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Abstract

We compare four methods for generating Stewart atoms, the spherically-symmetric nuclear-centred functions whose sum
best fits a given electron density. We find that projecting a molecular density onto an atom-centred basis is a more subtle and
difficult problem than is generally recognized and we conclude that new approaches, based on integral equations, may be more
satisfactory than traditional projection metho@s2000 Elsevier Science B.V. All rights reserved.
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1. Introduction framework for calculation. Density functional theory
(DFT) is now widely embraced and many groups are
It is frequently beneficial to approximate a compli- working to extend its range of applicability to excited
cated function by a simple one. A well-chosen model states and large systems.
can be advantageous both conceptually and computa- Our interest lies in the next level of approximation,
tionally, shedding light on the most important features the construction of a model densijéyr) from a given
of a system and, at the same time, offering an efficient densityp(r). This can be done in many ways but we
route to their calculation. It is therefore not surprising see particular promise in the Stewart decompaosition
to find that a wide variety of models have been [2,3]. Given a density(r) for a system with nuclei at
devised to treat the inherent complexities of molecular Aj, j = 1,...,N, we seek theN Stewart atomsy;(r)
guantum mechanics. For example, the Hartree—Fock whose sum, the Stewart density
model approximates the molecular wavefuncti$n )
by a relatively simple determinant and, in doing p(r):ZUi(|r — A D
so, replaces an impossibly difficult computational !
problem by a tractable one and establishes the orbital best fits p(r) in a least-squares sense. The most
picture at the centre of modern chemical thought. obvious fit arises from minimizing
More recently, the Hohenberg—Kohn theorem [1] s R
has shown that the molecular electron dengity) Zy ={p—plp—p) 2

o:‘fers an even S|mplerdparad|gm fordu_ndlerstfafnwng but one could also consider minimizing the more
electronic structure and a correspondingly efficient goneral jeast-squares residual
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operator. There are a number of physically reasonable
choices ford(ry,) of which 8(ry,)/(4wr3,), riz and
—ry, are the most important. These correspond [4]
to fitting the density, the electric field modulus and
the potential, respectively, gf(r) to p(r). However,
Stewart has proven [2] the surprising result thatdhe
are, in fact, independent df(r ;,) and that the choice
of operator is thus immaterial. For this reason, we
drop the superscript if henceforth. Stewart has
also shown thap(r) exactly reproduces some of the
low-order multipole moments gf(r), in particular its
charge and dipole moments.

An approximate, but conceptually straightforward,
method for generating Stewart atoms is to expadrd
in an auxiliary set of nuclear-centred radial basis
functions, i.e.

|ﬁ> = Cp|¢p> 4

and directly minimize Eq. (3). The expansion coeffi-
cients satisfy the matrix equation

Sc=Db 5)
S)q = <¢’p|ﬁ|¢q> (6
by = (plIp) @)

and this can be solved using standard techniques
of linear algebra. Unfortunately, these approximate
Stewart atomsdo depend on the operatof(r;,)
used in Egs. (6) and (7) and a choice must be made.
This question has been considered by Dunlap et al. [5]
and Eichhorn et al. [6] and these workers have recom-
mended the use of the Coulomb operator.

We discuss the use of Hermite and Gaussian auxili-
ary basis functions in Sections 2 and 3, respectively.
We will revisit the question of the “best” operator
J(rq,) in Section 6 but we use the overlap operator
unless otherwise noted.

Following Stewart, our previous work [3] used the
convolution theorem to move the minimization
problem into Fourier space where the objective function
becomes
Zo= [ FalF,00 = 3 Foo e

dx (8)

where F,4,F, and F; are the Fourier transforms of
9(ry2), p(r) andoy(r), respectively.
Minimization of Eq. (8) then leads to a matrix
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equation for the unknowf

JF=P ©)
Jij %) = jo(RjX) (10
P00 = [ pOiolr — Ao dr a

where jo(t) =sin(t)/t and R;=|A; —Aj| and
Cramer’s Rule yields the formal solution

l o0
(0= 5 % jo

where J is the matrix of cofactors ofl. However,
despite many attempts, even the simplest such inte-
grals have always proven an insuperable obstacle for
us [3]. We consider a possible way forward in Section 4.

