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Abstract

The theoretical model chemistry that results from a molecular Schrodinger equation in which the Coulomb terms are
strongly attenuated is investigated for a range of molecules. Little deterioration is found and we propose that this represents a
very natural approach to achieving linear cost scaling in quantum chemical calculations.

1. Introduction

In the last few years, interest has been kindled in
the existence and implementation of algorithms that
can compute the total Coulomb energy of a system
of n localized distributions of charge at a computa-
tional cost that is only O(n). The availability of such
algorithms [1-5] has major consequences for many
areas of computational physics but, in particular, it
may serve to remove the notorious two-electron bot-
tleneck of quantum chemistry.

The seminal breakthrough was made by Green-
gard and Rokhlin [1], who constructed an ingenious
hierarchical algorithm, the fast multipole method
(FMM), that was applicable to large systems of
particles interacting through an inverse-square law.
In 1994, a generalization of the FMM that is also
valid for non-particulate charge distributions was
published by White et al. [2]. These authors named
their scheme the continuous fast multipole method
(CFMM), but it has also latterly been termed the
GMM [3] and the GVFMM [4] by other workers. The
key feature of the FMM-based approaches is the
assignment of the charge distributions to a nested
tree-structure of computational boxes. Pairs of distri-
butions that are in adjacent boxes are then treated by

short-range techniques while all other pairs are han-
dled using multipole expansions.

Very recently, Dombroski et al. [5] have intro-
duced an alternative to the FMM schemes. The
initial step of their KWIK algorithm is to separate
the Coulomb operator into two pieces:

erfc( wr) N erf( wr) .

r r

1
- (1)
r
The first of these is singular but short-range while
the second is non-singular but long-range. The pa-
rameter w is chosen to minimize the total computa-
tional cost. Although many choices of the separator
function are possible, the authors chose the error
function and its complement because they yield both
a very rapidly decaying short-range component and
an exceptionally smooth long-range component (Fig.
1). The former minimizes the number of short-range
interactions that must be considered while the latter
facilitates an efficient Ewald-like treatment of the
long-range interactions in Fourier space. We will
refer to the long-range component erf(wr)/r as ‘the
background’.

Both the FMM and KWIK techniques achieve
highly efficient solutions to the Coulomb problem by
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Fig. 1. Graphs of 1/ r (dashed), erfc(r)/r and erf(r)/ r illustrat-
ing Eq. (1) for @ = 1. Note the rapid decay of erfc{r)/r and the
smoothness of erf(r)/ r.

splitting the 1 /r operator into short- and long-range
parts. One may ask, however, whether both of these
parts are then comparably important in determining
chemical behavior. Specifically, since the back-
ground is extremely smooth, i.e. lacks high-frequency
components, it is not unreasonable to hypothesize
that it may be much less important than the short-
range component and may, perhaps, be amenable to
an approximate treatment.

In this Letter, we take this idea to its logical
conclusion and explore the consequences of com-
pletely neglecting the background. This proposal is
not as preposterous physically as it may appear
mathematically. In fact, it is a constructive response
to Bader’s plea [6] that theoreticians should strive to
introduce atoms and functional groups into ab initio
calculations. It could also be viewed as a quantitative
test of the short-sightedness of electrons [7].

2. A Coulomb-attenuated Hamiltonian
The Schrédinger equation H¥ = E¥ for a

molecule with M nuclei and N electrons involves
the Hamiltonian operator

. N __ViZ N N
H= ) 5t Y f(r)
i=1 i=1 j>i
N M M M
_Z ZZAf(riA)+ Z ZZAZBf(rAB)’
i=1 A=1 A=1B>A

(2)

and is found to be an extremely satisfactory founda-
tion for quantum chemical calculations. The first
term corresponds to the kinetic energy while the
others represent the electron—electron, nuclear—elec-
tron and nuclear—nuclear energies, respectively. The
interparticle energy function is traditionally given by
the Coulomb form f(r)=1/r.

