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Abstract

We compare four methods for generating Stewart atoms, the spherically-symmetric nuclear-centred functions whose sum
best fits a given electron density. We find that projecting a molecular density onto an atom-centred basis is a more subtle and
difficult problem than is generally recognized and we conclude that new approaches, based on integral equations, may be more
satisfactory than traditional projection methods.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is frequently beneficial to approximate a compli-
cated function by a simple one. A well-chosen model
can be advantageous both conceptually and computa-
tionally, shedding light on the most important features
of a system and, at the same time, offering an efficient
route to their calculation. It is therefore not surprising
to find that a wide variety of models have been
devised to treat the inherent complexities of molecular
quantum mechanics. For example, the Hartree–Fock
model approximates the molecular wavefunctionC
by a relatively simple determinant and, in doing
so, replaces an impossibly difficult computational
problem by a tractable one and establishes the orbital
picture at the centre of modern chemical thought.

More recently, the Hohenberg–Kohn theorem [1]
has shown that the molecular electron densityr�r �
offers an even simpler paradigm for understanding
electronic structure and a correspondingly efficient

framework for calculation. Density functional theory
(DFT) is now widely embraced and many groups are
working to extend its range of applicability to excited
states and large systems.

Our interest lies in the next level of approximation,
the construction of a model densityr̂�r � from a given
densityr�r �: This can be done in many ways but we
see particular promise in the Stewart decomposition
[2,3]. Given a densityr�r � for a system with nuclei at
A j ; j � 1;…;N; we seek theN Stewart atomss j�r�
whose sum, the Stewart density

r̂�r � �
X

j

s j�ur 2 A j u� �1�

best fits r�r � in a least-squares sense. The most
obvious fit arises from minimizing

Z d
0 � kr 2 r̂ ur 2 r̂l �2�

but one could also consider minimizing the more
general least-squares residual

Zq
0 � kr 2 r̂ uqur 2 r̂l �3�

where q�r12� is a positive-definite two-electron
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operator. There are a number of physically reasonable
choices forq�r12� of which d�r12�=�4pr2

12�; r21
12 and

2r12 are the most important. These correspond [4]
to fitting the density, the electric field modulus and
the potential, respectively, of̂r�r � to r�r �: However,
Stewart has proven [2] the surprising result that thes j

are, in fact, independent ofq�r12� and that the choice
of operator is thus immaterial. For this reason, we
drop the superscript inZ q

0 henceforth. Stewart has
also shown that̂r�r � exactly reproduces some of the
low-order multipole moments ofr�r �; in particular its
charge and dipole moments.

An approximate, but conceptually straightforward,
method for generating Stewart atoms is to expandr̂�r �
in an auxiliary set of nuclear-centred radial basis
functions, i.e.

ur̂l � cpufpl �4�
and directly minimize Eq. (3). The expansion coeffi-
cients satisfy the matrix equation

Sc� b �5�

Spq � kfpuqufql �6�

bp � kfpuqurl �7�
and this can be solved using standard techniques
of linear algebra. Unfortunately, these approximate
Stewart atomsdo depend on the operatorq�r12�
used in Eqs. (6) and (7) and a choice must be made.
This question has been considered by Dunlap et al. [5]
and Eichhorn et al. [6] and these workers have recom-
mended the use of the Coulomb operator.

We discuss the use of Hermite and Gaussian auxili-
ary basis functions in Sections 2 and 3, respectively.
We will revisit the question of the “best” operator
q�r12� in Section 6 but we use the overlap operator
unless otherwise noted.

Following Stewart, our previous work [3] used the
convolution theorem to move the minimization
problem into Fourier space where the objective function
becomes

Z0 �
Z

Fq�x� Fr�x�2
X

Fj�x� e2iA j ·x
��� ���2 dx �8�

where Fq;Fr and Fj are the Fourier transforms of
q�r12�; r�r � ands j�r�; respectively.

Minimization of Eq. (8) then leads to a matrix

equation for the unknownFj

JF � P �9�

Jij �x� � j0�Rij x� �10�

Pj�x� �
Z
r�r �j0�jr 2 A j ux� dr �11�

where j0�t� � sin �t�=t and Rij � uA i 2 A j u and
Cramer’s Rule yields the formal solution

s j�r� � 1
2p 2

X
k

Z∞

0

ĴjkPk

uJu
x2j0�rx� dx �12�

where Ĵ is the matrix of cofactors ofJ. However,
despite many attempts, even the simplest such inte-
grals have always proven an insuperable obstacle for
us [3]. We consider a possible way forward in Section 4.