However, it is possible to avoid both auxiliary basis
sets and Fourier transforms by transforming the
Stewart Eqgs. (9) into real space. This leads to a system
of integral equations and Section 5 discusses one way
in which these may be solved. Section 6 then
compares the performance of the four methods on a
simple model of the Bl molecule and Section 7
discusses results for the, ldnd K, molecules. Atomic
units are used throughout.

JiP
J|'j]| K x3jo(rx) dx

12

2. Expansion in a Hermite basis

There are several reasonable bases in which one
could expand the Stewart atoms. For example, the
Hermite functions

Hp(r)
r

T

2P+ p!

(p odd) provide, for the overlap operator, an orthonor-
mal basis of even functions on each centre. They are
proportional to their Fourier transforms

J

and their integrals over all space are given by

1
Jgae PIL
N

If ¢, and¢ are separated Wy, their overlap integral

2
er/2

Pp(r) = 13

00

fm%wwmwzeﬂwﬂhﬁ%mam

J: dmr?y(r) dr = (15)
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Table 1
Even-tempering parameters for H and N

n Hydrogen Nitrogen
a B a B
15 0.10 1.39 0.17 1.70
20 0.09 1.29 0.14 1.51
25 0.08 1.23 0.12 1.40
(by the convolution theorem) is
(_1)(p+Q)/2*l + 00 sin (RX) _2
= H,()Hg(X e " dx
S JT2Pp2%q! ) - pCOHG(X) RX
2 e—R2/4
= /g M
(16
where we have introduced the polynomials
-1 R4
(_1)(p+q>/2 1 e + o0
Yog = g | (Ha00H00
sin(RY _,
— Hp(0)Hy(0)) Rx e dx a7

The termH,(0)H,(0) in Eq. (17) vanishes whemand
gare odd and is added for convenience. Yhgranish
if p+ gis odd and the members betwe¥y and Ya,

which, starting from the trivial values
Yoo =0

R! podd
Yp,l = Yl,p =
0 p even

(20

(21

offers an efficient route to the recursive generation of
as manyY,q as one requires. We note that some care is
required, because Eg. (19) becomes numerically
unstable for large andq.

The elements of theb vector can also be
computed using the Convolution Theorem. The
fundamental integral, from which all others can
be derived [7], is the overlap of the Hermite func-
tion Eqg. (13) with a Gaussian function at a distance
R, and is given by

(_ 1)(p* /2 0

by = m4R/2°p! Jo Ho0

of 1 1 .
xexp[ X (2 + 4g)]sm(Rx) dx (22
where/ is the Gaussian exponent. This integral is
easily solved in closed form [8].

Finally, we note that the canonical functions (13)
can be generalized by appropriately scaling its
gaussian and the Hermite polynomials to form

can be tabulated as (1) = ¥ pp(yr). (23
0 0 1 0 R+ 6 }
0 1 0 R? 0
1 0 R -2 0 R — 6R* + 12 (18
0 R 0 R'— 8R* + 24 0
| RP+6 0 R -6RP+12 0 R — 18R* + 108”2 — 120

Explicit formulae for the highely,, are complicated
and unsuitable for numerical evaluation. However,
recurrence properties of the Hermite polynomials

yield the useful identity

Yerl,q - 2prfl,q = Tpg+1 — 2qu,q—l (19

3. Expansion in a Gaussian basis

Auxiliary basis sets employing Gaussian functions

Bp(1) = (L/m ¥ exp(—pr?) (24)

are widely used because of their computational
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Table 2 4. Expansion of the Fourier solution
Coefficientscy,, for the (3p) Fourier approximations

The Stewart—Fourier integral (12) proves intract-

p G, . : o
> able even for a simple systems. For a diatomic with
0 3.0265106465 bond lengthRr, the first Stewart atom is given by
1 —0.9409081880
2 0.3394151003 w
3 01202380179 () = ]?; ZJ P1(}/R) — jo(X)P2(X/R) Yol ( )dX
4 0.0395452865 2R%m 1-j50
5 —0.0111605698 (28)
6 0.0023707571
! 0.0000323428 and the transcendental denominator ;ié(x) thwarts
the analytic evaluation of this integral. However, the
simplicity. Their Fourier transforms identity
K2 X2 in2(x)i2™
dmr? gy (Njg(kr) dr = exp( ) (25 _x 2y 4 SITXla ) 29
Jo 4% 0 2‘0 e I

are simple and their integrals over all space are unity. ) . i
We use even-tempered basis sets optimized for breaks the integral into a sum of tractable integrals

hydrogen and nitrogen. The exponents and a small correction. The last term in Eq. (29) is a
bell-shaped positive function with an oscillatory tail.
&= apP p=12..n (26) As m increases, the frequency of the oscillations