Consider now the Coulomb-attenuated Schrddi-
nger equation (CASE) defined by Eq. (2) but with
the interparticle operator modified to exclude the
background, i.e. f(r) =erfc(wr)/r. At first glance,
one might guess that the CASE could apply in a
universe in which the Coulomb interaction decays
very rapidly but would be totally inadequate else-
where. After more careful reflection, however, that
conclusion seems too hasty. Although it is not at all
apparent from the Schrodinger equation itself, it is
well known to theoreticians and non-theoreticians
alike that molecules are essentially non-polar except
on small distance scales and we ought therefore to
expect that the attractive (nuclear—electron) and re-
pulsive (electron—electron + nuclear—nuclear)
Coulomb interactions between widely separated re-
gions of a large molecule will approximately cancel.
As Clementi has remarked {8], ‘“the electrons on the
nose of Professor Karplus do not interact with the
electrons on the nose of Professor Eyring’’...!

Of course, the CASE could also be employed as a
zeroth-order approximation on which higher-order
theories are constructed and we will pursue this
possibility further elsewhere [9). We should begin,
however, by establishing the strengths and weak-
nesses of the CASE in its own right and this is the
focus of the present work.

3. The hydrogen atom

Whenever introducing a new approximation, it is
valuable to examine its performance on a simple
model system. We have begun by solving the CASE
of the H atom 1s state, viz.

1 & 1 d¥  erfe( wr)
> —_—
2 dr r dr r

At w=0, the CASE becomes the traditional
Schrédinger equation and we have E;*= —1/2 and

+E¥=0. (3)
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Vo (r)=m"""2exp(—r). As o increases, the at-
tractive nuclear—electron potential rapidly attenuates
and one would expect the energy E' to rise. The
effect of w on the wavefunction ¥ *(r), however, is
much less clear intuitively and we have found that
first-order perturbation theory provides a convenient
framework in which to investigate this quantitatively.

If we expand the CASE energy and wavefunction
as

ES=Ef+E’+E} P+ -+, (4)
q,ls=-lpols+q,lls+1pzls+,_,’ (5)
lpl\s — (,‘211’025 + C31p03s + C4q,045 + - (6)

where W, ¥, W, - are w=0 excited-state
wavefunctions, then the first-order correction to the
energy is simply the expectation value of the back-
ground

EIIS ~ f\l,ols{hpols

= /:4r2exp( —r) Er—f(—wr—)—exp( —r)dr

r

2
——= 4+ (1 — 20 H)exp( 0™ Herfc( 0™ '),
wvm

(7

and the coefficients of the first-order correction to
the wavefunction are given by

VI
= Els _ pks ° (8)
0 0

The first-order energy E,° + E|®, and the exact en-
ergy E'* obtained using Mathematica [10] to solve
Eq. (3) numerically, are listed for various w values
in Table 1 and both confirm that E' rises linearly

with . More interesting, however, is the astonish-
ingly close agreement between the exact and first-
order energies which suggests that, at least for fairly
small @ values, ¥,* is an excellent approximation
to ¥'s. This inference is supported by the small c,
and ¢, values in Table 1 which indicate that the
first-order correction to the wavefunction is almost
negligible.

What can be learned from this very simple exam-
ple of Coulomb attenuation? As Fig. 1 shows, the
replacement of 1/r by erfc(wr)/r is a gross pertur-
bation to the Schrddinger equation and might have
been expected, a priori, to give rise to a radically
altered mathematical model of chemistry. The truth,
however, is much more subtle and interesting. While
it is well known that a variational calculation will
generally extract a good energy from a poor wave-
function, we observe the apparent converse, for the
results in Table 1 show that Coulomb attenuation
leads to poor energies and good wavefunctions. The
resolution of this paradox lies in recognizing that, by
virtue of its smoothness, the background is likely to
have a very small effect on the wavefunction while,
by virtue of its integrated magnitude, it is certain to
have a large effect on the energy.

