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Abstract

Using a set of accurate experimental data for calibration, we have constructed an empirical exchange-correlation density
functional, EDF1. When applied self-consistently with the 6-31 + G ™ basis set, EDF1 yields results in significantly better
agreement with the experimental data than either the B-LYP or B3-LYP functional. © 1998 Elsevier Science B.V.

1. Introduction

In spite of our incomplete knowledge of the prop-
erties of the true exchange-correlation (XC) func-
tional, density functional theory (DFT) [1] has be-
come a very popular computational tool. Approxi-
mate XC functionals are often tested by systematic
comparison of computed total energies with high-qu-
ality experimental data. The large G2 set of atomiza-
tion energies, ionization potentials, electron affinities
and proton affinities [2] has been so used in severa
such studies [3—6]. These tests showed significantly
improved agreement with experiment as functionals
dependent only on local densities were replaced by
those which also involve local density gradients. In
recent years, DFT exchange functionals have been
mixed with Fock exchange to yield what are often
referred to as hybrid methods [7]. With some adjust-
ment of parameters, mean absolute deviations be-
tween theory and experiment have begun to ap-
proach levels achieved by conventional ab initio
methods, such as the G2 model itself [2].

In this Letter, we present a study of some simple
XC functionals with three main objectives. In the

first place, we increase the emphasis on empirical
parameterization. Most previous studies have pre-
cisely satisfied certain limiting conditions, such as
correct behaviour for the uniform free-electron gas
and scaling at large distances, parameterization then
being used to specify intermediate ranges. By releas-
ing constraints and modestly increasing parameteri-
zation, it may be possible not only to obtain func-
tionals of high practical value but aso to get some
indication of functional changes that are implied by
the experimental data and so may point towards
understanding further improvements.

Up to this point, it has been implicitly assumed
that a functiona that is optimal for a large orbital
basis set will be equally suitable for smaller bases.
This is probably not correct; the best functional with
a small orbital basis may differ from the ultimate
functional associated with an infinitely flexible basis.
A second objective, therefore, is to search for an XC
functional that is optimized for a relatively small
basis set. Such a functional would obviously have
practical value and, additionally, parameterization
within a small basis may absorb some deficiencies of
the basis itself.
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The third objective is to evaluate the necessity of
including Fock exchange in order to obtain good
agreement with experiment. It has been alleged ‘* that
a small exact-exchange component is a natural and
necessary congtituent of any exchange-correlation
approximation aiming for accurate molecular ener-
getics'’ [8]. However, doing so introduces non-local
effects and consequent computational complications
[9,10]; it ought not to be incorporated unless it is
really needed.

2. Methods

The orbital basis used is 6-31+ G*. This is a
simple basis which accommodates the main types of
distortions that occur for atoms in molecules. The 31
valence-shell split alows for atomic anisotropy in
molecular environments, the (+) diffuse functions
are included so that anions can be treated and the (*)
polarization functions permit ‘sideways electronic
displacements. The basis is quite small (2 functions
for H-He, 19 for Li—Ne and 23 for Na—Ar) and
should be usable for quite large organic molecules.
Equilibrium geometries are at the MP2/6-31G”
level as in the origina G2 work and zero-point
vibrational energies are also calculated for Hartree—
Fock harmonic frequencies in the same way. DFT
calculations were performed by one of us (RDA)
using the Q-Chem program [11].

The experimental database used for comparison is
close to that used in the original G2 study [2]. It
consists of 56 atomization energies, 40 ionization
potentials, 25 electron affinities and 8 proton affini-
ties. Two entries (for N; and SH}) have been
eliminated because they are excited states. Also some
properties of H, and inert gas atoms have been
added. (Note that, because there are no diffuse basis
functions on H atoms in the 6-31+ G* basis, the
electron affinity of the hydrogen atom has been
excluded.)