However, it is possible to avoid both auxiliary basis
sets and Fourier transforms by transforming the
Stewart Eqs. (9) into real space. This leads to a system
of integral equations and Section 5 discusses one way
in which these may be solved. Section 6 then
compares the performance of the four methods on a
simple model of the H12 molecule and Section 7
discusses results for the H2 and F2 molecules. Atomic
units are used throughout.

2. Expansion in a Hermite basis

There are several reasonable bases in which one
could expand the Stewart atoms. For example, the
Hermite functions

fp�r� � p23=4��������
2p11p!

p Hp�r�
r

e2r2
=2 �13�

(p odd) provide, for the overlap operator, an orthonor-
mal basis of even functions on each centre. They are
proportional to their Fourier transformsZ∞

0
4pr2fp�r�j0�kr� dr � �21��p21�=2�2p�3=2fp�k� �14�

and their integrals over all space are given byZ∞

0
4pr2fp�r� dr � ��

8
p

p3=4 p!!���
p!
p �15�

If fp andfq are separated byR, their overlap integral
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(by the convolution theorem) is

Spq � �21��p1q�=221�������������
p2pp!2qq!
p

Z1 ∞

2 ∞
Hp�x�Hq�x� sin �Rx�

Rx
e2x2

dx

� 2 e2R2
=4�����������

2pp!2qq!
p Ypq

�16�
where we have introduced the polynomials

Ypq � �21��p1q�=221 eR2
=4

2
��
p
p

Z1 ∞

2 ∞
�Hp�x�Hq�x�

2 Hp�0�Hq�0�� sin �Rx�
Rx

e2x2

dx �17�

The termHp�0�Hq�0� in Eq. (17) vanishes whenp and
q are odd and is added for convenience. TheYpq vanish
if p 1 q is odd and the members betweenY00 andY44

can be tabulated as

Explicit formulae for the higherYpq are complicated
and unsuitable for numerical evaluation. However,
recurrence properties of the Hermite polynomials
yield the useful identity

Yp11;q 2 2pYp21;q � Yp;q11 2 2qYp;q21 �19�

which, starting from the trivial values

Y0;0 � 0 �20�

Yp;1 � Y1;p �
Rp21 p odd

0 p even

(
�21�

offers an efficient route to the recursive generation of
as manyYpq as one requires. We note that some care is
required, because Eq. (19) becomes numerically
unstable for largep andq.

The elements of theb vector can also be
computed using the Convolution Theorem. The
fundamental integral, from which all others can
be derived [7], is the overlap of the Hermite func-
tion Eq. (13) with a Gaussian function at a distance
R, and is given by

bp � �21��p21�=2

p5=4R
������
2pp!
p

Z∞

0
Hp�x�

� exp

"
2 x2

 
1
2

1
1
4z

!#
sin �Rx� dx �22�

wherez is the Gaussian exponent. This integral is
easily solved in closed form [8].

Finally, we note that the canonical functions (13)
can be generalized by appropriately scaling its
gaussian and the Hermite polynomials to form

fg
p�r� � g3=2fp�gr�: �23�

3. Expansion in a Gaussian basis

Auxiliary basis sets employing Gaussian functions

fp�r� � �zp=p�3=2 exp�2zpr2� �24�

are widely used because of their computational
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Table 1
Even-tempering parameters for H and N

n Hydrogen Nitrogen

a b a b

15 0.10 1.39 0.17 1.70
20 0.09 1.29 0.14 1.51
25 0.08 1.23 0.12 1.40

0 0 1 0 R2 1 6

0 1 0 R2 0

1 0 R2 2 2 0 R4 2 6R2 1 12

0 R2 0 R4 2 8R2 1 24 0

R2 1 6 0 R4 2 6R2 1 12 0 R6 2 18R4 1 108R2 2 120

26666666664

37777777775
�18�



simplicity. Their Fourier transformsZ∞

0
4pr2fp�r�j0�kr� dr � exp 2

k2

4zp

 !
�25�

are simple and their integrals over all space are unity.
We use even-tempered basis sets optimized for

hydrogen and nitrogen. The exponents

zp � abp21
; p� 1; 2;…;n �26�

are given in Table 1 forn� 15; 20 and 25. Thea and
b parameters were chosen so that the Coulomb energy
of the STO-3G atom is reasonably approximated [9],
the geometric mean of the exponents is close to the
nuclear charge, and thea values decrease with
increasingn. For calculations with other first-row
atoms, we use the nitrogen parameters.