_ _ increases but their amplitudes rapidly decrease. For
are given in Table 1 fon = 15, 20 and 25. Thex and a givenm, this term may be expanded in an auxiliary
B parameters were chosen so that the Coulomb energybasis of even Hermite functions and truncation of the

of the STO-3G atom is reasonably approximated [9], expansion at orden yields the (n,n) approximation
the geometric mean of the exponents is close to the

nuclear charge, and the values decrease with
increasingn. For calculations with other first-row 1) = 1 i x2 Zk(x)
atoms, we use the nitrogen parameters. ! 2R3 lo

If ¢, and ¢, are separated by, their overlap inte-

‘s i X _ X\7. [ rx
gral is given by X[ﬂ(ﬁ) _ Jo(X)P2<§)]lo(§> dx
_ 3/2 _ _ gpgq
Spq = (@™ exp(—zR) [Z— ] 27 L1 i ch e 2H, (x)
. 2m°Re h=0J0 mP P
Because the overlap operator is very short-ranged, the

&t 4y
S matrix becomes sparse in large systems and this X . X
admits the possibility of using special techniques for X[P1(§> B JO(X)Pz(ﬁ)]]O( ) o (30
solving Eq. (5) efficiently. However, if the auxiliary
basis is near-complete, some of the exponéptsill to the Stewart atonory(r).
be small ands becomes almost singular. This causes If p(r) is composed of Gaussian functions, all of
significant numerical problems and it is essential to the integrals in Eqg. (30) can be found in closed
employ Singular Value Decomposition (SVD) to form. The expansion coefficients,, must be deter-
remove the offending subspace. All of the results mined numerically, but are valid for all diatomics
that we present used SVD with singular values deter- becauseR does not occur in Eq. (29). The values
mined by machine precision. required for the (3)) approximations(p = 7) are

If p(r) consists of Gaussian functions, the elements listed in Table 2. Unfortunately, it is difficult to gener-
of b are analogous to Eq. (27). alize this method to polyatomic systems.
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Table 3
Stewart functiorf(r) for model H and errors & 10° of various methods
r f(r) Hermite Gaussian Fourier Simpson

n=10 n=20 n=15 n=20 n=4 n=5 n=238 n=16
0.25 0.0154642 +6.7 +0.5 +4.3 +0.6 +0.8 -0.1 +1.1 +0.1
0.50 0.0284867 -1.1 -0.6 —4.2 +0.3 +1.2 -0.2 +1.8 +0.1
0.75 0.0367769 —-6.7 +0.2 +1.6 -0.7 +1.3 -0.2 +1.7 +0.1
1.00 0.0387705 +1.9 +0.3 -0.7 +0.2 +1.0 0.0 +0.9 +0.1
1.25 0.0344114 +6.7 —-0.6 +1.3 +0.4 +0.2 0.0 0.0 0.0
1.50 0.0254354 —-2.7 +0.5 —-3.5 -0.7 -0.6 +0.1 -0.7 0.0
1.75 0.0147369 -7.1 0.0 +6.7 +0.6 -1.3 +0.1 -11 -0.1
2.00 0.0051586 +2.9 -0.5 -7.1 -0.3 -1.6 +0.2 -1.2 -0.1
3.00 —0.0043633 +1.7 +0.7 -9.3 -0.4 +1.3 -0.2 +0.4 0.0
4.00 0.0009188 -7.0 -0.2 —-4.2 -0.7 +1.0 +0.2 +0.4 0.0
5.00 0.0001562 —-12.9 -0.7 +14.2 —2.4 —-4.6 +0.1 -0.5 0.0
6.00 —0.0001484 +25.8 -0.3 -8.9 +2.4 +1.9 -0.9 +0.2 0.0
7.00 0.0000327 —40.7 -0.5 —185 —-4.1 +13.4 +0.8 0.0 0.0

