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Abstract

Ž .We show that the long-range part of the Coulomb self-energy of an electron density r r is almost identical to that of its
Ž . Ž .associated Stewart density r r . Since the latter is obtained by fitting r r within an auxiliary basis of only s functions, our˜

Ž .proposal can be viewed as a hybrid of the RI resolution of the identity and KWIK methods. q 1998 Elsevier Science B.V.

1. Introduction

The main problem bedevilling quantum chemistry
is the accurate estimation of the exact electron–elec-
tron energy E in large systems. Because of instan-ee

taneous Coulomb repulsions and the antisymmetry
principle, electronic motions are usually strongly
correlated and it has proven very difficult to model
their behaviour at a reasonable computational cost.
The pursuit of such models has fuelled much re-
search in the past and will undoubtedly continue to
do so for many years to come. Almost all of the
current approaches exploit the fact that

r r r rŽ . Ž .1 21E s d r d r , 1Ž .HHJ 1 22 r12

the classical electrostatic self-interaction of the total
Ž .electron density r r , rarely differs from E byee

more than a few percent. Thus, on the assumption
that E can be easily found, the problem is reducedJ

to that of estimating the correction E yE . How-ee J

ever, in large systems, even the computation of EJ

can be a formidable task and the construction of
algorithms that accomplish this as efficiently as pos-
sible has attracted research interest for many years.

The early approaches to rapid E evaluation wereJ

Ž .based on the notion that pieces of r r can be
Ž .replaced by simple models before the integral Eq. 1

is computed. This idea originated in the work of
w xBoys and Shavitt 1 and resurfaced in the PDDO

w xmethod of Newton et al. 2 , the developments of
w x w xHarris and Rein 3 and Monkhurst and Harris 4 ,

w xthe LEDO method of Billingsley and Bloor 5 and
w xthe VRDDO method of Popkie and Kaufman 6 . In

more recent times, it has been revisited by a number
w xof other research groups 7–11 .

Two years after the introduction of LEDO, how-
w xever, Baerends et al. 12 pointed out that it is

preferable in some respects to approximate the entire
Ž . Ž .density r r by a model r r and compute˜

r r r rŽ . Ž .˜ ˜1 21Ẽ s d r d r . 2Ž .HHJ 1 22 r12 Ž .They proposed that r r be expanded in a relatively˜
small auxiliary basis and constructed by minimizing
the integral over all space of the square of the

Ž . Ž . Ž .residual D r sr r yr r , i.e. through a least-˜
squares fit. It is easily seen that the quantity to be
minimized can be written as

Z s D r d r D r d r d r , 3Ž . Ž . Ž . Ž .HH1 1 12 2 1 2

and this idea is echoed in later reports by Rys et al.
w x w x13 and Yanez et al. 14 , although it does not´˜
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appear that these authors were aware of the work of
Baerends. All three of the papers, we note, advocate
that charge conservation be added as a constraint to
the fitting process.

w xSubsequently, Dunlap et al. 15 showed that the
Ž .E estimate Eq. 2 is a strict lower bound if oneJ

minimizes the self-repulsion

D r D rŽ . Ž .1 2
Z s d r d r , 4Ž .HH2 1 2r12

rather than the square, of the residual. As Dunlap et
al. discussed, minimizing Z corresponds to fitting2

Ž .the electric field, rather than the density, of r r to˜
Ž .that of r r . This new criterion was quickly adopted

by the density functional community and has been
widely used ever since. It has been systematically
explored, and termed the RI-J method, by the

w xAhlrichs group 16 .
w xIt can be shown 17 that one can fit the potential

Ž . Ž .of r r to that of r r by minimizing˜
Z sy D r r D r d r d r 5Ž . Ž . Ž .HH3 1 12 2 1 2

and that charge conservation arises naturally in this
case. This approach, which is related to earlier work

w xby Fortunelli and Salvetti 9 , has not yet been
exploited. However, the required integrals over the