Is an approximation that has no effect on the
wavefunction but a significant effect on the energy
useful? If a wavefunction is the main goal of a
calculation, the answer is affirmative. If a rotal
energy is sought, the answer is negative. Neverthe-
less, if the goal of a calculation is a relative energy,
it is not clear whether or not the background will
have a substantial effect. It is conceivable that, by
systematic cancellation, relative energies could be
largely unaffected by the background and we investi-
gate this possibility in the next Section.

Table 1

Results of first-order perturbation theory for the 1s state of the CASE hydrogen atom

w E's EF+E] ¢, cs

0 - 0.500000 —0.500000 0 0

0.001 —0.498872 ~0.498872 Ix107° 1x107°
0.01 —0.488717 —0.488717 3x 107 1x10°¢
0.1 —0.388270 ~0.388266 Ix 107} 1x107°?
0.2 —0.282838 ~0.282631 2x 1072 6x10°
0.5 —0.051071 —-0.031011 1x 107! 5%107°
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4. Molecular results

All calculations were performed using the Q-Chem
quantum chemistry program [11] and calculating any
needed integrals over the erfc(wr)/r operator using
the PRISM algorithm and related recent advances
[12]. In the light of the Table 1 results, we chose
w=1/10 a;".

To begin our study of CASE chemistry, we exam-
ined the effect of Coulomb attenuation on the molec-
ular orbitals of the H,O molecule at its MP2 /6-31G~
geometry. We performed HF/6-31G* calculations
using =0 and w=1/10 and obtained total ener-
gies of —76.00981 and - 71.72696, respectively, a
huge difference of more than 4 E,. The correspond-
ing MO energies, together with those from an
LSDA/6-31G* (density functional) calculation, are
shown in Fig. 2. Coulomb attenuation raises the
occupied energies but has almost no effect on the
others. The MO coefficients of the highest-occupied
(HOMO) and lowest-unoccupied (LUMO) molecular
orbitals are listed in Table 2 and typify the changes
found for the occupied and unoccupied manifolds,

respectively. It is clear that, despite its strong effect
on the orbital energies, Coulomb attenuation at this
level has a negligible effect on the orbitals them-
selves. We reiterate that this result is a consequence
of the smoothness of the background.

Although molecular wavefunctions are very in-
sensitive to Coulomb attenuation, it is by no means
clear that chemical energetics will be similarly unaf-
fected. Indeed, given the very large effects on total
energy observed above for the hydrogen atom and
water molecule, it might seem unlikely that bond
dissociation energies, for example, could be repro-
duced well. In order to examine this question, we
scanned the UHF/6-31G* " potential curve of H,
using both @ =0 and = 1/10. The total energies
obtained are listed in Table 3. Despite the fact that
the w=1/10 energies are 224 mE, higher than
their w =0 counterparts, this difference is so con-
stant over a wide range of bond distances that the
spectroscopic parameters remain almost constant.
Specifically, r, increases from 0.7326 to 0.7338 A,
D, falls from 354.1 to 353.5 kJ mol™' and v, falls
from 4635 to 4616 cm~'. We ascribe this constancy

Table 2
MO coefficients and energies for the HOMO and LUMO of H,O using HF/6-31G *

HOMO (B)) LUMO(A))

w=0 w=0.1 w=0 w=0.1
0ls) 0 0.10002 0.09992
029 0 0 - 0.05859 —0.05873
o (2p,) 0 0 0 0
o) 0.63998 0.63962 0 0
o(2p.) 0 0 —0.22243 —0.22247
0(3s) 0 0 - 1.38818 —1.38718
0QGp,) 0 0 0 0
0QGp,) 0.51110 0.51148 0 0
0@Gp,) 0 0 -0.51217 —-0.51233
0@d,,) 0 0 0.05532 0.05519
0@d,,) 0 0 0 0
0(d,,) 0 0 0.07027 0.07016
0(@d,.) 0 0 0 0
0@d,,) 0.03347 0.03334 0 0
0(@3d,.) 0 0 0.04191 0.04180
H, (1s) 0 0 0.05745 0.05744
H, (28 0 0 1.03009 1.02992
H, (1) 0 0 0.05745 0.05744
H, (25) 0 0 1.03009 1.02992
MO energy —0.49736 —0.38174 +0.20821 +0.21353
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to the inertness of the background, which seems
blessed here with almost no bonding significance
whatever.

