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Optimal partition of the Coulomb operator
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We set up and solve the problem of optimally partitioning the Coulomb operator 1/r into a sum of two
functions f 1(r ) and f 2(r ) such that bothf 1 and the Fourier transform off 2 decay as quickly as possible. The
rigorous solution involves a Hermite function, but we find that the conventional Ewald-KWIK partition ap-
pears to be only slightly inferior.@S1050-2947~97!05604-7#

PACS number~s!: 31.15.2p, 02.70.Rw
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There has been considerable recent interest in the de
opment of linear solutions to the Coulomb problem@1–10#.
Such approaches, often calledO(n) methods, yield the Cou
lomb energy of a system ofn localized charge distribution
in computational work that scales only linearly, rather th
quadratically, withn. Since the Coulomb problem has ge
erally been the bottleneck inab initio quantum chemical cal
culations using Hartree-Fock or density-functional theori
O(n) methods are poised to revolutionize the range of ap
cability of these theories.

The first step in all of the linear methods that have be
proposed hitherto is to partition the Coulomb problem in
two subproblems and solve each using an appropriate m
odology. The fast multipole method was introduced a dec
ago by Greengard and Rokhlin@1# and, more recently, ha
been generalized for use in a quantum chemical context
implemented by a number of groups@2–7#. Its linear cost is
achieved by partitioning the physical space around a cha
distribution into a small ‘‘neighboring’’ region and an infi
nite ‘‘well-separated’’ region whose distributions are treat
by an ingenious hierarchical multipole expansion techniq

In the KWIK approach and related treatments@8–11#
rather than splitting physical space, one partitions the C
lomb operator itself by writing
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r
[S~r !1L~r ![
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12 f ~r !
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, ~1!

where the separatorf (r ) decays rapidly andf ~0!51. This
splits 1/r into a singular short-range functionS(r ) and a
nonsingular long-range functionL(r ). The first can be
treated in real space and, because it is negligible for largr ,
needs to be applied only to neighboring distributions. T
second can be treated in Fourier space@8,11# or, in some
cases, ignored completely@9#.

For the KWIK partition to work efficiently, it is essentia
that the functionf (r ) be chosen carefully. Ideally, we woul
like to abandon the last term in Eq.~1! entirely but, even if
this does not prove feasible in general, it would certainly
convenient to be able to justify treating it approximately a
we would therefore like it to be as physically insignificant
possible. Although this requirement is not mathematica
well defined as it stands, we have found that it is roug
equivalent to the requirement that its Fourier transform
551050-2947/97/55~4!/3233~3!/$10.00
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cay as rapidly as possible. This makes sense intuitively s
a function with a rapidly decaying Fourier transform must
slowly varying and a component of the Coulomb potent
that is slowly varying can do little more than shift the ener
origin: it cannot give rise to large forces.

We therefore seek the separatorf (r ) in Eq. ~1! that makes
both the first term and the Fourier transform of the seco
term decay as fast as possible. There are many possible
in which the decay rate of a functiong(r ) can be quantified,
but it is convenient for our purposes to use the second
ment ofg2(r ). We therefore seek thef (r ) that minimizes

Z@ f #5E f 2~r !dr1E k2uL̂~k!u2dk, ~2!

where L̂(k) is the Fourier transform ofL(r ). Using Parse-
val’s identity, this becomes

Z@ f #5E f 2~r !1u“@1/r2 f ~r !/r #u2dr , ~3!

and minimizing this using the calculus of variations yiel
the elegant Euler equation

f 9~r !5r 2f ~r !. ~4!

FIG. 1. Optimal partition of the Coulomb operator.
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The solution of Eq.~4! is

f ~r !5AF11
r 4

3.4
1

r 8

3.4.7.8
1••• G

1BF r1
r 5

4.5
1

r 9

4.5.8.9
1••• G ~5!

and the boundary conditionsf ~0!51 and f ~`!50 imply that
A51 andB522G~ 34!/G~14!. The resulting series for the opt
mal separator can be expressed in terms of modified Be
Hermite, or parabolic cylinder functions@12#. In terms of the
latter, it is simply

f ~r !5U~0,r& !/U~0,0!. ~6!

This function decays asymptotically asr21/2 exp~2r 2/2!, i.e.,
slightly faster than a Gaussian.

Expressing the second term of Eq.~1! as a Fourier inte-
gral yields the optimal partition

1

r
[
U~0,r& !

rU ~0,0!
1

1

2p2 E 1

k2 H 12GS 34DApS k2D
3/2F I 1/4S k22 D

2L1/4S k22 D G J eik•rdk ~7!

~L is a modified Struve function@12#!, which may be con-
trasted with other partitions such as
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2p2 E 1

k2
expS 2k2

4v2 Deik•rdk, ~8!
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4pv E 1

k
cschS kp

2v Deik•rdk, ~9!

FIG. 2. Long-range part of the Coulomb operator for vario
separators~see the text!.
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The optimal partition is shown in Fig. 1 and its long-ran
part L(r ) is contrasted with the long-range parts of Eq
~8!–~10! in Fig. 2. The optimalL(r ) is evidently flatter at the
origin than the others. In fact, it is easy to show that t
long-range parts of Eqs.~7!–~10! are cubic, quadratic, qua
dratic, and linear, respectively, atr50.

How much better is the optimal partition~7! than the par-
titions ~8!–~10!? One way to answer this question is
evaluate the functional~3! for the various separators employ
ing, in each case, the value ofv that yields the smallestZ.
Table I lists the resultingv andZ values. TheZ values are
surprisingly insensitive to the separator and the choicef(r )
5erfc(vr ), which is used in the Ewald and KWIK-base
algorithms@8–11#, appears to perform well.

In the CASE approximation@9#, one neglects the long
range part of the Coulomb operator completely and, na
rally, the success of such an approach depends critically
the flatness of the neglected function. It is not possible
infer quantitatively from theZ values in Table I the effects
on CASE calculations of using the various separators in E
~7!–~10!. As a very preliminary investigation of this, how
ever, we have replaced the Coulomb operator in the Sc¨-
dinger equation for a helium atom by the attenuated oper
f(r )/r and used the variational method to find the optim
exponent a in the elementary wavefunctionC(r 1 ,r 2)
5exp@2a(r 11r 2)#. Thea values obtained are given in th
final column of Table I and we conclude that the wavefun
tion from the optimal separator is significantly, but not ove
whelmingly, better than that from the Ewald separator.

This research was partly supported by the National S
ence Foundation~Grant No. DMI-9460396!. A.M.L. thanks
Professor N. C. Handy for the opportunity to collaborate
this research.

TABLE I. Optimizedv, Z, anda values for various separator
f(r ).

f(r ) v Z@f# a

1 ` 1.6875
exp~2vr ! 1.107 9.271 1.405
12tanh(vr ) 0.772 8.627 1.543
erfc(vr ) 0.637 8.510 1.580
U(0,r&)/U(0,0) 8.495 1.606
ch,
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