Ž .anti-coulomb operator yr are straightforward.12

One might think that, since they result from dif-
ferent fitting criteria, the model densities obtained by
minimizing Z , Z or Z would also differ. How-1 2 3

w x Ž .ever, it can be proved 18,19 that, if r r is con-˜
strained to be a sum of M nuclear-centered spherical
functions, i.e.M

< <r r s s ryR , 6Ž . Ž .˜ Ž .Ý j j
js1the optimal s are independent of the fitting crite-j

rion and, furthermore, are unique. These robust ob-
w xjects, which we have termed Stewart atoms 19 , are

difficult to construct exactly but are easily approxi-
mated by performing the fit within an auxiliary basis
of s functions centered on the nuclei. It follows that
the Stewart density is identical to the RI-J density
generated by an auxiliary basis that completely spans
only the s function subspace.

In the last few years, several quite different ap-
proaches to the calculation of E have been ad-J

Žvanced. Both the CFMM which uses multipole ex-
w x. Žpansions 20 and the RBM which uses recursive
w x.bisection 21 compute E in work that scales al-J

Ž .most linearly with the system size. Another O N
w xmethod, the KWIK algorithm 22 , employs the parti-

tion

erfc v r erf v rŽ . Ž .12 12y1r 'S r qL r s qŽ . Ž .12 12 12 r r12 12

7Ž .

to split E into its short-range and long-range com-J

ponents, viz.
1 1² < < : ² < < :E 'E qE s r S r q r L r , 8Ž .J S L 2 2

and our group has recently explored several varia-
w xtions on this theme 23–25 .

This Letter explores the usefulness of combining
the KWIK partition and Stewart theory. Although
one might have anticipated that the sphericity of the
Stewart atoms would gravely limit the accuracy of
the Stewart density, we present results showing that

Ž .the KWIK-Stewart approximation KSJ

˜E fE qE 9Ž .J S L

in which E has been replaced byL

1˜ ² < < :E s r L r , 10Ž .˜ ˜L 2

is generally accurate to a few tens of microhartree
per atom if the attenuation parameter v is chosen to
be 0.4.

2. Method and results

Ž .We construct approximate Stewart densities r r˜
through an expansion in an auxiliary basis of normal-

Ž .ized spherically symmetric functions f r centereds

on the atomic nuclei,

r r s c f r . 11Ž . Ž . Ž .˜ Ý s s
s

The coefficients in this expansion are then deter-
Ž .mined by minimizing Z in Eq. 4 and satisfy the2

familiar linear system of equations

² < : ² < :f f c s f r , 12Ž .Ý s t t s
t

where
f r g rŽ . Ž .1 21² < :f g ' d r d r . 13Ž .HH 1 22 r12

A number of choices for the auxiliary basis are
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possible, s-type Slater or Gaussian functions, for
example. We use even-tempered sequences of uncon-
tracted Gaussians and will investigate other choices

w xelsewhere 26 . The exact Stewart density will be
recovered if the auxiliary basis is spherically com-
plete about each nucleus. The restriction to atom-
centred spherical functions also ensures that the ma-

² < :trix f f will always have full rank. However,s t
² < :for large molecules, f f can become near-singu-s t

lar and we therefore use the minimal-norm solution
computed using the singular-value-decomposition
Ž .SVD of this matrix. The above theory has been

w ximplemented in the Q-CHEM 27 package.
We note in passing that it is straightforward to

constrain conservation of charge and higher multi-
pole moments into the fitting process, this being
facilitated by the SVD which exactly removes any
null constraints. However, our investigations showed
that a substantial degradation in accuracy resulted
when charge or chargeqdipole constraints were im-
posed and we therefore do not recommend the con-

Ž .strained solution of the fitting equations Eq. 12 .
To demonstrate the intrinsic accuracy of the KSJ

approximation, we present results using large auxil-
iary basis sets which we believe to be near the
Stewart limit. For all of the molecules examined, we

