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Abstract

We discuss a family of computationally useful approximations to the Coulomb operator. These operators, which we term
CAP(m), are systematic improvements to our earlier CASE operator. In particular, we have CAP(0)= CASE and
CAP(ec) = 1 /r. Because the CAP(m) approximations are all short-ranged, the computational cost of using one to compute
the Coulomb energy of N localized charge distributions scales linearly with N. To investigate their accuracy, we have
applied a number of CAP(m) approximations to the computation of the hydrogen atom energy and the NaCl Madelung
constant. We find that the higher approximations model the original Coulomb operator quite well and the half-integer
approximations, though non-vanishing at infinity, are especially accurate.

1. Introduction

All of chemistry is determined by the Coulomb
force. Indeed, the electronic structure of any system,
however complex, is simply the result of minimizing
its Coulomb energy while ensuring that its wave-
function remains antisymmetric and of minimal cur-
vature. It is therefore not surprising that the treat-
ment of Coulomb interactions, particularly between
electrons, has consistently emerged as a topic of
central importance throughout the history of compu-
tational ab initio chemistry. The pioneering work of
Heitler and London [1] for example, while often
discussed in terms of the ‘exchange phenomenon’,
may just as accurately be described as the first
occasion on which the Coulomb energy in a molecule
was treated properly.

For several decades thereafter, the Coulomb prob-
lem resurfaced in various guises. In the early days of
quantum chemistry, a major obstacle was simply the

intractability of the integrals that arise in the compu-
tation of the Coulomb energy of polyatomic
molecules when exponential basis functions are em-
ployed. Although this was overcome by Boys’s in-
troduction [2] of the much more tractable Gaussian
basis function in 1950, the very large number of
Gaussians that are required leads to a major compu-
tational bottleneck even using modern computing
hardware and the latest, highly efficient algorithms
[3,4]. The fundamental difficulty is that the Coulomb
interaction involves pairs of particles and the cost of
evaluating the Coulomb energy, if treated in the most
obvious way, naturally scales quadratically with the
size of the system.

In recent years, a number of workers have sug-
gested that such quadratic scaling may be avoidable
and the important work of White and coworkers
[5.6], which generalizes the approach of Greengard
and Rokhlin [7], introduced to quantum chemistry
the first Coulomb algorithm whose cost scales only

0009-2614 /96 /$12.00 Copyright © 1996 Elsevier Science B.V. All rights reserved.

PII $0009-2614(96)00931-1



106 P.M.W. Gill, R.D. Adamson / Chemical Physics Letters 261 (1996) 105-110

linearly with the system size. Other research groups
quickly followed.

The CFMM approach of White and coworkers
achieves linear scaling by the Greengard partitioning
of physical space into regions, all pairs of which are
then classified as either ‘well-separated’ or ‘not
well-separated’. The Coulomb problem then falls
easily into two parts. Inspired by this, we have
recently introduced a second linear Coulomb scheme,
the KWIK algorithm [8], wherein the Coulomb oper-
ator (rather than physical space) is partitioned into
two parts, one singular and short-ranged and the
other non-singular and smooth. This splits the
Coulomb problem into two Ewald-like subproblems,
a short-range one that is handled in real space and a
long-range one that is treated in Fourier space. Each
can be shown to scale linearly.

Subsequently [9], we enquired whether or not
chemical properties depend equally on the short- and
long-range KWIK components and were intrigued to
find that properties such as atomization energies and
electron and proton affinities are remarkably insensi-
tive to the latter. This led us to the CASE
{Coulomb-attenuated Schrodinger equation) approxi-
mation wherein the long-range KWIK component is
systematically omitted from every Coulomb term in
the Schrédinger equation. CASE is a purely short-
range and thereby intrinsically linear approach.

It is not trivial to apply a theory that is based
upon a modified Coulomb operator within the con-
text of density functional theory (DFT). All of the
standard density functionals have been derived on
the assumption that the interelectronic interaction is
1/r and it is hopelessly inconsistent to treat the
Coulomb and exchange-—correlation energies using
different operators. Therefore, in a recent paper [10],
we rederived the Dirac/Slater exchange functional
under the assumption that the Coulomb operator had
been replaced by the short-range CASE operator.
Our derivation yields the Coulomb-attenuated Dirac
(CAD) exchange functional and has enabled us to
perform Coulomb-attenuated Hartree—Fock—Slater
(HFS) calculations.