2 Usingm= 3 in Eq. (30).

5. Simpson approximation Although equivalent to the Fourier framework that
Stewart [2] and we [3] have used, the real-space
The Stewart decomposition is a spherical projection formulation (37) of Stewart theory is simpler and

of p(r) about the nuclei and, thus, more physically appealing. Thg(r) are straightfor-
Sj =Sy (31 V\{ard to cglculate, especially ji(r) consists of Gaus-

. _ _ sian functions, and there are several approaches for
where S, is the spherical projector about thath treating linear integral equations of the form (37). We
nucleus. It therefore follows that will discuss some of these elsewhere [10] but, in this
oot Z S0 = S (32 paper, approximate the local averages using quadra-

ture formulae and thereby discretize the problem.

_ ) ) The Extended Simpson Rule approximates the local
If the Stewart atonar is even, it can be shown thatits  5yerage Eq. (35) by

projection onto another nucleus is

b#a

1
1 (TR (PHr= —=[fo+4(fy + 3+ -+ 1)
S.op = —— j “ton(t) dt (33) Roen' 0 703 et
2Rapr Jr—Ryp
- . T2(fy + 4+ e+ fon2) + fanl (39)
Defining Stewart function§,(r), local averages f)g
and the density projectiorgg(r) fo=f(r + (k- nh) (39)
fa(r) = roa(r) (34
h=R/n (40
1 r+R
(r= 5 J Rf(t) dt (35 and introduces an error [11]
-
nh®
0a(r) = rS,p (36) Error= Wf 65) r—R=¢é=sr+R 4)
then I_eads immediately to the simultaneous integral \\hich is acceptable if the step sikds small and the
equations function f(r) does not vary rapidly. Furthermore,
fat) + > (folr,, = Galh)- (37) doublingn (and thereby halving) reduces this error

bra by an order of magnitude.
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The Simpson approximation can be writtéh =
Af, where(f) andf are the values of f)g andf (r) at
the pointsr = {h,2h, ...,mh}. For example, iR= 2
and we choosen =4 and m= 10, we obtain the
Simpson matrix

. (42

I L S N

P AN DN NP

P AN NN AN D
P A2 N DM BN D P

1
4
2
4
2
4
2
4
1

BN AN AN DA P
) TS T NG

1
4 1
2 4
4 2
2 4
4 2

In this way, the integral equations (37) are converted
into a well-conditioned matrix equation for the values
of thef,(r) on a regular grid.

6. A model system for H;

We begin by examining a model system whose
density is a single gaussian at the origin
pn) =m P exp(-r? (43)
and whose nuclei are protons lying@t0, +1). This

is a crude model of the Hion and, by symmetry, we
have o1(r) = o(r) = o(r) and fi(r) = fo(r) = f(r).

The reader may wish to guess the qualitative featuresif
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have found [10] that
% + ¢) (44

wherez= a +iB = 2.25073+ 4.21239i is the first
root of

f(r) ~ Aexp(—%r) cos(

sinhz
z

-1 (45)

andA and¢ are constants. It is interesting to compare
the properties of the exact densjigr) with the Stew-
artf(r). Because of charge conservation, the Stewart
charge

Q= J Aerf (r) dr (46)

0

on each atom is exactly 0.5. However, wherp@s is
strictly positive with Gaussian decaf/r) is oscilla-
tory and decays only exponentially. An appreciation
of these surprising results should help us to under-

stand the performance of the four approximate
methods that we now apply to this model problem.

6.1. Hermite expansion

If we expand the Stewart atom in the canonical
Hermite basis (13), we obtain

(I1+Sc=0b 47

where the elements & are given by Eq. (16) and
o 34 o V3 2

by = V2w +1e Hp(—) s
V6P p! V3

The matrix Eq. (47) is well conditioned and its solu-
tion poses no numerical difficulties. The third and
fourth columns of Table 3 show the errors incurred
o(r) is expanded in the Hermite bases

of the Stewart atoms in this simple system before {¢;, ¢s, ..., P10} and { @y, ¢s, ..., P3g}, respectively.

reading on.
Although we cannot establish the ex#ét) rigor-
ously, even for this trivial system, we find that the

The n= 10 approximation oscillates about the
exactf(r) and is accurate to five decimal places for
r < 5. However, all of the basis functions decay

Fourier and Simpson methods converge to the samerapidly beyondr = 5 and the approximation conse-

Stewart function as grows and we assume that their
common limit is the exadt(r). The second column of
Table 3 lists the values &{r) for a number of points
and 4xrf (r) is plotted in Fig. la.