If fp andfq are separated byR, their overlap inte-
gral is given by

Spq � �z=p�3=2 exp�2zR2� z� zpzq

zp 1 zq

" #
�27�

Because the overlap operator is very short-ranged, the
S matrix becomes sparse in large systems and this
admits the possibility of using special techniques for
solving Eq. (5) efficiently. However, if the auxiliary
basis is near-complete, some of the exponentszp will
be small andS becomes almost singular. This causes
significant numerical problems and it is essential to
employ Singular Value Decomposition (SVD) to
remove the offending subspace. All of the results
that we present used SVD with singular values deter-
mined by machine precision.

If r�r � consists of Gaussian functions, the elements
of b are analogous to Eq. (27).

4. Expansion of the Fourier solution

The Stewart–Fourier integral (12) proves intract-
able even for a simple systems. For a diatomic with
bond lengthR, the first Stewart atom is given by

s1�r� � 1
2R3p2

Z∞

0

P1�x=R�2 j0�x�P2�x=R�
1 2 j20�x�

x2j0
rx
R

� �
dx

�28�

and the transcendental denominator 12 j20�x� thwarts
the analytic evaluation of this integral. However, the
identity

x2

1 2 j20�x�
; x2

Xm
k�0

j2k
0 �x�

" #
1

sin2�x�j2m
0 �x�

1 2 j20�x�
�29�

breaks the integral into a sum of tractable integrals
and a small correction. The last term in Eq. (29) is a
bell-shaped positive function with an oscillatory tail.
As m increases, the frequency of the oscillations
increases but their amplitudes rapidly decrease. For
a givenm, this term may be expanded in an auxiliary
basis of even Hermite functions and truncation of the
expansion at ordern yields the (m,n) approximation

s1�r� � 1
2p 2R3

Xm
k�0

Z∞

0
x2j2k

0 �x�

� P1
x
R

� �
2 j0�x�P2

x
R

� �� �
j0

rx
R

� �
dx

1
1

2p2R3

Xn
p�0

Z∞

0
cmp e2x2

=2H2p�x�

� P1
x
R

� �
2 j0�x�P2

x
R

� �� �
j0

rx
R

� �
dx �30�

to the Stewart atoms1�r�:
If r�r � is composed of Gaussian functions, all of

the integrals in Eq. (30) can be found in closed
form. The expansion coefficientscmp must be deter-
mined numerically, but are valid for all diatomics
becauseR does not occur in Eq. (29). The values
required for the (3,p) approximations�p # 7� are
listed in Table 2. Unfortunately, it is difficult to gener-
alize this method to polyatomic systems.
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Table 2
Coefficientscmp for the (3,p) Fourier approximations

p c3,p

0 3.0265106465
1 20.9409081880
2 0.3394151003
3 20.1202380179
4 0.0395452865
5 20.0111605698
6 0.0023707571
7 0.0000323428



5. Simpson approximation

The Stewart decomposition is a spherical projection
of r�r � about the nuclei and, thus,

Sa ~r � Sar �31�
where Sa is the spherical projector about theath
nucleus. It therefore follows that

sa 1
X
b±a

Sasb � Sar �32�

If the Stewart atomsb is even, it can be shown that its
projection onto another nucleus is

Sasb � 1
2Rabr

Zr 1 Rab

r 2 Rab

tsb�t� dt �33�

Defining Stewart functionsfa�r�; local averagesk f lR

and the density projectionsga�r�
fa�r� � rsa�r� �34�

k f lR � 1
2R

Zr 1 R

r 2 R
f �t� dt �35�

ga�r� � rSar �36�
then leads immediately to the simultaneous integral
equations

fa�r�1
X
b±a

k fblRab
� ga�r�: �37�

Although equivalent to the Fourier framework that
Stewart [2] and we [3] have used, the real-space
formulation (37) of Stewart theory is simpler and
more physically appealing. Thega�r� are straightfor-
ward to calculate, especially ifr�r � consists of Gaus-
sian functions, and there are several approaches for
treating linear integral equations of the form (37). We
will discuss some of these elsewhere [10] but, in this
paper, approximate the local averages using quadra-
ture formulae and thereby discretize the problem.