Although we found that the original CASE ap-
proximation has surprisingly little effect on many
chemical properties, there are certain properties
(ionization energies, for example) that are strongly
affected. Obviously therefore, it is desirable to de-

vise a mechanism by which CASE results can be
systematically improved toward exactitude. In the
following Section, we show that the original CASE
approximation may be regarded as the first member
of a family of approximations, CAP(m), that bridge
the gap between the CASE and Coulomb potentials.

Efficient practical implementations of the CAP(m)
approximations require specialized numerical tech-
niques. Because the present paper is concerned prin-
cipally with the accuracy of the approximations,
rather than their efficiency, we defer discussion of
implementational details to another paper [11].

Finally, we should mention that our ultimate goal
is to use the CAP(m) approximations as good start-
ing points for an exact treatment of the Coulomb
operator. Of course, in order to achieve this, we must
reintroduce the omitted long-range Coulomb compo-
nent in some form. KWIK itself can be viewed as
one scheme for accomplishing this but we are also
developing a number of others and these are de-
scribed elsewhere [12,13].

2. CAP(m) approximations
We begin with the exact KWIK partitioning [8] of
the Coulomb operator
erfc(wr).  erf(wr)
+

r r

1
= (1)
into parts termed °‘short-range’ and ‘background’,
respectively. Choosing the error function and its
complement to achieve this partition ensures that the
short-range part decays as fast as a Gaussian while
the background is smooth (in the sense that its
Fourier transform F(k) decays as fast as a Gaussian).
The parameter w determines how rapidly the short-
range part decays.

In the KWIK approach [8], we replace the back-

ground by its exact Fourier representation
1 erfe(wr)
ro r

+wa(k)exp(iwk-r)dk, (2)

whereas, in the original CASE approximation [9], we
neglect the background entirely to obtain

1 erfc(wr)

= (3)

r r
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Fig. 1. The first six CAP(m) approximations (@ = 1).

Between (2) and (3), however, lies a family of
approximations of intermediate accuracy

while that for a single Gaussian is given by

exp( — w’a’r?)

_1_ - erfc( wr) 0alr?  watrt watrS
’ r =1- T + YREY + ... (6)
Tw [m+1/2]

+T1f jgl amjexp(—wza,f,jrz), (4
and we call these the Coulomb-attenuated potentials
or CAP(m) approximations. We confine our atten-
tion to integer and half-integer values of m stipulat-
ing that, in the half-integer cases, «,,, = 0. We note

Equating the leading terms in the background to
those in a sum of Gaussians leads to a system of
equations in the a,,; and a,; that is familiar from
Gauss—Legendre quadrature theory. The roots and
weights are tabulated elsewhere [14] but the simplest
approximations turn out to be

that CAP(0) is simply the potential from the CASE CAP(0) ! = M , (7)
approximation (3) and, furthermore, that the Fourier r r
transform of the error of any CAP(m) approximation 1 efe(wr) 2w
decays as fast as a Gaussian. CAP(1/2) P s + Vu (3)
We choose the roots (a,,;) and weights (a,,) of
the Gaussians in (4) to reproduce the background CAP(1) i - erfc( wr)
and its first 4m — 2 derivatives at r = 0. In this way, r r
the CAP(m) approximations afford progressively e —Wi?
more accurate models of the Coulomb singularity +—= exp( ) , (9)
and its neighbourhood. e 3
The Taylor series for the background is 1 erfe(wr)
CAP(3/2) — = ———
erf( wr) r r
r 2w| 4 5 —3@?%r?
2w @’r?  w'rt  o%r° + Jm |9 + 9 exp( 5 ) .