The quality of various functionalsis judged by the
root-mean-square (RMS) deviation of the theoretical
from the experimental values for these 129 data
points. The theoretical values are derived from full
self-consistent Kohn—Sham calculations on 150 sep-
arate atoms and molecules. The RMS deviation is
minimized with respect to parameters included in the

functionals. Among other variationa schemes, we
will consider linear combinations of different func-
tionals or linear combinations of the same function-
as with different parameters. Such linear optimiza-
tion can be carried out in two ways. In the firgt,
which may be termed *internal’ optimization, the full
XC functiona is written as a linear combination of
component functionals

Exc:fZcifi(Paypﬁ,Vpa,Vpﬁ)dr (1)
i

with adjustable coefficients c;. This single functional
is then used to carry out a set of 150 self-consistent
Kohn—-Sham calculations of total energies, leading to
an RMS value for the deviation from experiment,
which may then be minimized with respect to the c;.
If Hartree—Fock exchange is to be included, this can
be done by adding another term to the sum in Eq.
(1), with an additional c-coefficient. This is the
conventional mixing method, introduced by Becke
[7].

The second method used, termed ‘externa’ opti-
mization, carries out individual Kohn—Sham self-
consistent calculations for each of the component
XC functionas

applied to each member of the set of 150 molecules.
Thus, if there are N individual functions f; in Eg.
(1), external optimization requires 150N such calcu-
lations. These energies may then be arranged as N
vectors E( and then combined, using coefficients
c;, to give a single set of 150 energies in a vector

E(c)= % ¢ EW. (3)

Such a mixture describes a ‘linear combination of
model chemistries' defined by the coefficients c;.
Again its overall RMS deviation may be minimized
with respect to c;, by comparing predictions with the
experimental database.

Clearly, the first type of model is ultimately
preferable, since application to a new molecule will
only require a single Kohn—Sham calculation,
whereas the second model would require N such
calculations. However, optimization by the second
method only involves elementary quadratic mini-
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mization and, as we will see, can help significantly
in determining which combinations of functionas
are worthwhile candidates for internal optimization.

The functionals used are based on the work of
Becke[12] and of Lee, Yang and Parr (LYP) [13,14].
Most exchange functionals can be written in the
form

Ex:Ex[Pa]"'Ex[Pg]'

Ex[ o, 1=/ ps/*(r) 9(x,)dr, (4)

where g(x,) is a function of the dimensionless
reduced density gradient

Vo, (1)l
x(,(r)=p§T((rr)). (5)

The popular functional (B88) of Becke uses

Uses( X,) =9(0) +AB(B.Xx,), (6)

where g(0) has the free-electron value C,=
—3/2(3/4m)"3 and AB(B, x,) is a correction
function.

BX;
1+68x,snh™!x,

AB(B.x,)= (7)
Becke chose B=0.0042 to fit the known Fock
exchange energies of inert gas atoms.

The LYP functional [13] treats ofB-correlation
using a form fitted to the wavefunction for the
helium atom. We need not give the full analytical
form other than to note that there are four parameters
a, b,c,d with origina values (0.04918, 0.132,
0.2533, 0.349). When added to B88 exchange, this
leads to the full XC-functional B-LYP, which was
introduced in 1992 [4] and is known to perform quite
well in studies of this sort [4—6].

3. Reaults

Initial studies using internal mixing were carried
out with parameter modifications within the B-LYP
functional itself. The results are listed in Table 1.
First the unmodified form gives an RMS deviation of
5.290 kcal /mol. The corresponding mean absolute
deviation is 4.11. Next, the Becke parameter 8 was

Table 1

Modified B-LYP RMS deviations (kcal /mol)
Functional RMS deviation
B(0.0042)-LYP 5.290
B(0.0035)-LYP 5.069
B(0.0042) + 1.0431LYP 4.963

B-LYP (optimum) 4.848

optimized and it was found that a smaller value of
0.0035 gave improved agreement with experiment
(5.069 kca /mol). Third, an optimum linear combi-
nation of the original Becke and LYP parts lowers
the RMS deviation further to 4.963. Finaly, a fuller
optimization lowers this further to 4.848 kcal /mol.
(This has g(0) = 1.0072C,, a B-value in Eq. (7) of
0.003705 and LYP parameters of {a, b, c, d} =
{0.049,0.108,0.24,0.342}.) Such improvements are
relatively modest.

