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Abstract

We show that the long-range part of the Coulomb self-energy of an electron density p(r) is aimost identical to that of its
associated Stewart density p(r). Since the latter is obtained by fitting p(r) within an auxiliary basis of only s functions, our
proposal can be viewed as a hybrid of the RI (resolution of the identity) and KWIK methods. © 1998 Elsevier Science B.V.

1. Introduction

The main problem bedevilling quantum chemistry
is the accurate estimation of the exact electron—elec-
tron energy E,. in large systems. Because of instan-
taneous Coulomb repulsions and the antisymmetry
principle, electronic motions are usualy strongly
correlated and it has proven very difficult to model
their behaviour at a reasonable computational cost.
The pursuit of such models has fuelled much re-
search in the past and will undoubtedly continue to
do so for many years to come. Almost all of the
current approaches exploit the fact that

=%ff—p(r12£(r2)drldr2, (1)

the classical electrostatic self-interaction of the total
electron density p(r), rarely differs from E,, by
more than a few percent. Thus, on the assumption
that E; can be easily found, the problem is reduced
to that of estimating the correction E,, — E;. How-
ever, in large systems, even the computation of E,
can be a formidable task and the construction of
algorithms that accomplish this as efficiently as pos-
sible has attracted research interest for many years.
The early approaches to rapid E; evaluation were

based on the notion that pieces of p(r) can be
replaced by simple models before the integral Eq. (1)
is computed. This idea originated in the work of
Boys and Shavitt [1] and resurfaced in the PDDO
method of Newton et a. [2], the developments of
Harris and Rein [3] and Monkhurst and Harris [4],
the LEDO method of Billingsley and Bloor [5] and
the VRDDO method of Popkie and Kaufman [6]. In
more recent times, it has been revisited by a number
of other research groups [7-11].

Two years after the introduction of LEDO, how-
ever, Bagrends et al. [12] pointed out that it is
preferable in some respects to approximate the entire
denety p(r) by amodel p(r) and compute

[jp rlprZ)d dr, (2)

They proposed that p(r) be expanded in arelatively
small auxiliary basis and constructed by minimizing
the integral over all space of the square of the
residual A(r) = p(r)— p(r), i.e. through a least-
squares fit. It is easily seen that the quantity to be
minimized can be written as

= [ [A(r1)8(ri2)A(r,)dr, dr, (3)

and this idea is echoed in later reports by Rys et al.
[13] and Yahez et al. [14], athough it does not
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appear that these authors were aware of the work of
Baerends. All three of the papers, we note, advocate
that charge conservation be added as a constraint to
the fitting process.

Subsequently, Dunlap et a. [15] showed that the
E, estimate Eq. (2) is a strict lower bound if one
minimizes the self-repulsion

Zz=ff%§(r2)drldr2, (4)

rather than the sgquare, of the residual. As Dunlap et
al. discussed, minimizing Z, corresponds to fitting
the electric field, rather than the density, of p(r) to
that of p(r). This new criterion was quickly adopted
by the density functional community and has been
widely used ever since. It has been systematically
explored, and termed the RI-J method, by the
Ahlrichs group [16].

It can be shown [17] that one can fit the potential
of p(r) to that of p(r) by minimizing
Zy=— [ [A(r)rA(r,)dr dr, (5)
and that charge conservation arises naturaly in this
case. This approach, which is related to earlier work
by Fortunelli and Salvetti [9], has not yet been
exploited. However, the required integrals over the
anti-coulomb operator (—r,,) are straightforward.

One might think that, since they result from dif-
ferent fitting criteria, the model densities obtained by
minimizing Z,, Z, or Z; would also differ. How-
ever, it can be proved [18,19] that, if p(r) is con-
strained to be a sum of M nuclear-centered spherical
functions, j.e.

p(r)= 2 o(Ir=Ryl), (6)
the opti rhalt o, are independent of the fitting crite-
rion and, furthermore, are unique. These robust ob-
jects, which we have termed Stewart atoms [19], are
difficult to construct exactly but are easily approxi-
mated by performing the fit within an auxiliary basis
of s functions centered on the nuclei. It follows that
the Stewart density is identical to the RI-J density
generated by an auxiliary basis that completely spans
only the s function subspace.