The Extended Simpson Rule approximates the local
average Eq. (35) by

k f lR <
1
6n
�f0 1 4� f1 1 f3 1 …1 f2n21�

12� f2 1 f4 1 …1 f2n22�1 f2n� �38�

fk � f �r 1 �k 2 n�h� �39�

h� R=n �40�
and introduces an error [11]

Error� nh5

90
f �4��j� �r 2 R # j # r 1 R� �41�

which is acceptable if the step sizeh is small and the
function f(r) does not vary rapidly. Furthermore,
doublingn (and thereby halvingh) reduces this error
by an order of magnitude.
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Table 3
Stewart functionf(r) for model H1

2 and errors (× 106) of various methods

r f(r) Hermite Gaussian Fouriera Simpson

n� 10 n� 20 n� 15 n� 20 n� 4 n� 5 n� 8 n� 16

0.25 0.0154642 16.7 10.5 14.3 10.6 10.8 20.1 11.1 10.1
0.50 0.0284867 21.1 20.6 24.2 10.3 11.2 20.2 11.8 10.1
0.75 0.0367769 26.7 10.2 11.6 20.7 11.3 20.2 11.7 10.1
1.00 0.0387705 11.9 10.3 20.7 10.2 11.0 0.0 10.9 10.1
1.25 0.0344114 16.7 20.6 11.3 10.4 10.2 0.0 0.0 0.0
1.50 0.0254354 22.7 10.5 23.5 20.7 20.6 10.1 20.7 0.0
1.75 0.0147369 27.1 0.0 16.7 10.6 21.3 10.1 21.1 20.1
2.00 0.0051586 12.9 20.5 27.1 20.3 21.6 10.2 21.2 20.1
3.00 20.0043633 11.7 10.7 29.3 20.4 11.3 20.2 10.4 0.0
4.00 0.0009188 27.0 20.2 24.2 20.7 11.0 10.2 10.4 0.0
5.00 0.0001562 212.9 20.7 114.2 22.4 24.6 10.1 20.5 0.0
6.00 20.0001484 125.8 20.3 28.9 12.4 11.9 20.9 10.2 0.0
7.00 0.0000327 240.7 20.5 218.5 24.1 113.4 10.8 0.0 0.0

a Usingm� 3 in Eq. (30).



The Simpson approximation can be writtenkf l �
Af ; wherekf l andf are the values ofk f lR andf (r) at
the pointsr � { h;2h;…;mh} : For example, ifR� 2
and we choosen� 4 and m� 10; we obtain the
Simpson matrix

A � 1
24

1 4 1

1 4 2 4 1

1 4 2 4 2 4 1

4 2 4 2 4 2 4 1

1 4 2 4 2 4 2 4 1

1 4 2 4 2 4 2 4 1

1 4 2 4 2 4 2 4

1 4 2 4 2 4 2

1 4 2 4 2 4

1 4 2 4 2

2666666666666666666666666664

3777777777777777777777777775

: �42�

In this way, the integral equations (37) are converted
into a well-conditioned matrix equation for the values
of the fa�r� on a regular grid.

6. A model system for H1
2

We begin by examining a model system whose
density is a single gaussian at the origin

r�r� � p23=2 exp�2r2� �43�

and whose nuclei are protons lying at�0;0;^1�: This
is a crude model of the H12 ion and, by symmetry, we
have s1�r� � s2�r� � s�r� and f1�r� � f2�r� � f �r�:
The reader may wish to guess the qualitative features
of the Stewart atoms in this simple system before
reading on.

Although we cannot establish the exactf (r) rigor-
ously, even for this trivial system, we find that the
Fourier and Simpson methods converge to the same
Stewart function asn grows and we assume that their
common limit is the exactf (r). The second column of
Table 3 lists the values off (r) for a number of points
and 4prf �r� is plotted in Fig. 1a.

By analysing the asymptotic behaviour off (r), we

have found [10] that

f �r� , A exp 2
ar
2

� �
cos

br
2

1 f

� �
�44�

where z� a 1 ib < 2:250731 4:21239i is the first
root of

sinhz
z
� 21 �45�

andA andf are constants. It is interesting to compare
the properties of the exact densityr�r� with the Stew-
art f (r). Because of charge conservation, the Stewart
charge

Q�
Z∞

0
4prf �r� dr �46�

on each atom is exactly 0.5. However, whereasr�r� is
strictly positive with Gaussian decay,f (r) is oscilla-
tory and decays only exponentially. An appreciation
of these surprising results should help us to under-
stand the performance of the four approximate
methods that we now apply to this model problem.