Ž .take r r to be the UHFrSTO-3G density since this
facilitates computations on the larger molecules. The
parameters a , b and n for the exponents

z sab iy1 , for is1,2, . . . ,n , 14Ž .i

in the even-tempered expansions about each nucleus
are given in Table 1. For the spherical atoms, these
parameters were selected from the range of values

Žgiving accurate Coulomb energies usually to better
10 .than 1 part in 10 and a suitable range of expo-

Ž .nents erring on the side of diffuseness . The values
for the remaining atoms were obtained by interpola-

Ž .tion. The long-range energy Eq. 10 of the Stewart
Ž .density Eq. 11 is easily shown to be

erf R g(ž /st st1Ẽ s c c , 15Ž .ÝL s t2 Rstst

where the functions f and f have exponents as t s

and a on nuclei a distance R apart andt s t

gy1 say1 qay1 qvy2 . 16Ž .s t

Table 1
Even-tempering parameters a and b and basis set dimensions n
for atoms H through Ar

Nucleus n a b zn

H 20 0.010 1.5 22.1684
He 20 0.020 1.5 44.3368

Li 25 0.006 1.5 101.005
Be 25 0.010 1.5 168.341
B 25 0.015 1.5 253.512
C 25 0.020 1.5 336.682
N 25 0.030 1.5 505.023
O 25 0.040 1.5 673.364
F 25 0.050 1.5 842.706
Ne 25 0.060 1.5 1010.05

Na 30 0.010 1.5 1278.34
Mg 30 0.015 1.5 1917.51
Al 30 0.015 1.5 1917.51
Si 30 0.020 1.5 2556.68
P 30 0.025 1.5 3195.85
S 30 0.030 1.5 3835.02
Cl 30 0.035 1.5 4474.19
Ar 30 0.040 1.5 5113.36

We are now in position to analyze the accuracy of
the KSJ approximation. Tables 2–4 contain the total
Coulomb energies E and both their exact E andJ L

˜approximate E long-range components for a num-L

ber of chemical systems. We consider two values of
the attenuator: vs0.4, for which E as a fraction ofL

E varies from around 30% to over 90%, and vs`J

where we are approximating all of the Coulomb
energy and hence E sE . The tables also containL J

˜the total error in the Coulomb energy D E sE yEJ L L

and the error per atom D E rN . The short-rangeJ atom

component E is computed exactly, in work thatS

grows linearly with the system size, and makes no
contribution to the total error in the Coulomb energy.
We are guided in our interpretation of these results

w xby the criterion of Eichkorn et al. 16 that approxi-
mations to E for molecules should yield an error noJ

greater than 0.2 m E ratom. Accordingly, the resultsh

in each table are listed in order of increasing error
per atom for the more interesting case with vs0.4.

Table 2 contains Coulomb energies for a number
of small inorganic molecules taken from the G2 set
w x28 and reveals that the KSJ approximation yields
total errors that vary between 1–50 millihartree per

Ž .atom when we are approximating all of E vs` .J
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Table 2
Coulomb energies E in hartree for a number of small molecules from the G2 set with the corresponding long-range component E and itsJ L

˜ Ž . Ž .KWIK-Stewart approximation E under partial vs0.4 and complete vs`, E sE attenuation. The total error D E and error perL L J J

atom D E rN are given in millihartreeJ atom

vs0.4 vs`

˜ ˜Molecule E E E D E D E rN E D E D E rNJ L L J J atom L J J atom

CF 422.58937 254.57753 254.57756 y0.033 y0.007 422.52117 68.2 13.64

SiF 603.77286 347.95265 347.95266 y0.013 y0.003 603.72868 44.2 8.844

CH 32.797013 17.308532 17.308529 0.003 0.0006 32.793848 3.16 0.634

BF 273.77420 151.22640 151.22639 0.012 0.003 273.74265 31.6 7.893

SiH 155.44513 56.840188 56.840167 0.022 0.004 155.44051 4.62 0.924

CO 148.06763 77.855652 77.855636 0.016 0.005 148.04129 26.3 8.782

FH 56.559401 20.200339 20.200326 0.013 0.006 56.532766 26.6 13.3
AlF 426.90967 227.37462 227.37457 0.046 0.011 426.88039 29.3 7.323