In the last few years, severa quite different ap-
proaches to the calculation of E; have been ad-
vanced. Both the CFMM (which uses multipole ex-
pansions [20]) and the RBM (which uses recursive
bisection [21]) compute E; in work that scales al-

most linearly with the system size. Another O(N)

method, the KWIK algorithm [22], employs the parti-

tion

efc(wry,)  ef(wrg,)
+

g7 lo

(7)

to split E; into its short-range and long-range com-
ponents, viz.

E,=Es+E, =

ot =S(ry) +L(ry,) =

3(plSp) +3{plLlp>, (8)

and our group has recently explored several varia-
tions on this theme [23—25].

This Letter explores the usefulness of combining
the KWIK partition and Stewart theory. Although
one might have anticipated that the sphericity of the
Stewart atoms would gravely limit the accuracy of
the Stewart density, we present results showing that
the KWIK-Stewart approximation (K SJ)

E,~Es+E, (9)
in which E, has been replaced by

E, = 3(AILIp). (10)

is generally accurate to a few tens of microhartree
per atom if the attenuation parameter w is chosen to
be 0.4.

2. Method and results

We construct approximate Stewart densities p(r)
through an expansion in an auxiliary basis of normal-
ized spherically symmetric functions ¢{(r) centered
on the atomic nuclei,

p(r) = csdy(r). (11)
The coefficients in this expansion are then deter-
mined by minimizing Z, in Eq. (4) and satisfy the
familiar linear system of equations

Z<¢s|¢t>ct=<¢s|p>y (12)
t
where
r
(flg) = ff 1)9( Tr)olra) o rydr,. (13)

A number of chom&s for the auxiliary basis are
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possible, stype Slater or Gaussian functions, for
example. We use even-tempered sequences of uncon-
tracted Gaussians and will investigate other choices
elsewhere [26]. The exact Stewart density will be
recovered if the auxiliary basis is spherically com-
plete about each nucleus. The restriction to atom-
centred spherical functions also ensures that the ma-
trix {4l ¢p,) will always have full rank. However,
for large molecules, { ¢ ¢,) can become near-singu-
lar and we therefore use the minimal-norm solution
computed using the singular-value-decomposition
(SVD) of this matrix. The above theory has been
implemented in the Q-CHEM[27] package.

We note in passing that it is straightforward to
constrain conservation of charge and higher multi-
pole moments into the fitting process, this being
facilitated by the SVD which exactly removes any
null constraints. However, our investigations showed
that a substantial degradation in accuracy resulted
when charge or charge + dipole constraints were im-
posed and we therefore do not recommend the con-
strained solution of the fitting equations Eq. (12).

To demonstrate the intrinsic accuracy of the KSJ
approximation, we present results using large auxil-
iary basis sets which we believe to be near the
Stewart limit. For all of the molecules examined, we
take p(r) to be the UHF /STO-3G density since this
facilitates computations on the larger molecules. The
parameters «, 8 and n for the exponents

L=aB'"Y fori=1,2,...,n, (14)

in the even-tempered expansions about each nucleus
are given in Table 1. For the spherical atoms, these
parameters were selected from the range of values
giving accurate Coulomb energies (usually to better
than 1 part in 10'°) and a suitable range of expo-
nents (erring on the side of diffuseness). The values
for the remaining atoms were obtained by interpola-
tion. The long-range energy Eq. (10) of the Stewart
density Eq. (11) is easily shown to be

erf( Rty Yt )
— R

st

EL = % Z Csct (15)
st

where the functions ¢, and ¢, have exponents «,
and «, on nuclei a distance R, apart and

yl=a'+a '+ (16)

Table 1
Even-tempering parameters « and B and basis set dimensions n
for atoms H through Ar

Nucleus n a B o

H 20 0.010 15 22.1684
He 20 0.020 15 44.3368
Li 25 0.006 15 101.005
Be 25 0.010 15 168.341
B 25 0.015 15 253512
Cc 25 0.020 15 336.682
N 25 0.030 15 505.023
o 25 0.040 15 673.364
F 25 0.050 15 842.706
Ne 25 0.060 15 1010.05
Na 30 0.010 15 1278.34
Mg 30 0.015 15 1917.51
Al 30 0.015 15 1917.51
S 30 0.020 15 2556.68
P 30 0.025 15 3195.85
S 30 0.030 15 3835.02
cl 30 0.035 15 4474.19
Ar 30 0.040 15 5113.36