6.1. Hermite expansion

If we expand the Stewart atom in the canonical
Hermite basis (13), we obtain

�I 1 S�c� b �47�
where the elements ofS are given by Eq. (16) and

bp �
��
2
p

p23=4 e21=3��������
6p11p!

p Hp
2��
3
p

� �
�48�

The matrix Eq. (47) is well conditioned and its solu-
tion poses no numerical difficulties. The third and
fourth columns of Table 3 show the errors incurred
if s�r� is expanded in the Hermite bases
{f1;f3;…;f19} and {f1;f3;…;f39} ; respectively.

The n� 10 approximation oscillates about the
exact f (r) and is accurate to five decimal places for
r , 5: However, all of the basis functions decay
rapidly beyondr � 5 and the approximation conse-
quently deteriorates.

The n� 20 approximation oscillates more rapidly
about the exactf (r) and is accurate to six decimal
places for all r , 7: However, because evenf39

decays rapidly beyondr � 9; we expect that the
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approximation would degrade rapidly for larger
values ofr.

Of course, we could obtain more accurate expan-
sions by employing a basis in which the Hermite poly-
nomials are scaled for the specific problem under
consideration. However, we have not exploited this
possibility here because we are interested to now
how well the unmodified basis functions (13) perform.

6.2. Gaussian expansion

The matrix equation that results when this Stewart
problem is expanded in the even-tempered Gaussian
basis (24) for hydrogen (see Table 1) is dense but
quite well conditioned. Consequently, it is straightfor-
ward to solve for the expansion coefficients and the
fifth and sixth columns of Table 3 show the errors
incurred if s�r� is expanded in bases of 15 and 20
gaussians, respectively.

The n� 15 approximation is comparable to the
n� 10 Hermite approximation, although it seems to
deteriorate slightly more slowly at larger values.
Their similarity can probably be traced to the fact

that the most diffuse gaussian�z1 � 0:1� has roughly
the same extent as the most diffuse Hermite function
f19.

The n� 20 approximation is comparable to the
n� 20 Hermite approximation forr # 4 but deterio-
rates more quickly at largerr. As before, this can be
explained by observing that the most diffuse gaussian
�z1 � 0:09� is significantly more compact than the
Hermitef39.

Like the Hermite results above, these Gaussian
expansions were obtained by using the overlap opera-
tor qO�r12� � d�r12�=�4pr 2

12� to compute the matrix
elements Eqs. (6) and (7). This operator ignores all
contributions to the integrand of Eq. (3) except those
wherer12 � 0: The unit operatorqU�r12� ; 1; which
attaches equal importance to all values ofr12, lies at
the other extreme. The Coulomb operatorqC�r12� �
r21
12 ; which gives reduced but significant weighting to

contributions with larger12 lies between them and, as
we noted in Section 1, has been advocated by workers
such as Dunlap et al. [5] and Eichhorn et al. [6]. We
have also made use [9,12] of the “short-range
Coulomb” operatorqS�r12� � r21

12 erfc�vr12� and the
“long-range Coulomb” operatorqL�r12� � r21

12 erf
�vr12�; where 0, v , ∞: It is thus natural to ask
whether the Gaussian results in Table 3 can be
improved by abandoningqO in favour of one of
these alternatives.

Table 4 shows the errors that result from expanding
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Fig. 1. (a) 4prf �r� and (b) 4prg�r� in model H1
2 .

Table 4
Stewart functionf(r) for model H1

2 and errors (× 106) of various
operators (using Gaussian expansion and then� 20 even-tempered
basis; usingv � 0:5 for theqS andqL operators; and the fitting
equations for the unit operatorqU cannot be solved)

r f (r) qO qS qC qL

0.25 0.0154642 10.6 110.4 215.5 12670000
0.50 0.0284867 10.3 12.9 22.9 22179000
0.75 0.0367769 20.7 211.5 116.7 1191100
1.00 0.0387705 10.2 16.5 212.3 1449700
1.25 0.0344114 10.4 10.2 15.6 224460
1.50 0.0254354 20.7 22.6 24.4 2102100
1.75 0.0147369 10.6 11.0 17.3 227510
2.00 0.0051586 20.3 12.9 211.6 115480
3.00 20.0043633 20.4 27.1 18.7 23499
4.00 0.0009188 20.7 26.0 13.2 1688
5.00 0.0001562 22.4 26.1 29.7 2189
6.00 20.0001484 12.4 17.6 19.2 164
7.00 0.0000327 24.1 27.7 210.8 219