The next step was to alow external linear mixing,
including B-LYP functionals with different B-va-
ues. This led to a sharp lowering of the RMS error.
Thus, if B(0.0035)-LYP and B(0.0042)-LYP are
mixed with S-null and B(0.0042)-null), giving flexi-
bility to the combined calculation, the RMS devia-
tion falls to 4.543 kcal /mol. Clearly, the linear
combination of the two Becke functions is a better
exchange functional than either separately. The opti-
mal external combination, which contains large and
opposite coefficients for B(0.0035)-LYP and
B(0.0042)-LYP, is

9.588B(0.0035)-LYP—7.727 B(0.0042)-LYP

—0.861 S-null +0.743B(0.0042)-null (8)

The combination (8) was next refined as an inter-
nal linear combination and, finally, the LY P parame-
ters were redetermined. The complete XC functional
is then

Y, [{1.030952C,

o=a,B

+10.4017A B(0.0035, X,, )

—8.44793A B(0.0042, X, )} p/ 3dr
+LYP(0.055,0.158,0.25,0.3505).  (9)

The RMS deviation is now lowered to 4.237
kcal /mol and the mean absolute deviation to 3.215

Exc =
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Table 2 Table 3
External linear mixing of Hartree—Fock (kcal /mol) Deviations from experiment for various functionals
Functional combination RMS deviation Exp. Exp-BLYP Exp.-B3LYP Exp.-EDF1
B-LY P+ B(0.0042)-null + S-null 4.920 atomization energies (kcal /mol)
B-LY P+ B(0.0042)-null + S-null + HF 4.499 H, 1033 -01 -0.6 -31
EDF1+ B(0.0042)-null + B(0.0035)-null LiH 560 1.0 1.0 13
+Snull +LYP 4211 BeH 469 -70 -79 -72
EDF1+ B(0.0042)-null + B(0.0035)-null CH 799 -03 0.3 -04
+Snull + LYP+HF 4211 CH,(®B)) 1796 19 0.1 -23
CH,(*A) 1706 40 38 22
CH, 2892 15 -08 -37
CH, 3925 39 0.6 -37
kcal /mol. We term the non-LYP part of Eq. (9) the m 1;3-8 _g-g _cl)-g _g-g
double-Becke functional. We term the complete NH. 2767 26 s o2
functional * Empirical Density Functional 1" or EDF1. oH' 0.3 07 28 0.4
The third stage of this investigation is admixture OH, 2193 76 10.3 46
of Fock exchange. Table 2 gives the results of FH ) 1352 53 7.7 29
external mixing of Hartree—Fock with B-LYP and 2:2§3’;11)) Egj i? 8-2 _(2)-3
. . 2 B . - 0 - .
EDF1 pl us the|_r components. Clee_arly, thereis stro_ng SH, 240 44 10 —03
HF mixing ywth B-LYP but virtually none with SiH, 3028 60 10 07
EDFL1. This is confirmed by attempts to mix Fock PH, 1447 -0.7 -10 -28
exchange internally with EDF1. The mixing coeffi- PH 2274 44 3.0 04
cient is less than 0.001 and there is no significant (S:':'ﬁ iggg gg ;-i gg
energy lowering. _ _ Li, 240 42 42 54
Tables3 and 4 contain the resglts of applying the LIE 1376 23 5.8 4.4
B-LYP and EDF1 functionals, using the 6-31+ G~ HCCH 3889 84 113 41
basis set, to obtain the thermochemistry of the H,CCH, 5319 70 5.6 -13
molecules in the G2 set. In addition, we have in- gﬁccm ‘1532-2 73? 3; :2'(1)
c_Iuded results frpm t_he widely used BSLY*P fun_c— HON 3018 —21 66 _1s
tional [8,15], agan Wl-th the small 6—31 +.G -baSIS. co 256.2 25 105 2.4
B3LYP performs quite poorly and is inferior to HCO 2703 —4.4 36 -6.3
B-LYP and EDF1. However, the parameterization H,CO 372 -10 4.9 —45
within B3LY P was carried out [8] by Becke using (in EsCOH ‘2‘22-? i-g ;-2 _8-;
o . . § ) 1 -4 : )
effect) an |nf|n|te. basis and. the functional perfor HONNH, 4054 —0.1 52 —o4
mance vyould be improved |f. the parameters_ were NO 1501 -85 36 6.7
re-optimized at the 6-31+ G* level. (A partia re- 0, 1180 -—131 1.3 —139
optimization along these lines indicates that Fock HOOH 2523 05 113 -02
exchange participation is reduced to about 5%, lead- R 369 —91 38 —r3
. L ! Co, 3819 -28 11.9 —-54
ing to an RMS deviation of 4.65 kcal /mol, consider- N
o a, 166 -07 -0.1 13
any inferior to EDF1.) Si, 74.0 1.9 9.0 0.8
The overall improvement afforded by EDF1 is P, 161 25 10.4 37
due largely to its significantly better atomization S, 100.7 18 74 0.0
energies and proton affinities; electron addition and cl, 5r2 17 109 6.6
removal energies are only dlightly superior. The Nl o5 14 67 67
9 y Signtly - superior. T sio 1905 36 127 6.2
worst EDF1 results are fqr the atomization energies sc 1695 36 10.8 26
of SO, and O,, the ionization energy of O,, the SO 1235 —-11 9.0 -14
electron affinity of Cl, and the proton affinity of H, Clo 633 —-35 5.8 —-29
but it is interesting that each of these cases is also CIF 603 -09 6.1 -07
CH,CI 3710 71 51 -0.2