OH 47.222396 19.345861 19.345806 0.055 0.018 47.188338 34.1 11.42

SiCl 1463.9758 774.22461 774.22448 0.134 0.027 1463.9547 21.1 4.224

H 1.3505936 0.7394646 0.7394025 0.062 0.031 1.3484373 2.16 1.082

BCl 847.24990 396.27862 396.27846 0.160 0.040 847.23568 14.2 3.553

NH 39.332677 18.391612 18.391449 0.164 0.041 39.307590 25.1 6.273

AlCl 1018.2779 491.62945 491.62925 0.193 0.048 1018.2676 10.3 2.583

CCl 1262.8479 658.82511 658.82482 0.286 0.057 1262.8120 35.9 7.174

H CO 86.434219 43.935834 43.935424 0.410 0.10 86.396225 38.0 9.502

HCN 67.813143 34.108114 34.107802 0.312 0.10 67.793686 19.5 6.49
F 130.95320 58.486805 58.486542 0.264 0.13 130.86236 90.8 45.42

SH 192.55942 61.532249 61.531781 0.468 0.16 192.53523 24.2 8.062

PH 173.27377 59.206223 59.205319 0.904 0.23 173.25296 20.8 5.203

BeH 9.5330786 4.2875370 4.2868215 0.715 0.36 9.5235499 9.53 4.76
O 100.34836 46.570055 46.569025 1.03 0.52 100.29550 52.9 26.42

SO 260.31646 101.51079 101.50915 1.64 0.82 260.28023 36.2 18.1
PF 494.23202 262.85622 262.85219 4.03 1.01 494.13682 95.2 23.83

LiH 5.7344206 2.6690799 2.6669833 2.10 1.05 5.7248484 9.57 4.79
S 429.09813 167.04298 167.04082 2.16 1.08 429.07238 25.8 12.92

N 73.978539 35.397098 35.394824 2.27 1.14 73.931405 47.1 23.62

P 373.70555 146.12461 146.12229 2.32 1.16 373.68972 15.8 7.922

Cl 479.09723 185.77623 185.77388 2.35 1.17 479.03569 61.5 30.82

CO 76.415321 35.571591 35.568669 2.92 1.46 76.363695 51.6 25.8
Si 315.84689 121.59752 121.59224 5.28 2.64 315.81600 30.9 15.52

Li 10.375392 4.9415362 4.9338534 7.68 3.84 10.357926 17.5 8.732

It appears, then, that applying the KWIK-Stewart
approximation to E as a whole will not yieldJ

chemically useful results, which is perhaps to be
expected considering that replacing a density by a
sum of atomic-centred spherical fragments is a sig-
nificant approximation. Turning to the vs0.4 re-
sults, where for these molecules we are treating
roughly half of the Coulomb energy exactly, we
observe that the quality of the KSJ approximation
improves dramatically, in some cases by several
orders of magnitude. Diatomic molecules fare partic-
ularly badly with errors typically in excess of

1 m E ratom, well above the 0.2 m E ratom limit seth h
w xby Eichkorn et al. 16 . Perhaps surprisingly, the

least satisfactory of the molecules examined is Li ,2
Žwith an error of 3.84 m E ratom compared toh

.0.03 m E ratom for H , a clear indication that theh 2

p-orbital contribution to bonding strongly perturbs
the sphericity of the constituent Li atoms. For
molecules such as F and O , the asphericity of the2 2

atoms is reduced in the former case and enhanced in
the latter upon diatomic formation. For highly polar
molecules such as FH, we see an overall reduction in
the error per atom with the formation of closed shells
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Table 3
Coulomb energies E in hartree for 1D, 2D and 3D systems of hydrocarbons with the corresponding long-range component E and itsJ L