s�r� in the n� 20 Gaussian basis using theqO, qS,
qC and qL operators. The performance ofqO is
clearly superior to that ofqS andqC; theqL operator
is very unsatisfactory; theqU operator yields a singu-
lar Smatrix and is entirely incapable of discriminating
between different basis functions. In fact, the ranking
of the operators correlates exactly with the extent to
which they are short-ranged

qU , qL , qC , qS , qO �49�
and leaves little doubt that the overlap operator is the
best one to use for this problem.

6.3. Fourier expansion

The methods discussed above expand the Stewart
atom in a basis of simple functions. Although this
approach is reasonable, the fact that the exactf (r) is
sinusoidal with exponential decay suggests that
neither Hermite nor Gaussian bases should be optimal
for this problem. One could explore alternative bases
but we have not done so here.

Instead of expanding the Stewart atom itself, we
now expand its Fourier transformF(x). It is easy to
show that the elements of theP vector Eq. (11) are

P1�x� � P2�x� � j0�x� e2x2
=4 �50�

and substituting this into Eq. (30) yields integrals that
are tedious but evaluable in closed form. Following
preliminary investigations, we chose to fixm� 3 and
explore a range ofn values. The errors that arise for
n� 4 andn� 5 are listed in columns 7 and 8 of
Table 3.

The Eqs. (3) and (4) approximation yields almost
six decimal places forr # 4 and is almost as accurate
as then� 20 Hermite or Gaussian approximations
over this range. It deteriorates for largerr values but
remains respectable even atr � 7:

As n is increased, the accuracy improves rapidly.
There is an improvement of almost an order of magni-
tude in moving from (3) and (4) to the (3) and (5)
approximation and, moreover, the (3) and (6) approx-
imation agrees with the exactf(r) for all of the decimal
places given in Table 3.

This approach converges more quickly than the
Hermite or Gaussian methods, implying that our
expansion basis forF(x) is superior to those we
have used fors�r�: The main drawback of the

approach for this problem is that the integrals required
in Eq. (30) are messy.

6.4. Simpson approximation

Our fourth method, which is based on the real-space
integral equation formulation of Stewart theory, does
not expand the Stewart atom in a basis and is thus free
of the bias that any such basis presents. Its weakness,
however, is the error Eq. (41) that is introduced when
the integral (35) is replaced by the Simpson approx-
imation (38).

Substituting Eq. (43) into Eq. (37), we find that the
Stewart functionf(r) satisfies

f 1 k f l2 � g �51�
which is a Fredholm integral equation with kernel of
convolution type. The right-hand side is

g�r� � 1
4 �r�r 2 1�2 r�r 1 1�� �52�

and 4prg�r� is plotted in Fig. 1b. We have solved Eq.
(51) and find that its solution kernel is a surprisingly
complicated function. We will discuss these results in
greater detail elsewhere [10]. However, application of
the Simpson approximation yields the matrix equation

�I 1 A�f � g �53�

f � �f �h�; f �2h�;…; f �mh�� T �54�

g� �g�h�;g�2h�;…;g�mh��T �55�
We havenh� R� 2 from Eq. (40) and, following
preliminary investigations, we chosemh� 10: We
explored a range ofn and some of our results are
summarized in Table 3.

Although one might have thought that a stepsize of
h� 0:25 is fairly crude, then� 8 approximation is
surprisingly accurate, yielding small errors in the sixth
decimal place and, unlike previous methods, not dete-
riorating at largerr. Reducing the step size toh�
0:125 improves the accuracy by approximately an
order of magnitude, as anticipated from Eq. (41) and
the n� 16 errors are never more than 1027 and
usually less. The results found forn� 32 agree to
seven decimal places with our best Fourier values
and are shown in the second column.
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7. Other examples

The foregoing Section contains a detailed discus-
sion of results for the simple H12 ion. However, since
the electron density was a single gaussian centred at
the bond midpoint, it is reasonable to ask whether our
conclusions would also apply to complex molecular
densities. Although a full examination of this question
is beyond the scope of this preliminary paper, we have
obtained results for the H2 and F2 molecules and these
shed some light on the matter.

