster
of workstations. Thus, MPI offers great flexibility in
terms of computing environments.

3.1. Parallelization of the two-electron integral
routines

The single most important aspect of implementing
any SCF algorithm on a parallel computer is evalu-
ation of the two-electron integrals (coulomb and ex-
change) since their computation is, by far, the domi-
nant step in a sequential HF calculation and a substan-
tial step in a DFT one. In Q-Chem, the two-electron

integrals are evaluated according to the PRISM algo-
rithm [21,22]. This algorithm divides the two-electron
integrals into batches according to angular momentum
(L) and contraction(K) types, rather than according
to atom centers as is the more common approach, since
it is theL andK characteristics which determine com-
putational cost. Batch size can be adjusted according
to the amount of available memory. Parallelization of
this construct is achieved simply by distributing the
batches over the processors. This can be done either
statically or dynamically, with the latter being more
desirable as discussed below. A sketch of the parallel
PRISM loop structure is as follows:

Broadcast (sparse) density matrix and
orbital shell-pair data

Loop over two-electron-integral type
Loop over batches of two-electron

integrals of current type
Do the current batch on the next

available CPU
End batch loop

End loop over integral type

By effectively sorting the integral classes by cost in
advance and computing all integrals of the same cost
together, it is possible to more equitably distribute the
computational workload over all processors. However,
experience has shown that even a careful (static)
distribution of integral batches will not insure that
a load balance is achieved, i.e. that all processors
contribute equally to completing the assigned task.
Rather a dynamic scheme, which assigns the integral
batches to the processors on the fly is needed. This is
even more important when running in heterogeneous
computing environments such as a workstation cluster,
where processor speeds and machine loads can vary
greatly. In Q-Chem the dynamic load balance scheme
is implemented as follows. Only a portion of the
batches are assigned to the processors at the beginning
of the SCF cycle. A large number of batches are
held back and subsequently assigned to processors
as they finish their current batch. The load balance
routine in Q-Chem is based on the simple idea of a
global shared counter (similar in spirit to the NXTVAL
functionality in the TCGMSG toolset), and is currently
implemented literally in this fashion, i.e. a single
counter variable in shared memory that is accessed
and incremented sequentially by the processors using



T.R. Furlani et al. / Computer Physics Communications 128 (2000) 170–177 173

a lock on the counter memory. Thus processors that
finish their assignment early are given additional work.
This insures that all processors are busy computing
integrals for the entire time integral evaluation takes
place. This method is similar in spirit to that devised
by Furlani and King in their implementation of a
parallel direct SCF method for distributed memory
parallel computers [10–12].

3.2. Parallelization of DFT numerical integration

We now discuss the parallelization of an important
component of a large-scale DFT calculation, namely,
the numerical integration of the exchange-correlation
(XC) functional to give the XC energy and matrix
elements. This is a significant computational step for
large-scale DFT calculations; whereas long ago we
developed linear-scaling methods for this step, our
subsequent linear-cost methods for Coulomb and HF
exchange areanalyticrather than numerical, and thus
the linear-cost XC quadrature can be the dominant step
in a large calculation.

The XC quadrature is carried out on a superposi-
tion of atom-centered grids, with approximately 2500
points per atom representing a typical grid size. Since
the grid size grows with the molecular size, paral-
lelization over the grid is a good candidate for massive
parallelism on large molecules. Thus, we have struc-
tured our serial algorithm to be driven over the atomic
grids as follows:

Loop over atoms
Construct quadrature grid for current atom

and Becke weights [15]
Loop over grid batches

On the next available CPU:
Evaluate basis functions, density and

functional on the grid
Evaluating contribution to XC energy

and matrices
End batch loop

End atom loop

As the atomic contributions are completely indepen-
dent of each other, we have constructed a very effi-
cient low-communication distributed-memory parallel
algorithm. In this algorithm the sparse density matrix
is broadcast at the start, the atomic grids are assigned
in parallel with dynamic load balance, and the desired

results (XC energy and matrices) are global-summed
at the end. Note that the global sums may be carried
outafter the numerical integration has been performed
due to the way the algorithm is structured, and thus the
communication involved isindependentof the size of
the numerical grid, a desirable feature.