We are now in position to analyze the accuracy of
the KSJ approximation. Tables 2—4 contain the total
Coulomb energies E; and both their exact E, and
approximate E; long-range components for a num-
ber of chemical systems. We consider two values of
the attenuator: o = 0.4, for which E, asafraction of
E; varies from around 30% to over 90%, and @ =
where we are approximating al of the Coulomb
energy and hence E,_ = E;. The tables also contain
the total error in the Coulomb energy AE; =E, — E_
and the error per atom AE;/N,,. The short-range
component Eg is computed exactly, in work that
grows linearly with the system size, and makes no
contribution to the total error in the Coulomb energy.
We are guided in our interpretation of these results
by the criterion of Eichkorn et al. [16] that approxi-
mations to E; for molecules should yield an error no
greater than 0.2mE, /atom. Accordingly, the results
in each table are listed in order of increasing error
per atom for the more interesting case with w = 0.4.

Table 2 contains Coulomb energies for a number
of small inorganic molecules taken from the G2 set
[28] and reveals that the KSJ approximation yields
total errors that vary between 1-50 millihartree per
atom when we are approximating al of E; (w = ).
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Table 2

Coulomb energies E, in hartree for a number of small molecules from the G2 set with the corresponding long-range component E_ and its
KWIK-Stewart approximation E,_ under partial (w = 0.4) and complete (w =, E_ = E;) attenuation. The total error AE; and error per

atom AE;/Ny,m are given in millihartree

w=04 =0
Molecule  E, E. E. AE, AE;/Nyom E. AE;,  AE;/Nyom
CF, 42258937 25457753 25457756 -0.033 -0.007 42252117 682 136
SiF, 603.77286  347.95265  347.95266 -0.013 -0.003 60372868 442 884
CH, 32797013 17.308532  17.308529 0.003 0.0006 32793848 316 063
BF, 27377420 15122640 15122639 0.012 0.003 27374265 316  7.89
SiH, 15544513 56.840188  56.840167 0.022 0.004 15544051 462 092
co, 148.06763  77.855652  77.855636 0.016 0.005 14804129 263 878
FH 56559401  20.200339 20200326 0.013 0.006 56532766 266 133
AlF, 42690967 ~ 227.37462  227.37457 0.046 0.011 42688039 293 732
OH, 47222396 19345861  19.345806 0.055 0.018 47188338 341 114
sicl, 14639758 77422461  T74.22448 0.134 0.027 14639547 211 422
H, 13505936  0.7394646  0.7394025 0.062 0.031 13484373 216 108
BCl, 847.24990  396.27862  396.27846 0.160 0.040 847.23568 142 355
NH,4 30.332677 18391612  18.391449 0.164 0.041 30307590 251 627
AlCI, 10182779 49162945  491.62925 0.193 0.048 10182676 103 258
ccl, 12628479  658.82511  658.82482 0.286 0.057 12628120 359  7.17
H,CO 86434219 43935834 43935424  0.410 0.10 86.396225 380 950
HCN 67.813143 34108114  34.107802 0.312 0.10 67793686 195  6.49
F 13095320 58486805  58.486542 0.264 0.13 13086236 908 454
SH, 19255042 61532249 61531781 0.468 0.16 19253523 242 806
PH, 17327377  59.206223  59.205319 0.904 0.23 17325296 208 520
BeH 05330786  4.2875370  4.2868215 0.715 0.36 95235499 953 476
0, 10034836 46570055  46.569025 1.03 0.52 10029550 529 264
S'e) 260.31646 10151079 10150915 164 0.82 26028023 362 181
PF, 49423202  262.85622  262.85219 4.03 1.01 49413682 952 238
LiH 57344206 26690799  2.6669833 2.10 1.05 57248484 957 479
S, 42909813  167.04298  167.04082 2.16 1.08 42907238 258 129
N, 73978539 353970908 35304824 227 114 73931405 471 236
P, 37370555 14612461  146.12229 232 116 37368972 158 792
a, 47909723 18577623 18577388 2.35 117 47903569 615 308
co 76415321 35571591 35568669 2.92 1.46 76363695 516  25.8
S, 315.84689 12159752  121.50224 5.28 2.64 31581600 309 155
Li, 10375392  4.9415362  4.9338534 7.68 3.84 10357926 175 873