problematic for B-LYP and B3LYP.
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Table 3 (continued) Table 3 (continued)
Exp.  Exp-BLYP Exp.-B3LYP Exp.-EDF1 Exp.  Exp-BLYP Exp.-B3LYP Exp.-EDF1
Si,H; 5001 132 45 41 o 146 —0.26 -0.06 -0.11
CH,SH 4451 111 8.4 2.1 OH 183  0.02 0.19 0.08
HOCI 1563 41 108 30 0, 044 —014 -011 0.07
SO, 2540 163 35.9 15.3 F 340 -0.22 -0.02 -0417
ionization potentials (eV) Si 1.38 0.19 0.13 0.18
H 1360  0.12 0.08 0.06 SiH 128 014 0.09 0.13
He 2459 -012 -0.19 -0.20 SiH, 112 008 0.04 0.08
Li 539 -013 -0.15 -0.12 SiH, 144 o1l 0.11 0.17
Be 932 033 0.29 0.36 P 075 —0.10 -0.07 -0.02
B 830 -027 -0.30 -0.26 PH 1.00 001 0.02 0.08
C 1126 -0.13 -0.19 -0.18 PH, 126 012 0.11 0.16
N 1454 -0.01 -0.09 -0.13 PO 1.09 —0.05 -0.17 —-0.06
o) 1361 —054 -043 -031 S 208 —0.04 -0.03 0.02
F 1742 -033 -0.26 -0.24 SH 231 007 0.07 0.09
Ne 2156 —0.22 -0.17 -0.28 S, 166  0.07 -0.03 0.12
Na 514 -0.19 -0.19 -0.07 cl 362 001 -0.01 0.00
Mg 765 002 0.00 0.14 cl, 239 —0.69 -0.70 -0.56
Al 5.98 0.11 0.04 0.04 proton affinities (kcal /mol)
S 815 020 0.11 0.12 H, 1008  10.7 115 85
P 1049 029 0.17 0.16 HCCH 152.3 0.5 -0.2 -25
s 1036 —001 -0.05 0.01 NH; 2025 11 -02 -17
cl 1297 007 0.00 0.04 H,0 1651 5.3 41 2.9
Ar 1576  0.11 0.01 0.00 SH, 1540 4.0 5.7 29
CH, 1262 013 0.00 0.07 PH,  187.1 40 2.8 15
NH, 1018  0.19 0.20 0.13 H,S 1688 34 35 1.0
OH 1301 -0.11 -0.06 -0.04 HCl 1336 5.6 6.5 34
OH, 1262 017 0.19 0.11
FH 1604  0.08 0.11 0.00
SiH, 11.00 021 0.02 0.18
E: , 18:;3 8:(1)2 _ 8:83 _ 8:82 It is interesting to compare the double-Becke
PH, 987 018 0.14 0.17 functional with the original B88 form. The new g(x)
SH 1037 009 0.03 0.08 is
SH 1047 024 0.16 0.18
CIH 1275 019 0.10 0.10 Yaoubies ( X) = 1.030952C,
HCCH 1140 040 0.36 0.32
H,CCH, 1051 035 0.35 0.28 +10.4017A B(0.0035, x)
co 1401 001 -0.12 0.07 — 8.44793A B(0.0042, x) (10)
'C\l,i ﬁ;g? _8:‘2,,‘71 _8;%3 _8:;; This and the analogous B88 form are plotted in Fig.
P, 1053 032 -0.36 0.20 1. We note the following:
S, 936 -002 -0.26 -0.13 (1) The value of double-Becke at x =0 is dlightly