For systems smaller than 100 atoms or so, the
straightforward approach of distributing the atoms
over the processors is likely not to achieve good
load balance (even with dynamic correction) due
to the coarse grain. In this case the problem is
easily remedied by sub-dividing the atomic quadrature
grids into (again) independent batches of points and
distributing these batches to the processors. Up to
10 parallel batches can be constructed from each
atomic grid if necessary without sacrificing serial
performance. This adds only minimal complication to
the parallel algorithm.

4. Results from benchmark calculations

A series of benchmark calculations consisting of
both single point energy and gradient calculations
were carried out to gauge the performance of the par-
allel Hartree–Fock and DFT modules in Q-Chem. Al-
though Q-Chem offers users a wide range of options
from which to choose, geometry optimizations and
single point energy calculations represent the most
commonly utilized options. Efficient parallelization of
the energy and the gradient of the energy with re-
spect to the position of the atoms (which is needed for
geometry optimization) is therefore critical. Calcula-
tions were carried out on two widely different parallel
computers, namely a shared memory Silicon Graph-
ics Origin2000 (250 MHz, R10000) and a distributed
memory Cray T3E-900 (450 MHz), to show the flexi-
bility of the code and to demonstrate the great utility of
MPI. Before describing our results, we present a dis-
cussion of parallel performance in order to provide a
context for the discussion that follows.

The performance of a parallel program, which
is usually measured by how much execution time
decreases as one increases the number of processors,
is dependent on several factors including, problem size
and architecture. For example, for a fixed problem
size, parallel performance eventually falls off as one
increases the number of processors due to the fact



174 T.R. Furlani et al. / Computer Physics Communications 128 (2000) 170–177

that there is a finite amount of computational work
to distribute. A useful measure of performance is the
speed-up that an algorithm achieves as the number of
processors is increased. Speed-up(S) is defined as the
ratio of the execution time of the serial program(ts)
to the execution time of the parallel program(tp) on a
given number of processors.

S = ts/tp.
In an ideal parallel algorithm, the speed-up increases
by a factor of 2 every time the number of processors is
doubled.

Here we report execution time and speed-up ver-
sus number of processors for Hartree–Fock and DFT
calculations. For most Hartree–Fock and DFT calcula-
tions, evaluation of the two-electron integrals accounts
for 90–99% of the execution time. The majority of the
remaining time is spent in linear algebra (matrix diag-
onalization and multiplication). Since our initial par-
allelization focused only on parallelization of the two-
electron integral code and not on linear algebra, the
best we can hope to achieve in terms of speed-up is a
factor of 10–100. Eventually as one decreases the time
spent in the parallel portion of the code by increas-
ing the number of processors, the sequential portion of
the calculation (in this case matrix diagonalization and
multiplication) will begin to dominate. Note that par-
allelization of the linear algebra portions of Q-Chem
is underway and will be reported on in a later paper.

Results for single point energy and gradient calcu-
lations forα-pinene (C10H16, 6–311G(df,p)) on the
Cray T3E and Origin2000 are contained in Tables 1–
5. The first 3 of these tables report timings on the T3E
while the last 2 tables contain results from calculations
carried out on the Origin2000. The SCF convergence
criteria was 10−4 DIIS error for all the single-point
calculations, and 10−8 for all the gradient calculations.
Please note that, due to time limits on the batch queues
for the CRAY T3E at NERSC, we were unable to run
any of the T3E calculations on fewer than 2 proces-
sors. The execution times for calculations carried out
on a single T3E processor were therefore obtained by
multiplying the execution time for a calculation run
on two processors by a factor of 2.0 (this assumes per-
fect speed-up). On the SGI Origin2000 at the Univer-
sity at Buffalo’s Center for Computational Research
(www.ccr.buffalo.edu) this construct was not neces-
sary as we were able to run each benchmark on a sin-

Table 1
Execution time and speed-up for Hartree–Fock single-point cal-
culations ofα-pinene (6–311G(df,p), 346 basis functions) on a
T3E-900 (450 MHz). Timings are for SCF portion of calculation

Number of processors CPU time (sec) Speed-up

1 6880. 1.0

2 3440. 2.0

8 933. 7.4

16 521. 13.2

32 322. 21.4

64 253. 27.1

gle processor. Thus the execution times reported for
the Origin2000 were all obtained directly from calcu-
lations.