It appears, then, that applying the KWIK-Stewart
approximation to E; as a whole will not yield
chemically useful results, which is perhaps to be
expected considering that replacing a density by a
sum of atomic-centred spherical fragments is a sig-
nificant approximation. Turning to the w = 0.4 re-
sults, where for these molecules we are treating
roughly half of the Coulomb energy exactly, we
observe that the quality of the KSJ approximation
improves dramatically, in some cases by severa
orders of magnitude. Diatomic molecules fare partic-
ularly badly with errors typically in excess of

1mE, /atom, well above the 0.2mE, /atom limit set
by Eichkorn et a. [16]. Perhaps surprisingly, the
least satisfactory of the molecules examined is Li,,
with an error of 3.84mE,/aom (compared to
0.03mE, /atom for H,), a clear indication that the
p-orbital contribution to bonding strongly perturbs
the sphericity of the constituent Li atoms. For
molecules such as F, and O,, the asphericity of the
atoms is reduced in the former case and enhanced in
the latter upon diatomic formation. For highly polar
molecules such as FH, we see an overall reduction in
the error per atom with the formation of closed shells
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Coulomb energies E; in hartree for 1D, 2D and 3D systems of hydrocarbons with the corresponding long-range component E, and its
KWIK-Stewart approximation E,_ under partial (w = 0.4) and complete (w =, E_ = E;) attenuation. The total error AE; and error per
atom AE;/Ny,m are given in millihartree

w=04 w=®°
Molecule E, E, E. AE, AE;/Nyom E. AE, AE;/Nyom
CsHy, 292.49985 210.27318 210.27294 0.23 0.014 292.48479 15 0.89
CyoHyp 749.82993 583.77215 583.77177 0.38 0.012 749.80183 28 0.88
CooHu 1863.9000 1530.1783 1530.1776 0.74 0.012 1863.8457 54 0.87
CaoHg, 4497.1897 3828.1401 3828.1386 1.44 0.012 4497.0831 107 0.87
CaoHie2 10579.864 9240.1586 9240.1558 2.85 0.012 10579.653 211 0.87
CsHs 310.65092 219.86540 219.86525 0.15 0.013 310.63878 12 1.01
CouHiy 2263.5739 1893.9009 1893.9008 0.14 0.004 2263.5369 37 1.03
CeHig 7412.3316 6575.7159 6575.7157 0.19 0.003 7412.2565 75 1.04
CosHa 17313.459 15821.861 15821.861 0.25 0.002 17313.332 127 1.06
CyoHis 783.44774 624.50438 624.50430 0.08 0.003 783.42748 20 0.78
CasHas 5232.3508 4668.7443 4668.7443 0.03 0.0005 5232.2939 57 0.80
CgiHes 20613.710 19251.850 19251.850 —-0.02 —0.0001 20613.588 122 0.82

around the nuclel leading to near-spherical environ-
ments: the error in an isolated F atom is 0.212mE,
which is reduced to 0.006mE, /atom in the FH
molecule. The majority of the remaining molecules
are treated accurately with an error around a few tens
of microhartree, the tetrahedral molecules heading
this list.

A final point of interest in Table 2 is the negative
error obtained for CF, and SiF,. For an incomplete
basis E(w=) is a lower bound to E (w = »).
This is not the case, however, for finite values of

Table 4

if the operator used in performing the fit is different
from that to used to compute the Coulomb energy, in
this case L(r,,). For complete basis sets, the Stewart
atom coefficients are independent of the fitting oper-
ator and negative values for AE; may thus be
considered a measure of the degree of incomplete-
ness of the auxiliary basis set. It is, however, a
straightforward matter to solve Eq. (12) using the
long-range operator to recover the strict inequality
E, < E, if thisis required.