7.1. H2 molecule

Unlike our single-gaussian H12 density, the HF/
STO-3G density for the H2 molecule �R�
1:39304175� is a qualitatively correct approximation
to the experimental electron density and it is of inter-
est to discover whether or not the HF/STO-3G Stewart
atoms for H2 possess the slow, oscillatory decay seen
in Fig. 1a.

It is helpful to recall that the HF/STO-3G density is
a sum of 21 gaussians. Six of these are centred on one
nucleus, six on the other, and the remaining nine at
various points along the bond axis. The six centred on
each nucleus contribute directly to their respective
Stewart atoms and collectively account for 1.20 of
the electrons. Our main interest therefore lies in the

Stewart decomposition of the bond-centred gaussians
that bear the other 0.80 electrons. We have applied the
Hermite, Gaussian and Simpson (but not Fourier)
schemes to the problem and tabulations of the result-
ing f(r) for variousn are summarized in Table 5.

Comparison of the Hermite columns of Table 3
with those of Table 5 reveals that the method is signif-
icantly less accurate for H2 than it was for our single-
gaussian H12 density. Even usingn� 35; the Hermite
results for H2 are correct to only three or four signifi-
cant figures and the errors are an order of magnitude
larger forn� 30: We attribute this impaired perfor-
mance to exponent inhomogeneity: whereas the expo-
nent in the H1

2 density Eq. (43) is 1.0, the gaussians in
the H2 density have exponents ranging from 0.34 to
6.9 and thus place much heavier demands on the
canonical Hermite functions (13). The use of basis
functions that all share the same exponent appears
to be a fundamental weakness and, although a scaled
basis would probably perform somewhat better, the
essential problem would remain.

In contrast, our Gaussian basis sets enjoy a wide
spread of exponents and the Gaussian columns of
Table 5 tell a much happier story than the Hermite
ones. The errors for H2 are at least as small as those for
H1

2 ; reflecting the fact that the even-tempered expo-
nents are ideally suited for use with the STO-3G orbi-
tal basis. Although the numerical problems mentioned
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Table 5
Stewart functionf(r) for HF/STO-3G H2 and errors (×106) of various methods

R f(r)a Hermiteb Gaussian Simpson

n� 30 n� 35 n� 15 n� 20 n� 16 n� 32

0.25 0.0690514 217.4 14.7 11.1 10.2 218.1 22.0
0.50 0.0850815 134.8 27.3 21.2 10.1 13.0 10.4
0.75 0.0710581 250.9 17.2 10.7 20.2 19.7 10.4
1.00 0.0540489 163.6 25.0 20.1 10.1 10.2 0.0
1.25 0.0383139 270.6 11.5 0.0 10.1 21.3 20.1
1.50 0.0241631 170.6 12.3 20.7 20.2 0.0 0.0
1.75 0.0135719 263.4 26.1 12.3 10.3 10.5 0.0
2.00 0.0071588 149.8 19.5 23.2 20.2 10.2 0.0
3.00 0.0012417 224.7 117.5 20.4 20.1 20.1 0.0
4.00 0.0000901 212.3 110.3 20.5 10.8 0.0 0.0
5.00 0.0000087 122.5 28.6 21.5 20.3 0.0 0.0
6.00 20.0000001 221.5 29.8 11.1 20.1 0.0 0.0
7.00 0.0000000 112.3 210.2 20.7 20.1 0.0 0.0

a Using Simpson withn� 128.
b Using unscaled�g � 1:0� basis functions.



in Section 3 impede significant improvement beyond
the errors in Table 5, the results forn� 20 are already
satisfactory.

Finally, we turn to the Simpson errors in Table 5.
The curvature of the STO-3G density is large in the
neighbourhood of each nucleus and the Stewart atoms
inherit this feature. This leads to a degradation in the
accuracy of the Simpson approximation (38) for small
r values and explains why the largest errors occur
there. Then� 16 approximation is accurate beyond
r � 2 and then� 32 andn� 64 results yield a satis-
factory treatment of even the inner region. Then�
128 results have converged to seven decimal places
and are listed as thef(r) values.

Graphs of 4prf �r� and 4prg�r� are shown in Fig. 2.
The second of these, the spherical projection ofr�r �
about one of the nuclei, clearly shows the bimodal
character of the density. The first reveals that the
Stewart atoms in H2 decay rapidly and without visible
oscillations. It is interesting to observe that the oscil-
lations of Fig. 1a are replaced by a plateau in Fig. 2a.
If the Stewart atom does indeed have nodes, as Table
5 suggests somewhat unconvincingly, they are of little
significance.