Cl 1150 030 0.04 023 below that for the free electron gas.
CIF 1266 019 -0.02 0.16
scC 1133 —0.06 -0.14 -0.05
electron affinities (eV)
C 126 —0.07 —-0.02 —0.06 Table 4
CH 124 —0.07 —0.02 —0.07 RMS errors for functionals
CH, 0.65 —007 0.05 0.05 RMS errors (kcal /mol) Exp.-BLYP Exp.-B3LYP Exp.-EDF1
CH, 008 014 0.24 0.21 — _
CN 382 —0.06 ~018 0.02 atomization energies 5.75 8.10 4.41
NH 038 —007 0.09 0.07 ionization potentials 5.14 5.05 4.34
NH, 0.74 0.08 021 0.15 electron affinities 4.39 4.40 3.79
NO 002 —037 036 ~030 proton affinities 5.23 5.51 3.77
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double-Becke

Fig. 1. The g(x) functions for the B88 and double-Becke ex-
change functionals.

(2) The initial quadratic term in the Taylor expan-
sion

9(x)=9(0) +39"(0) x*+ ... (11)
isonly g”(0) = —0.00184, compared with — 0.0084
for the origina B88 form. It may be noted that the
new value is closer to, but smaller than, the ab initio
value of —0.00378 for the amost uniform gas, due
to Sham and Kleinman [16,17].

(3) Intherange 0 < x < 4, the double-Becke g(x)
lies below the old curve. At x = 4, there is a cross-
ing and the new curve is higher. At x= 9.7, there is
another crossing and the new curve is lower there-
after.

4. Conclusions

The principa conclusions to be drawn from these
studies are:

(1) The function g(x), specifying the dependence
of the ‘exchange’ functional on density gradient,
differs considerably from the original BeckeB88 form,
if optimized with respect to experimental energies.

(2) For the small 6-31+ G* basis used here, the
resulting total functional, EDF1, is the best of which
we are presently aware. It should be suitable for
computations on large molecules.

(3) No significant improvement is found when
mixing with proper Fock exchange is included in the

complete functional. It should be emphasized, how-
ever, that this result applies only to this rather small
orbital basis and may change if larger bases were
used.
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