To examine the effect of increasing molecular

Coulomb energies E; in hartree for a number of large organic molecules with the corresponding long-range component E_ and its
KWIK-Stewart approximation E; under partial (w = 0.4) and complete (w = %, E, = E,) attenuation. The total error AE; and error per

atom AE;/N,,, are given in millihartree

Molecule Formula E, E. E. AE; AE;/Nyw Eo AE;  AE;/Nyom
Cholesterol CyH 460 3307.0033 2852.7754 28527749 05  0.007 33069015 102 14
Testosterone CioH20; 22472965 18932706 18932700 06  0.013 22471831 113 23
Taxol CnyHsNO;,, 11861626 10701.891 10701.888 27  0.024 11861066 560 5.0
Heroin CuyHxNO; 32607001 2767.7009 2767.6992 17  0.034 32604612 239 48
Penicillin CyeHigN,0,S 27791719 22358709 22358692 17  0.043 27789728 199 49
Diazepam CiHisCIN,O 21863009 1717.1043 1717.1029 14  0.044 21861797 121 37
Caffeine CgHioN,O, 12532622 98253597 98253472 13  0.052 12531290 133 56
Streptomycin - Cp,H,N,Op, 64569266 5622.6971 5622.6910 6.1  0.075 64562410 686 85
Azidothymidine Cj Hi3NsO, — 1937.5162 1556.4304 15564278 27  0.081 1937.1443 372 116
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size, we have computed Coulomb energies for ho-
mologous sequences of hydrocarbons and present
these results in Table 3. We consider linear alkanes
(CoHyoni2, ey =109 A, reg =140 A), graphite
sheets (Cg2Hgp, fep =109 A, rec =142 A) and
diamond clusters (Cyps_ ) ,3Hanes oy = L09 A, rec
= 1.54 A), these systems exhibiting effective dimen-
sionalities of one, two and three, respectively. For all
of these hydrocarbons the w = o results are dismal,
but again we see a dramatic improvement on moving
to w=0.4. From this table, it is clear that E,
increases roughly linearly with system size for the
1D systems, aswe would expect, and thus A E; /N,
tends to a roughly constant value which, for w = 0.4,
is around 12 wE, /atom. The sub-quadratic increase
in the magnitude of E, for the 2D and 3D systems
implies that AE;/N,,, should steadily decrease,
athough this is only evident in the w = 0.4 results.
Whilst these molecules are somewhat artificial, it is
nonethel ess pleasing that we obtain an error less than
15 pnE,, /atom whilst approximating around 90% of
E, for the larger molecules, a proportion which
increases with system extent.

We conclude our analysis of the KSJ approxima:
tion by studying a variety of biomolecules * and
give these results in Table 4. In the w = 0.4 results
we have found a clear correlation between the num-
ber and nature of the functional groups and the error
in E_. The azido group appears alone to lead to an
error of around 2 millihartree (compare the error for
N, in Table 2). Errors of around 0.4 mE,, result from
other multiply bonded functional groups such as
carbonyls and smaller, but significant, errors from
ether and amino fragments. This ‘functional group
error’ is approximately additive because the interac-
tion error between well-separated aspherical nuclei is
primarily dipolar and thus vanishes like R™3. De-
spite this systematic error, the highly accurate treat-
ment of the hydrocarbon backbone means that for all
of the molecules in this table we are well within the
Eichkorn criterion of 0.2mE,/atom. These results
suggest that the KSJ approximation is an excellent
route to obtaining accurate Coulomb energies for
medium to large biological systems.

! The geometries of these molecules are available on request.

3. Conclusions

We have explored the proposal that long-range
Coulombic interactions can be treated accurately
through a representation of the density as a sum of
spherical nuclear-centred fragments. We observe that
for many systems of interest, such as large organic
molecules, this approximation leads to errors that are
well within the Eichkorn criterion of 0.2mE, /atom.
We have further shown that the errors resulting from
use of this approximation are systematic and can be
rationalized.

This approach is based on an unusually simple
auxiliary basis and depends only on integrals that be
computed extremely rapidly. Although we have not
considered the optimization of the auxiliary basis set
in this work, deferring this to future studies [26], we
believe that quite compact basis sets will yield errors
close to the Stewart limit. Combined with the effi-
cient computation of Eg [29], the KWIK-Stewart
approximation promises to be one of the most effi-
cient methods available for the computation of the
Coulomb energy in large systems.

A disadvantage of the KSJ approximation is that
its errors cannot be systematically reduced as in
other fitting techniques by driving the auxiliary basis
set to completeness. The preliminary results obtained
in this Letter demonstrate nonetheless that the KSJ
approximation is sufficiently accurate to merit use on
its own or as a springboard to more accurate compu-
tations.