Table 1 shows the performance for the SCF por-
tion of a single point Hartree–Fock calculation forα-
pinene carried out on the Cray T3E (346 basis func-
tions). The speed-up is excellent on 16 processors and
still good on 32-processors, even for this relatively
modest size calculation. It does, however, begin to fall
off sharply after about 32 processors. As discussed
above, this is attributable to the non-parallelized por-
tion of the calculation, namely matrix diagonaliza-
tion and multiplication. Results for computation of the
Hartree–Fockgradient for α-pinene are contained in
Table 2. Here the speed-up is considerably better than
that for the single point calculation with a speed-up
of 42 on 64 processors (there are no matrix diagonal-
izations involved in the gradient calculations). Table 3
shows the result for a single-point DFT calculation on
α-pinene using a B3LYP functional (T3E). Although
the performance is slightly better than that for the HF
single point energy calculation, it still shows a signifi-
cant fall off after 32 processors.

We hasten to point out that the observed fall-
offs are not unexpected. In the initial parallelization
scheme we addressed the most time consuming part
of HF and DFT calculations, namely evaluation of
the two-electron integrals. We realized that success
in this phase of the calculation would necessitate our
subsequently addressing the remaining non-parallel
components, namely the linear algebra. Work in this
area is underway.

Table 4 contains results for a single point DFT
(B3LYP) calculation forα-pinene on an Origin2000



T.R. Furlani et al. / Computer Physics Communications 128 (2000) 170–177 175

Table 2
Execution time and speed-up for Hartree–Fock gradient calcula-
tions ofα-pinene (6–311G(df,p), 346 basis functions) on a Cray
T3E-900 (450 MHz). Timings are for SCF portion of calculation

Number of processors CPU time (sec) Speed-up

1 8294. 1.0

2 4147. 2.0

8 1071. 7.7

16 557. 14.9

32 310. 26.8

64 200. 41.5

Table 3
Execution time and speed-up for DFT calculations ofα-pinene
(B3LYP, 6–311G(df,p), 346 basis functions) on a Cray T3E-900
(450 MHz). Timings are for SCF portion of calculation

Number of processors CPU time (sec) Speed-up

1 10512. 1

2 5256. 2

8 1427. 7.4

16 793. 13.3

32 488. 21.5

64 362. 29.0

as opposed to the T3E. The Origin2000 results are
similar to the T3E results (Table 3), although the
performance on 32 and especially 64 processors is
significantly better on the Origin2000. In the latter
case, the speedup is a factor of 29 on the T3E and
a factor of 37 on the Origin2000. Finally, in Table 5
we report the results for computation of thegradient
for α-pinene using density functional theory on the
Origin2000. The results are similar to that obtained
on the T3E using Hartree–Fock theory (Table 2). The
only significant difference being for 64 processors
where the Origin2000 outperformed the T3E in terms
of speed-up. Since the T3E calculation is based on HF
theory and the Origin2000 calculation on DFT theory,
it is not possible to attribute the difference in speed-up
solely to machine architecture, as was possible when
comparing the single point DFT calculations on the
two platforms (Table 3 versus Table 4).