By analysing the asymptotic behaviourfgf), we

quently deteriorates.

The n = 20 approximation oscillates more rapidly
about the exacf(r) and is accurate to six decimal
places for allr < 7. However, because evethsq
decays rapidly beyond =9, we expect that the
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Fig. 1. (a) 4rrf(r) and (b) 4rrg(r) in model H; .

approximation would degrade rapidly for larger
values offr.

Of course, we could obtain more accurate expan-

sions by employing a basis in which the Hermite poly-
nomials are scaled for the specific problem under
consideration. However, we have not exploited this

369

that the most diffuse gaussigy, = 0.1) has roughly
the same extent as the most diffuse Hermite function
b0

The n= 20 approximation is comparable to the
n = 20 Hermite approximation far =< 4 but deterio-
rates more quickly at larget. As before, this can be
explained by observing that the most diffuse gaussian
({1 = 0.09) is significantly more compact than the
Hermite ¢ 3q.

Like the Hermite results above, these Gaussian
expansions were obtained by using the overlap opera-
tor 9(r1p) = &(r)/(4mr2) to compute the matrix
elements Eqgs. (6) and (7). This operator ignores all
contributions to the integrand of Eq. (3) except those
wherer, = 0. The unit operatordy(r») = 1, which
attaches equal importance to all values gf lies at
the other extreme. The Coulomb operathi(ri,) =
ri>, which gives reduced but significant weighting to
contributions with large, lies between them and, as
we noted in Section 1, has been advocated by workers
such as Dunlap et al. [5] and Eichhorn et al. [6]. We
have also made use [9,12] of the “short-range
Coulomb” operatords(ry,) = riserfdwry,) and the
“long-range Coulomb” operatord, (rq,) = roerf
(wrq2), where 0< w < oo, It is thus natural to ask
whether the Gaussian results in Table 3 can be
improved by abandoning)y in favour of one of
these alternatives.

Table 4 shows the errors that result from expanding

Table 4

possibility here because we are interested t0 NOW stewart functiorf(r) for model H and errors & 10% of various

how well the unmodified basis functions (13) perform.

6.2. Gaussian expansion

The matrix equation that results when this Stewart

problem is expanded in the even-tempered Gaussiang ¢,
basis (24) for hydrogen (see Table 1) is dense but o.75

quite well conditioned. Consequently, it is straightfor-
ward to solve for the expansion coefficients and the
fifth and sixth columns of Table 3 show the errors
incurred if o(r) is expanded in bases of 15 and 20
gaussians, respectively.

The n= 15 approximation is comparable to the
n= 10 Hermite approximation, although it seems to
deteriorate slightly more slowly at large values.
Their similarity can probably be traced to the fact

operators (using Gaussian expansion anctse20 even-tempered
basis; usingw = 0.5 for the 95 and ¢, operators; and the fitting
equations for the unit operatdl, cannot be solved)

r f(r) Yo s ¢ 9
0.0154642 +0.6 +104 —155 +2670000
0.0284867 +0.3 +2.9 —2.9 —2179000
0.0367769 —0.7 —115 +16.7  +191100

1.00  0.0387705 +0.2 +65 —12.3  +449700

125 00344114 +04 +02  +56 —24460

150  0.0254354 —-0.7 —2.6 —44  —102100

175  0.0147369 +0.6 +1.0 +7.3 —27510

2.00 0.0051586 —0.3 +29 —11.6 +15480

3.00 —0.0043633 -04 -7.1 +87 —3499

400 0.0009188 —0.7 —6.0  +3.2 +688

500 0.0001562 —-2.4 —61 —97 -189

6.00 —0.0001484 +2.4 +7.6  +9.2 +64

7.00  0.0000327 -41 -77 -10.8 -19




370 A.T.B. Gilbert et al. / Journal of Molecular Structure (Theochem) 500 (2000) 363—-374

o(r) in the n = 20 Gaussian basis using thie, s,
Uc and ¥, operators. The performance afq is
clearly superior to that offs and9d¢; the &, operator
is very unsatisfactory; thé operator yields a singu-
lar Smatrix and is entirely incapable of discriminating
between different basis functions. In fact, the ranking  Our fourth method, which is based on the real-space
of the operators correlates exactly with the extent to integral equation formulation of Stewart theory, does
which they are short-ranged not expand the Stewart atom in a basis and is thus free
of the bias that any such basis presents. Its weakness,
however, is the error Eq. (41) that is introduced when
and leaves little doubt that the overlap operator is the the integral (35) is replaced by the Simpson approx-

approach for this problem is that the integrals required
in Eq. (30) are messy.