˜ Ž . Ž .KWIK-Stewart approximation E under partial vs0.4 and complete vs`, E sE attenuation. The total error D E and error perL L J J

atom D E rN are given in millihartreeJ atom

vs0.4 vs`

˜ ˜Molecule E E E D E D E rN E D E D E rNJ L L J J atom L J J atom

C H 292.49985 210.27318 210.27294 0.23 0.014 292.48479 15 0.895 12

C H 749.82993 583.77215 583.77177 0.38 0.012 749.80183 28 0.8810 22

C H 1863.9000 1530.1783 1530.1776 0.74 0.012 1863.8457 54 0.8720 42

C H 4497.1897 3828.1401 3828.1386 1.44 0.012 4497.0831 107 0.8740 82

C H 10579.864 9240.1586 9240.1558 2.85 0.012 10579.653 211 0.8780 162

C H 310.65092 219.86540 219.86525 0.15 0.013 310.63878 12 1.016 6

C H 2263.5739 1893.9009 1893.9008 0.14 0.004 2263.5369 37 1.0324 12

C H 7412.3316 6575.7159 6575.7157 0.19 0.003 7412.2565 75 1.0454 18

C H 17313.459 15821.861 15821.861 0.25 0.002 17313.332 127 1.0696 24

C H 783.44774 624.50438 624.50430 0.08 0.003 783.42748 20 0.7810 16

C H 5232.3508 4668.7443 4668.7443 0.03 0.0005 5232.2939 57 0.8035 36

C H 20613.710 19251.850 19251.850 y0.02 y0.0001 20613.588 122 0.8284 64

around the nuclei leading to near-spherical environ-
ments: the error in an isolated F atom is 0.212 m Eh

which is reduced to 0.006 m E ratom in the FHh

molecule. The majority of the remaining molecules
are treated accurately with an error around a few tens
of microhartree, the tetrahedral molecules heading
this list.

A final point of interest in Table 2 is the negatiÕe
error obtained for CF and SiF . For an incomplete4 4

˜ Ž . Ž .basis E vs` is a lower bound to E vs` .L L

This is not the case, however, for finite values of v

if the operator used in performing the fit is different
from that to used to compute the Coulomb energy, in

Ž .this case L r . For complete basis sets, the Stewart12

atom coefficients are independent of the fitting oper-
ator and negative values for D E may thus beJ

considered a measure of the degree of incomplete-
ness of the auxiliary basis set. It is, however, a

Ž .straightforward matter to solve Eq. 12 using the
long-range operator to recover the strict inequality
Ẽ FE if this is required.L L

To examine the effect of increasing molecular

Table 4
Coulomb energies E in hartree for a number of large organic molecules with the corresponding long-range component E and itsJ L

˜ Ž . Ž .KWIK-Stewart approximation E under partial vs0.4 and complete vs`, E sE attenuation. The total error D E and error perL L J J

atom D E rN are given in millihartreeJ atom

vs0.4 vs`

˜ ˜Molecule Formula E E E D E D E rN E D E D E rNJ L L J J atom L J J atom

Cholesterol C H O 3307.0033 2852.7754 2852.7749 0.5 0.007 3306.9015 102 1.427 46

Testosterone C H O 2247.2965 1893.2706 1893.2700 0.6 0.013 2247.1831 113 2.319 28 2

Taxol C H NO 11861.626 10701.891 10701.888 2.7 0.024 11861.066 560 5.047 51 14

Heroin C H NO 3260.7001 2767.7009 2767.6992 1.7 0.034 3260.4612 239 4.821 23 5

Penicillin C H N O S 2779.1719 2235.8709 2235.8692 1.7 0.043 2778.9728 199 4.916 18 2 4

Diazepam C H ClN O 2186.3009 1717.1043 1717.1029 1.4 0.044 2186.1797 121 3.716 13 2