We wish to point out that the timing results pre-
sented here compare favorably, both in terms of exe-

Table 4
Execution time and speed-up for DFT calculations ofα-pinene
(B3LYP, 6–311G(df,p), 346 basis functions) on an SGI Ori-
gin2000 (R10000, 250 MHz). Timings are for SCF portion of cal-
culation

Number of processors CPU time (sec) Speed-up

1 6041. 1.0

2 3343. 1.8

8 822. 7.3

16 443. 13.6

32 251. 24.1

64 162. 37.3

Table 5
Execution time and speed-up for DFT gradient calculations of
α-pinene (B3LYP, 6–311G(df,p), 346 basis functions) on an
Origin2000 (R10000, 250 MHz). Timings are for SCF portion of
calculation

Number of processors CPU time (sec) Speed-up

1 6795. 1.0

2 3816. 1.8

8 944. 7.2

16 503. 13.5

32 272. 25.0

64 136. 50.0

cution time and speed-up, with those reported by Sosa
and coworkers [13] for Gaussian-94 software on a
T3E. In terms of single processor performance for a
6–311G(df,p) SP calculation forα-pinene, Gaussian
reports an execution time of 8994 seconds on a T3E-
900. The corresponding time for the same calculation
using Q-Chem is 6880 seconds. For the DFT calcula-
tions the times are 13,044 seconds for Gaussian and
10,512 seconds for Q-Chem. In all cases the speed-up
achieved with Q-Chem is equivalent to that obtained
by Gaussian on the T3E [13].

5. Conclusion

We have successfully incorporated MPI based par-
allelism with dynamic load balanceinto both the



176 T.R. Furlani et al. / Computer Physics Communications 128 (2000) 170–177

Hartree–Fock and DFT modules of Q-Chem. A series
of benchmark calculations consisting of bothsingle
point energy and gradient calculationswere carried
out to gauge the performance of the parallel modules.
Although Q-Chem offers users a wide range of op-
tions from which to choose, geometry optimizations
and single point energy calculations represent the most
commonly utilized options. Accordingly, efficient par-
allelization of these two procedures has the potential
to have a significant impact on a large number of end-
users. Calculations were carried out on two widely dif-
ferent parallel computers, namely a shared memory
Silicon Graphics Origin2000 and a distributed mem-
ory Cray T3E, to show the flexibility of the code and
demonstrate the great utility of MPI. Benchmark cal-
culations on both the SGI and T3E clearly demonstrate
the utility of parallel processing for quantum chemi-
cal calculations as implemented in Q-Chem. Results
on both the SGI Origin2000 and CRAY T3E are very
good. For example, speed-ups of a factor of 24 and 22
were obtained on 32 processors of an Origin2000 and
CRAY T3E, respectively. Even though performance
falls off as the number of processors is increased (for
a fixed problem size), the observed decreases in ex-
ecution time are significant. For example, a geome-
try optimization requiring 2 weeks on a single proces-
sor high-performance workstation (which is not an un-
common occurrence) could easily be run overnight on
16 processors. Further work is underway to parallelize
the remaining sequential portions of the code (primar-
ily the linear algebra routines) to further improve per-
formance.

Acknowledgement

TRF gratefully acknowledges support from NSF
grants DBI9871132 and ATM971338. JK and TRF
also acknowledge support from NIH grant GM58295-
01. Access to the Origin2000 at the University at
Buffalo’s Center for Computational Research and the
T3E at NERSC is also greatly appreciated.

References

[1] T.G. Mattson (Ed.), Parallel computing in computational
chemistry, ACS Symp. Ser. 592 (1995).

[2] R. Weist, J. Demuynck, M. Bernard, M. Rohmer, R. Emen-
wein, Comput. Phys. Commun. 62 (1991) 107–124.

[3] M.E. Colvin, R.A. Whitside, H.F. Schaefer III, in: Methods in
Quantum Chemistry, Vol. 3, S. Wilson (Ed.) (Plenum Press,
NY, 1989) p. 167.

[4] M.W. Feyereisen, R.A. Kendall, Theor. Chim. Acta 84 (1993)
289.

[5] M.E. Colvin, C.L. Janssen, R.A. Whiteside, C.H. Tong, Theor.
Chim. Acta 84 (1993) 301.

[6] R.J. Harrison, R. Shepard, Annu. Rev. Phys. Chem. 45 (1994)
623.