6.4. Simpson approximation

By < O < 9o < Vs < Vo (49)

best one to use for this problem.

6.3. Fourier expansion

The methods discussed above expand the Stewartf + (f), =g

atom in a basis of simple functions. Although this
approach is reasonable, the fact that the ek@gtis
sinusoidal with exponential decay suggests that

neither Hermite nor Gaussian bases should be optimal

for this problem. One could explore alternative bases
but we have not done so here.

Instead of expanding the Stewart atom itself, we
now expand its Fourier transfori(x). It is easy to
show that the elements of tievector Eq. (11) are

PL(X) = P5(x) = jo(x) e 74 (50)

and substituting this into Eq. (30) yields integrals that
are tedious but evaluable in closed form. Following
preliminary investigations, we chose to fix= 3 and
explore a range ofi values. The errors that arise for
n=4andn=5 are listed in columns 7 and 8 of
Table 3.

The Egs. (3) and (4) approximation yields almost
six decimal places far = 4 and is almost as accurate
as then= 20 Hermite or Gaussian approximations
over this range. It deteriorates for largevalues but
remains respectable evenrat 7.

As n is increased, the accuracy improves rapidly.
There is an improvement of almost an order of magni-
tude in moving from (3) and (4) to the (3) and (5)
approximation and, moreover, the (3) and (6) approx-
imation agrees with the exafgt) for all of the decimal
places given in Table 3.

This approach converges more quickly than the
Hermite or Gaussian methods, implying that our
expansion basis foF(x) is superior to those we
have used foro(r). The main drawback of the

imation (38).
Substituting Eq. (43) into Eq. (37), we find that the
Stewart functiorf(r) satisfies

(51

which is a Fredholm integral equation with kernel of
convolution type. The right-hand side is

o) = 3[p(r = 1) — p(r + D)]

and 4rrg(r) is plotted in Fig. 1b. We have solved Eq.

(51) and find that its solution kernel is a surprisingly
complicated function. We will discuss these results in
greater detail elsewhere [10]. However, application of
the Simpson approximation yields the matrix equation

(52

(1+Af=g (53)
f = [f(h),f2h),...f(mh] T (54)
g = [g(h), g2, ....g(mh)]" (55)

We havenh= R =2 from Eqg. (40) and, following
preliminary investigations, we chosah= 10. We
explored a range of and some of our results are
summarized in Table 3.

Although one might have thought that a stepsize of
h = 0.25 is fairly crude, then = 8 approximation is
surprisingly accurate, yielding small errors in the sixth
decimal place and, unlike previous methods, not dete-
riorating at largerr. Reducing the step size fo=
0.125 improves the accuracy by approximately an
order of magnitude, as anticipated from Eq. (41) and
the n= 16 errors are never more than T0and
usually less. The results found for= 32 agree to
seven decimal places with our best Fourier values
and are shown in the second column.
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7. Other examples

The foregoing Section contains a detailed discus-
sion of results for the simple Hion. However, since

371

Stewart decomposition of the bond-centred gaussians
that bear the other 0.80 electrons. We have applied the
Hermite, Gaussian and Simpson (but not Fourier)

schemes to the problem and tabulations of the result-

the electron density was a single gaussian centred ating f(r) for variousn are summarized in Table 5.

the bond midpoint, it is reasonable to ask whether our

conclusions would also apply to complex molecular
densities. Although a full examination of this question

Comparison of the Hermite columns of Table 3
with those of Table 5 reveals that the method is signif-
icantly less accurate forHhan it was for our single-

is beyond the scope of this preliminary paper, we have gaussian B density. Even using = 35, the Hermite

obtained results for the +ind B molecules and these
shed some light on the matter.