Caffeine C H N O 1253.2622 982.53597 982.53472 1.3 0.052 1253.1290 133 5.68 10 4 2

Streptomycin C H N O 6456.9266 5622.6971 5622.6910 6.1 0.075 6456.2410 686 8.521 41 7 12

Azidothymidine C H N O 1937.5162 1556.4304 1556.4278 2.7 0.081 1937.1443 372 11.610 13 5 4
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size, we have computed Coulomb energies for ho-
mologous sequences of hydrocarbons and present
these results in Table 3. We consider linear alkanes

˚ ˚Ž .C H , r s1.09 A, r s1.40 A , graphiteCCn 2 nq2 CH
˚ ˚Ž .2sheets C H , r s1.09 A, r s1.42 A and6 n 6 n CH CC

˚Ž 3 2diamond clusters C H , r s1.09 A, rŽ4 n yn.r3 4 n CH CC
˚ .s1.54 A , these systems exhibiting effective dimen-

sionalities of one, two and three, respectively. For all
of these hydrocarbons the vs` results are dismal,
but again we see a dramatic improvement on moving
to vs0.4. From this table, it is clear that EJ

increases roughly linearly with system size for the
1D systems, as we would expect, and thus D E rNJ atom

tends to a roughly constant value which, for vs0.4,
is around 12 mE ratom. The sub-quadratic increaseh

in the magnitude of E for the 2D and 3D systemsJ

implies that D E rN should steadily decrease,J atom

although this is only evident in the vs0.4 results.
Whilst these molecules are somewhat artificial, it is
nonetheless pleasing that we obtain an error less than
15 mE ratom whilst approximating around 90% ofh

E for the larger molecules, a proportion whichJ

increases with system extent.
We conclude our analysis of the KSJ approxima-

tion by studying a variety of biomolecules 1 and
give these results in Table 4. In the vs0.4 results
we have found a clear correlation between the num-
ber and nature of the functional groups and the error

˜in E . The azido group appears alone to lead to anL
Žerror of around 2 millihartree compare the error for

.N in Table 2 . Errors of around 0.4 m E result from2 h

other multiply bonded functional groups such as
carbonyls and smaller, but significant, errors from
ether and amino fragments. This ‘functional group
error’ is approximately additive because the interac-
tion error between well-separated aspherical nuclei is
primarily dipolar and thus vanishes like Ry3. De-
spite this systematic error, the highly accurate treat-
ment of the hydrocarbon backbone means that for all
of the molecules in this table we are well within the
Eichkorn criterion of 0.2 m E ratom. These resultsh

suggest that the KSJ approximation is an excellent
route to obtaining accurate Coulomb energies for
medium to large biological systems.

1 The geometries of these molecules are available on request.

3. Conclusions

We have explored the proposal that long-range
Coulombic interactions can be treated accurately
through a representation of the density as a sum of
spherical nuclear-centred fragments. We observe that
for many systems of interest, such as large organic
molecules, this approximation leads to errors that are
well within the Eichkorn criterion of 0.2 m E ratom.h

We have further shown that the errors resulting from
use of this approximation are systematic and can be
rationalized.

This approach is based on an unusually simple
auxiliary basis and depends only on integrals that be
computed extremely rapidly. Although we have not
considered the optimization of the auxiliary basis set

w xin this work, deferring this to future studies 26 , we
believe that quite compact basis sets will yield errors
close to the Stewart limit. Combined with the effi-

w xcient computation of E 29 , the KWIK-StewartS

approximation promises to be one of the most effi-
cient methods available for the computation of the
Coulomb energy in large systems.

A disadvantage of the KSJ approximation is that
its errors cannot be systematically reduced as in
other fitting techniques by driving the auxiliary basis
set to completeness. The preliminary results obtained
in this Letter demonstrate nonetheless that the KSJ
approximation is sufficiently accurate to merit use on
its own or as a springboard to more accurate compu-
tations.
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