7.2. F2 molecule

As a final example, we have sought to extract the
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Fig. 2. (a) 4prf �r� and (b) 4prg�r� in H2.

Table 6
Stewart functionf(r) for HF/STO-3G F2 and errors (×106) of various methods

r f(r)a Hermiteb Gaussian Simpson

n� 25 n� 35 n� 20 n� 25 n� 64 n� 128

0.25 1.617512 136108 2652 197 113 1473 157
0.50 0.779175 17928 110766 2292 281 245 23
0.75 0.729563 222186 14182 150 2123 26 0
1.00 0.506212 215862 21700 11867 2107 25 0
1.25 0.275214 27080 1263 22549 1322 24 0
1.50 0.126623 15295 11868 12296 2417 25 0
1.75 0.049803 240562 22412 2293 1728 25 0
2.00 0.011419 211416 24313 23342 21151 24 0
3.00 0.011986 211986 211986 2350 11712 26 0
4.00 20.000644 1644 1644 21568 150 13 0
5.00 0.001349 11349 11349 11024 234 16 0
6.00 0.000243 2243 2243 148 464 11 0
7.00 0.000156 2156 2156 254 1550 11 0

a Using Simpson withn� 256.
b Using scaled�g � 6:5� basis functions.



Stewart atoms from the HF/STO-3G density for the F2

molecule. This is a homonuclear diatomic, like H2,
but possesses both core andp electrons and a bond
length�R� 2:6845617� that is twice as large as that
in H2.

The HF/STO-3G density of F2 consists of 465
gaussians, with exponents ranging from 1.0 to 333.
Of these, 120 are centred on each nucleus and the
remaining 225 at points along the bond axis. The
former hold 17.76 of the electrons and the latter the
other 0.24 electrons. As before, we have applied the
Hermite, Gaussian and Simpson schemes to this Stew-
art problem and tabulations of the resultingf (r) for
variousn are summarized in Table 6.

We were unable to obtain satisfactory results using
canonical Hermite functions (13) and so resorted to
the scaled functions (23). Exploratory fitting to an F
atom led us to selectg � 6:5 but there were indica-
tions that this is a strained compromise between the
requirements of the core and valence electrons. The
Hermite columns of Table 6 show that even the scaled
basis functions yield poor approximations to the Stew-
art functions and it is difficult to obtain more than two
significant figures. Beyondr � 2; the Hermite models
are useless.

The Gaussian results are superior to the Hermite
ones—presumably because the range of exponents
is greater—but they are far from satisfactory none-
theless. Withn� 25 functions the errors are reason-
able at smallr but grow significantly near to the
interesting third peak atr � 2:8 in Fig. 3a. This
feature, which arises from the corresponding spike
in Fig. 3b, allows each Stewart atom to contribute to
the description of the core around the other nucleus.
However, both the Hermite and Gaussian models
struggle to capture this phenomenon and it is
evidently difficult for expansion functions around
one nucleus to treat a compact region of high density
around the other nucleus.

Although the presence of the core electrons means
that we must use largern values than were required for
the H1

2 and H2 cases, the Simpson method is clearly
the best of the three for this molecule. As we observed
for H2, the method is least satisfactory for smallr
values where the curvature of the density is large
but performs well for moderate and larger. The f (r)
values in the second column of Table 6, and the plot
of 4prf �r� shown in Fig. 3a, were obtained using

Simpson withn� 256: The Stewart atom seems to
have nodes but its negative regions are scarcely
significant.

8. Conclusions

This paper is a preliminary exploration of some
of the methods that can be used to construct Stew-
art atoms from molecular electron densities. These
are useful both in their own right [2,3] and
because they illuminate the more general problem
[5,6] of projecting a density onto an atom-centred
auxiliary basis set. We find that such projection
problems are more subtle and difficult than is often
recognized because the exact projected densities are
often surprisingly complicated and consequently
awkward for standard auxiliary bases to model. Tradi-
tional expansion techniques are plagued by numerical
difficulties and our results suggest that new
approaches based on integral equations may be more
satisfactory both conceptually and computationally.
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Fig. 3. (a) 4prf �r� and (b) 4prg�r� in F2.



We are investigating this proposal and will present a
detailed analysis elsewhere [10].
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