7.1. H, molecule

Unlike our single-gaussian H density, the HF/
STO-3G density for the H molecule (R=
1.39304175 is a qualitatively correct approximation
to the experimental electron density and it is of inter-
est to discover whether or not the HF/STO-3G Stewart
atoms for H possess the slow, oscillatory decay seen

results for H are correct to only three or four signifi-
cant figures and the errors are an order of magnitude
larger forn = 30. We attribute this impaired perfor-
mance to exponent inhomogeneity: whereas the expo-
nentin the H density Eq. (43) is 1.0, the gaussians in
the H, density have exponents ranging from 0.34 to
6.9 and thus place much heavier demands on the
canonical Hermite functions (13). The use of basis
functions that all share the same exponent appears
to be a fundamental weakness and, although a scaled
basis would probably perform somewhat better, the

in Fig. 1a. essential problem would remain.

It is helpful to recall that the HF/STO-3G density is In contrast, our Gaussian basis sets enjoy a wide
a sum of 21 gaussians. Six of these are centred on onespread of exponents and the Gaussian columns of
nucleus, six on the other, and the remaining nine at Table 5 tell a much happier story than the Hermite
various points along the bond axis. The six centred on ones. The errors for fare at least as small as those for
each nucleus contribute directly to their respective Hs, reflecting the fact that the even-tempered expo-
Stewart atoms and collectively account for 1.20 of nents are ideally suited for use with the STO-3G orbi-
the electrons. Our main interest therefore lies in the tal basis. Although the numerical problems mentioned

Table 5
Stewart functiorf(r) for HF/STO-3G H and errors x10°% of various methods
R f(r)? Hermite® Gaussian Simpson

n=30 n=35 n=15 n=20 n=16 n=32
0.25 0.0690514 —-17.4 +4.7 +1.1 +0.2 —18.1 -2.0
0.50 0.0850815 +34.8 -7.3 -1.2 +0.1 +3.0 +0.4
0.75 0.0710581 —-50.9 +7.2 +0.7 -0.2 +9.7 +0.4
1.00 0.0540489 +63.6 -5.0 -0.1 +0.1 +0.2 0.0
1.25 0.0383139 —70.6 +1.5 0.0 +0.1 -1.3 -0.1
1.50 0.0241631 +70.6 +2.3 -0.7 -0.2 0.0 0.0
1.75 0.0135719 —-63.4 —-6.1 +2.3 +0.3 +0.5 0.0
2.00 0.0071588 +49.8 +9.5 -3.2 -0.2 +0.2 0.0
3.00 0.0012417 —24.7 +17.5 -0.4 -0.1 -0.1 0.0
4.00 0.0000901 -12.3 +10.3 -0.5 +0.8 0.0 0.0
5.00 0.0000087 +22.5 —8.6 -15 -0.3 0.0 0.0
6.00 —0.0000001 -215 -9.8 +1.1 -0.1 0.0 0.0
7.00 0.0000000 +12.3 —10.2 -0.7 -0.1 0.0 0.0

& Using Simpson witm = 128.
P Using unscaledy = 1.0) basis functions.
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Fig. 2. (a) 4rrf (r) and (b) 4rrg(r) in Hy.

Table 6

in Section 3 impede significant improvement beyond
the errors in Table 5, the results for= 20 are already
satisfactory.

Finally, we turn to the Simpson errors in Table 5.
The curvature of the STO-3G density is large in the
neighbourhood of each nucleus and the Stewart atoms
inherit this feature. This leads to a degradation in the
accuracy of the Simpson approximation (38) for small
r values and explains why the largest errors occur
there. Then = 16 approximation is accurate beyond
r = 2 and then = 32 andn = 64 results yield a satis-
factory treatment of even the inner region. Tine=
128 results have converged to seven decimal places
and are listed as thir) values.

Graphs of 4rf (r) and 4nrg(r) are shown in Fig. 2.
The second of these, the spherical projectiomp©f
about one of the nuclei, clearly shows the bimodal
character of the density. The first reveals that the
Stewart atoms in Hdecay rapidly and without visible
oscillations. It is interesting to observe that the oscil-
lations of Fig. 1a are replaced by a plateau in Fig. 2a.
If the Stewart atom does indeed have nodes, as Table
5 suggests somewhat unconvincingly, they are of little
significance.