= 1 -

sutsa Tt O

v

(10)
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The first few CAP(m) approximations (w = 1) are
illustrated in Fig. 1. The crudest approximation,
CAP(0), is not equal to 1/r at any point. By adding
an appropriate constant, we produce CAP(1 /2) which
is equal to 1/r at the origin but overshoots there-
after. The higher CAP(m) remain faithful to 1/r
over larger and larger intervals but all eventually
decay quickly either to zero (when m is an integer)
or to a non-zero constant (when m is a half-integer).
The integer approximations are all lower bounds and
the half-integer approximations are all upper bounds
to 1/r. Aside from a trivial constant, the CAP(m)
are all short-range approximations.

3. Two-electron integrals

One of the most time-consuming tasks in an ab
initio molecular orbital calculation is the generation
of the required two-electron repulsion integrals. In
conventional calculations, where the molecular or-
bitals are expanded in a Gaussian basis, the funda-
mental integral that arises is

51 sl

Xexp( nlr, — dr dr,

Pl

and represents the energy between two normalized
Gaussian charge distributions. The formula (11) has
been known since the work of Boys [2] and the
extensive literature concerned with the evaluation of
such integrals has been reviewed [3]. However, in a
CAP(m) calculation, the 1/r potential is modelled
by a linear combination of erfc{ewr)/r and
exp(— @@ ?r?) and appropriate analogues of (11)
must therefore be sought. Fortunately, the corre-
sponding integrals are easily handled by the standard
Fourier convolution technique [2] and one finds that

(%)3/2ffexp(—§r%)w

12

(11)

><exp(—77|r2 —Rlz)drl dr,

T 1
R 1/«+—
/ { n
RIS+~ +— 12
| (12)

m\’?
(?) ffexp(—grlz)exp( wa’r},)

—erf

><6:xp(—77|r2—R|2)dr1 dr,
11 1 \17*"7
=|w%? —+—+—2—5)]
{ n wa
) 1 1 1
Xexp| —R Z+;+W . (13)

Eq. (12) is related to integrals that have recently
been considered by Panas [15] and, although it can
be cast into forms that are more efficient for actual
computation [11], that above highlights its similarity
to (11). When used in conjunction with standard
recurrence relations [3,4], the formulae (12) and (13)
are sufficient for all integrals arising in a CAP(m)
calculation.

4. Results and discussion
4.1. Energy of the hydrogen atom

How accurate are the CAP(m) approximations in
practice? To begin to answer this, we have used
them to compute the total energy of the ground state
of the hydrogen atom using its exact wavefunction. It
can be shown that, using the operator (4), this energy
is given by

1 2
E=——+4+——=-(20 = 1)exp(o0?
2" ovm ( ) exp( )
2 [m+1/2] a,; 2
Xefe(w™ ) +— Y —d|———
w j=1 amj amjw ™

(za—Z —2

+1)exp(a,fo)
Xerfc(a;,}w‘ ‘)} . (14)
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Table 1

Errors * in the energy of the H atom ground state, y(r) =e~", computed using CAP(m)

m w=0.5 w=04 w=03 0=02 w=0.1

0 0.468989 0.396675 0.312866 0.217369 0.111734
1/2 —0.095201 —0.054677 —0.025648 —0.008307 —0.001104
1 0.013634 0.005886 0.001803 0.000295 0.000011
3/2 -0.002336 —0.000744 —0.000148 —0.000012 — 0.000000
2 0.000429 0.000103 0.000014 0.000001 0.000000
5/2 - 0.000086 —0.000016 —0.000001 —0.000000 — 0.000000
3 0.000018 0.000003 0.000000 0.000000 0.000000
1/2 —0.000004 - 0.000000 - 0.000000 —0.000000 —0.000000

* CAP(m) — Exact.

The magnitude of the total energy of the hydrogen
atom is equal to its ionization energy and, in our
earlier work [9], we observed that CASE signifi-
cantly underestimates this. We note that ionizations
are a very demanding test of a Coulomb-attenuated
approximation because they lack the felicitous can-
cellations of error that typify atomization processes
and electron or proton additions. Unlike these, ion-
ization energies and total energies directly reflect the
quality of the underlying approximation.