Acknowledgements

We thank Dr Oliver Treutler (Bayer) for initially
drawing to our attention the relationship between the
RI and Stewart models. This work was partly sup-
ported by the National Science Foundation (Grant
DM1-9460396).

References

[1] SF. Boys, I. Shavitt.

[2] M.D. Newton, N.S. Ostlund, JA. Pople, J. Chem. Phys. 49
(1968) 5192.

[3] F.E. Harris, R. Rein, Theor. Chim. Acta. 6 (1966) 73.



232 AM. Lee, P.M.W. Gill / Chemical Physics Letters 286 (1998) 226-232

[4] H.J. Monkhorst, F.E. Harris, Chem. Phys. Lett. 3 (1969) 537.
[5] F.P. Billingdey, JE. Bloor, J. Chem. Phys. 55 (1971) 5178.
[6] H.E. Popkie, J.J. Kaufman, Int. J. Quantum. Chem. Quantum
Biol. Symp. 2 (1975) 279.
[7] J.C. Campbell, I.H. Hillier, V.R. Saunders, Chem. Phys. Lett.
69 (1980) 219.
[8] C. van Alsenoy, J. Comput. Chem. 9 (1988) 620.
[9] A. Fortunelli, O. Salvetti, Chem. Phys. Lett. 186 (1991) 372.
[10] M. Feyersisen, G. Fitzgerald, A. Komornicki, Chem. Phys.
Lett. 208 (1993) 359.
[11] O. Vahtras, J. Almldf, M.W. Feyereisen, Chem. Phys. Lett.
213 (1993) 514.
[12] E.J. Baerends, D.E. Ellis, P. Ros, Chem. Phys. 2 (1973) 41.
[13] J. Rys, H.F. King, P. Coppens, Chem. Phys. Lett. 41 (1976)
383.
[14] M. Yahez, R.F. Stewart, JA. Pople, Acta Crystallogr. A 34
(1978) 641.
[15] B.I. Dunlap, JW.D. Connolly, JR. Sabin, J. Chem. Phys. 71
(1979) 3396.
[16] K. Eichkorn, O. Treutler, H. Ohm, M. Haser, R. Ahlrichs,
Chem. Phys. Lett. 240 (1995) 283.
[17] PM.W. Gill, B.G. Johnson, JA. Pople, SW. Taylor, J.
Chem. Phys. 96 (1992) 7178.

[18] R.F. Stewart, lsr. J. Chem. 16 (1977) 124.

[19] P.M.W. Gill, J. Phys. Chem. 100 (1996) 15421.

[20] C.A. White, B.G. Johnson, P.M.W. Gill, M. Head-Gordon,
Chem. Phys. Lett. 230 (1994) 8.

[21] JM. Pérez-Jorda, W. Yang, J. Chem. Phys. 107 (1997) 1218.

[22] J.P. Dombroski, SW. Taylor, PM.W. Gill, J. Phys. Chem.
100 (1996) 6272.

[23] R.D. Adamson, J.P. Dombroski, P.M.W. Gill, Chem. Phys.
Lett. 254 (1996) 329.

[24] A.M. Lee, SW. Taylor, J.P. Dombroski, P.M.W. Gill, Phys.
Rev. A. 55 (1997) 3233.

[25] P.M.W. Gill, Chem. Phys. Lett. 270 (1997) 193.

[26] A.M. Lee and P.M.W. Gill, to be published.

[27] B.G. Johnson, P.M.W. Gill, M. Head-Gordon, C.A. White, J.
Baker, D.R. Maurice, T.R. Adams, J. Kong, M. Chala
combe, E. Schwegler, M. Oumi, C. Ochsenfeld, N. Ishikawa,
J. Florian, R.D. Adamson, J.P. Dombroski, R.L. Graham, A.
Warshel, Q-Chem, Version 1.1, Q-Chem, Inc., Pittsburgh,
PA, 1997.

[28] L.A. Curtiss, K. Raghavachari, P.C. Redfern, JA. Pople, J.
Chem. Phys. 106 (1997) 1063.

[29] R.D. Adamson, P.M.W. Gill, to be published.