7.2. F, molecule

As a final example, we have sought to extract the

Stewart functiorf(r) for HF/STO-3G k and errors %10°) of various methods

r f(r)? Hermite® Gaussian Simpson
n=25 n=35 n=20 n=25 n=64 n=128

0.25 1.617512 +36108 —652 +97 +13 +473 +57
0.50 0.779175 +7928 +10766 —292 -81 —45 -3
0.75 0.729563 —22186 +4182 +50 —-123 -6 0
1.00 0.506212 —15862 —1700 +1867 —-107 -5 0
1.25 0.275214 —-7080 +263 —2549 +322 —4 0
1.50 0.126623 +5295 +1868 +2296 —-417 -5 0
1.75 0.049803 —40562 —2412 —293 +728 -5 0
2.00 0.011419 —11416 —4313 —3342 —-1151 —4 0
3.00 0.011986 —11986 —11986 —350 +1712 -6 0
4.00 —0.000644 +644 +644 —1568 +50 +3 0
5.00 0.001349 +1349 +1349 +1024 —-34 +6 0
6.00 0.000243 —243 —243 +48 464 +1 0
7.00 0.000156 —156 —156 —54 +550 +1 0

& Using Simpson witm = 256.
® Using scaledy = 6.5) basis functions.
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Stewart atoms from the HF/STO-3G density for the F
molecule. This is a homonuclear diatomic, like, H

but possesses both core ameélectrons and a bond

length(R = 2.6845617 that is twice as large as that
in H,.

The HF/STO-3G density of J#consists of 465
gaussians, with exponents ranging from 1.0 to 333.
Of these, 120 are centred on each nucleus and the
remaining 225 at points along the bond axis. The
former hold 17.76 of the electrons and the latter the
other 0.24 electrons. As before, we have applied the
Hermite, Gaussian and Simpson schemes to this Stew-
art problem and tabulations of the resultifg) for
variousn are summarized in Table 6.

We were unable to obtain satisfactory results using
canonical Hermite functions (13) and so resorted to
the scaled functions (23). Exploratory fitting to an F
atom led us to selecy = 6.5 but there were indica-
tions that this is a strained compromise between the
requirements of the core and valence electrons. The
Hermite columns of Table 6 show that even the scaled
basis functions yield poor approximations to the Stew-
art functions and it is difficult to obtain more than two
significant figures. Beyond= 2, the Hermite models
are useless.

The Gaussian results are superior to the Hermite
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Fig. 3. (a) 4rrf (r) and (b) 4rrg(r) in Fy.

ones—presumably because the range of exponentsSimpson withn = 256 The Stewart atom seems to

is greater—but they are far from satisfactory none-
theless. Withn = 25 functions the errors are reason-
able at smallr but grow significantly near to the
interesting third peak at = 2.8 in Fig. 3a. This
feature, which arises from the corresponding spike
in Fig. 3b, allows each Stewart atom to contribute to
the description of the core around the other nucleus.
However, both the Hermite and Gaussian models
struggle to capture this phenomenon and it is
evidently difficult for expansion functions around
one nucleus to treat a compact region of high density
around the other nucleus.

Although the presence of the core electrons means
that we must use largarvalues than were required for
the Hf and H cases, the Simpson method is clearly
the best of the three for this molecule. As we observed
for H,, the method is least satisfactory for small
values where the curvature of the density is large
but performs well for moderate and largeThef(r)
values in the second column of Table 6, and the plot
of 4xrf(r) shown in Fig. 3a, were obtained using

have nodes but its negative regions are scarcely
significant.

8. Conclusions

This paper is a preliminary exploration of some
of the methods that can be used to construct Stew-
art atoms from molecular electron densities. These
are useful both in their own right [2,3] and
because they illuminate the more general problem
[5,6] of projecting a density onto an atom-centred
auxiliary basis set. We find that such projection
problems are more subtle and difficult than is often
recognized because the exact projected densities are
often surprisingly complicated and consequently
awkward for standard auxiliary bases to model. Tradi-
tional expansion techniques are plagued by numerical
difficulties and our results suggest that new
approaches based on integral equations may be more
satisfactory both conceptually and computationally.
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We are investigating this proposal and will present a
detailed analysis elsewhere [10].
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