In Table 1, we present the CAP(m) errors for the
hydrogen atom using a variety of m and @ values.
As we found earlier [9], CAP(0) performs poorly for
all values of w studied: even for w = 0.1, the error is
more than 100 mh. However, in proceeding to
CAP(1/2), we observe a dramatic improvement. The
errors are now negative but are as much as two
orders of magnitude smaller than for CAP(0). Evi-
dently, the constant term in (8) is very important.

As m increases further, the errors continue to fall
quickly, especially when w is small. Because
CAP(m) bounds 1/r below or above (depending
upon whether or not m is an integer) and the hydro-
gen atom involves only a single Coulomb potential,
the CAP(m) errors are consistently positive when m
is an integer and negative when m is a half-integer.
That CAP(m + 1/2) yields smaller errors than
CAP(m) is noteworthy because, computationally,
they are virtually identical: the constant terms in (8),
(10), etc. incur almost no cost.

4.2. Madelung constant of NaCl

It might be argued that, because it is very small
and lacks important long-range effects, the hydrogen
atom is not a very demanding test of CAP(m).
Accordingly, we have next applied CAP(m) to find
the Madelung constant (the potential of an ion in the

Table 2

Errors * in the Madelung constant of NaCl ® computed using CAP(m)

m w=105 w=04 w=03 w=02 w=0.1

0 —0.327689 —0.325013 —0.303278 —0.224731 —0.112838
1/2 0.236501 0.126338 0.035236 0.000944 0.000000
i —0.066350 0.044884 0.031996 0.000944 0.000000
3/2 —-0.051156 —0.038349 —0.000148 0.000753 0.000000
2 0.043585 —0.000494 —0.005272 0.000252 0.000000
5/2 —0.006689 0.010898 0.000139 —0.000004 0.000000
3 —0.012523 —0.004867 0.001190 —0.000037 0.000000
7/2 0.011127 —0.000771 —0.000313 —0.000006 0.000000

* CAP(m) — Exact.
® Lattice spacing = 5.33 bohr.
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field of all others) of NaCl with a lattice spacing of
5.33 au. This represents a much harsher test since the
system involved is of infinite size and the property
sought includes very long-range contributions. The
exact value [16] of the Madelung constant is 0.327873
but it is impossible to determine this by straightfor-
ward summation because of the painfully slow con-
vergence of the associated harmonic series. In con-
trast, due to their short-range character, the CAP(m)
approximations give rapidly converging sums. The
errors in the resulting estimates are shown in Table
2.

It is clear that the CAP(0) Madelung estimates are
poor: as for the hydrogen atom, the error exceeds
100 mh even for w=0.1. The errors are markedly
smaller, however, for the higher CAP(m) approxima-
tions, especially when  is small. Patterns in these
errors are less obvious than in Table 1, principally
because the Madelung constant results from large
numbers of positive and negative Coulomb interac-
tions that almost cancel.

With only one exception (which is fortuitous), we
observe that CAP(m + 1/2) is superior to CAP(m).
Given that these are equally demanding computa-
tionally, we are led to conclude (as we did from the
hydrogen atom results) that the integer approxima-
tions are relatively inefficient and probably less use-
ful than their half-integer counterparts.

5. Concluding remarks

The CAP(m) operators are a well-defined and
systematic family of approximations to the Coulomb
operator 1/r. When used in quantum chemical cal-
culations employing a Gaussian basis set, they yield
analytically evaluable integrals. Unlike the Coulomb
operator, CAP(m) operators are short-range and
therefore computationally inexpensive.

In the preliminary studies presented here, we have
found the half-integer CAP(im) approximations to be
particularly accurate. It appears that the constant
terms in (8), (10), etc. are valuable assets that en-
hance the quality of the approximations more than
might have been anticipated. We note, however, that
these terms can become liabilities in certain circum-
stances. Within any of the half-integer approxima-
tions, two infinitely separated charged moieties have

a non-zero interaction energy: this is obviously non-
physical.

It is next of interest to study the effects of the
CAP(m) approximations on the chemical properties
of a wide range of molecules. We have therefore
implemented CAP(m) within the Q-Chem computer
program [17] and we will report Coulomb-attenuated
HF, HFS and MP2 results in the near future [18].
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