[7] R.J. Harrison, M.F. Guest, R.A. Kendall, D.E. Bernholdt,
A.T. Wong, M. Stave, J.L. Anchell, A.C. Hess, R.J. Littlefield,
G.L. Fann, J. Nieplocha, G.S. Thomas, D. Elwood, J. Tilson,
R.L. Shepard, A.F. Wagner, I.T. Foster, E. Lusk, R. Stevens,
J. Comput. Chem. 16 (1996) 124.

[8] D. Chasman, M.D. Beachy, L. Wang, R.A. Friesner, J. Comput.
Chem. 19 (1998) 1017.

[9] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert,
M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga,
K. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery,
Jr., J. Comput. Chem. 14 (1993) 1347.

[10] T.R. Furlani, H.F. King, J. Comput. Chem. 16 (1995) 91.
[11] T.R. Furlani, H.F. King, in: Quantum mechanical Simula-

tion Methods for Studying Biological Systems, D. Biscout,
M.F. Field (Eds.) (Springer, France, 1996) p. 271.

[12] J. Gao, T.R. Furlani, IEEE Comput. Sci. Engrg. 2 (1995) 24.
[13] C.P. Sosa, J. Ochterski, J. Carpenter, M.J. Frisch, J. Comput.

Chem. 19 (1998) 1053.
[14] C.A. White, J. Kong, D.R. Maurice, T.R. Adams, J. Baker,

M. Challacombe, E. Schwegler, J.P. Dombroski, C. Ochsen-
feld, M. Oumi, T.R. Furlani, J. Florian, R.D. Adamson, N. Nair,
A.M. Lee, N. Ishikawa, R.L. Graham, A. Warshel, B.G. John-
son, P.M.W. Gil, M. Head-Gordon, Q-Chem, Version 1.2
(Q-Chem, Inc., Pittsburgh, PA, 1998).

[15] A.D. Becke, J. Chem. Phys. 88 (1988) 2547.
[16] B.G. Johnson, Ph.D. Thesis, Carnegie Mellon University

(1993).
[17] P.M.W. Gill, B.G. Johnson, J.A. Pople, Chem. Phys. Lett. 209

(1993) 506.
[18] C.A. White, B.G. Johnson, P.M.W. Gill, M. Head-Gordon,

Chem. Phys. Lett. 230 (1994) 8.
[19] C.A. White, B.G. Johnson, P.M.W. Gill, M. Head-Gordon,

Chem. Phys. Lett. 253 (1996) 268.
[20] B.G. Johnson, C.A. White, Q.-M. Zhang, B. Chen, R.L. Gra-

ham, P.M.W. Gill, M. Head-Gordon, Advances in method-
ologies for linear-scaling density functional calculations, in:
Recent Developments in Density Functional Theory, Vol. 4,
J.M. Seminario (Ed.) (Elsevier Science B.V., Amsterdam,
1996) p. 441.

[21] P.M.W. Gill, Adv. Quantum Chem. 25 (1994) 141.
[22] T.R. Adams, R.D. Adamson, P.M.W. Gill, J. Chem. Phys. 107

(1997) 124.
[23] C.A. White, M. Head-Gordon, J. Chem. Phys. 104 (1996)

2620.
[24] J.P. Dombroski, S.W. Taylor, P.M.W. Gill, J. Phys. Chem. 100

(1996) 6272.
[25] A.M. Lee, S.W. Taylor, J.P. Dombroski, P.M.W. Gill, Phys.

Rev. A 55 (1997) 3233.



T.R. Furlani et al. / Computer Physics Communications 128 (2000) 170–177 177

[26] M. Challacombe, E. Schwegler, J. Chem. Phys. 106 (1997)
5526.

[27] E. Schwegler, M. Challacombe, M. Head-Gordon, J. Chem.
Phys. 106 (1997) 9703.

[28] The MPI Forum, Proceedings of Supercomputing ’93, IEEE
Computer Society, Los Alamitos, CA, 1991, p. 878.