In view of the discovery that Coulomb attenuation
has an encouragingly small impact on the bonding in
the prototypical H, molecule, it is reasonable to
enquire whether or not this is also true of molecules
with more complicated electronic structures. In order
to investigate this, we calculated the HF/6-31G*
atomization energies of 32 molecules using @ =0
and w=1/10. The first five columns of Table 4
summarize our results. Zero-point vibrational correc-
tions are not included. Once again, we observe that
Coulomb attenuation gives rise to gross changes in
total energies but almost imperceptible movement in
relative (atomization) energies which are typically
altered by 0-3 kJ mol~'. The largest atomization
error found is 6.4 kJ mol™' for LiF. This ionic
species is highly polar but the attenuated calculation
fails to capture the full extent of the associated
Coulombic stabilization and the atomization energy
is underestimated as a result.

We have found that HF total energies are system-
atically underestimated by the CASE. The curious

reader may be wondering (as we did) if it is possible
to obtain useful correlation energies by developing
CASE-based post-HF methods. The simplest such
method yields the second-order Mgller—Plesset per-
turbation (MP2) energy

2

| ¥, ;r,.;l N
E®=— - : 9
4a§s 8a+8b—gr‘8x ()

where we have used the notation of Szabo and
Ostlund [13]. To investigate the effect of Coulomb
attenuation on the numerators (which are antisym-
metrized two-electron integrals), we have used the
orbital energies from an = 0 Hartree—Fock calcu-
lation. We have computed the MP2/6-31G™ corre-
lation energy for each of the 32 molecules studied
earlier, both with and without Coulomb attenuation,
and summarize the results in the last two columns of
Table 4. An antisymmetrized integral is the differ-
ence between two integrals and the errors in the
latter appear to cancel very well. The Coulomb-at-
tenuated correlation energies are systematically lower

Table 3
UHF/6-31G " * energies (E, ) of H, as a function of bond length R (&)
R E(R) E(R) — E(=)

w=0 w=0.1 w=0 w=0.1
0.4 —0.93620 —-0.71184 +0.06027 +0.06107
0.5 —1.06148 —0.83730 —0.06502 —0.06439
0.6 —1.11393 - 0.88993 -0.11747 —0.11702
0.7 —1.13050 —0.90667 —0.13403 —0.13376
0.8 —1.12843 —0.90479 -0.13197 —0.13188
0.9 —1.11652 —0.89305 —0.12005 —0.12014
1.0 - 1.09947 —0.87619 -0.10301 —0.10329
1.1 - 1.07994 —0.85685 —-0.08348 —0.08394
1.2 - 1.05940 —0.83649 —0.06293 —0.06359
1.3 - 1.04147 —0.81847 —0.04501 —0.04556
1.4 —1.02864 —0.80553 -0.03217 —0.03262
1.5 —1.01950 —-0.79631 —0.02303 —0.02340
1.6 —1.01299 —0.78974 -0.01653 -0.01683
1.7 —1.00836 —0.78505 -0.01189 —0.01214
1.8 — 1.00505 —0.78169 ~-0.00858 —0.00878
1.9 - 1.00267 -0.77928 —0.00621 —0.00637
2.0 — 1.00097 —0.77754 —0.00450 —0.00464
x —0.99647 —0.77291 —0.00000 —0.00000
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Table 4
HF/6-31G " total energies (E,), HF/6-31G " atomization energies (kJ /mol) and MP2/6-31G * correlation energies (m £,) of various
molecules

Molecule Total energy w =0 Atomization energy Correlation energy
w=0 w = 0.1 w=0 w=0.1 w=0 w=0.1

H, —1.12679 -0.90305 342.2 341.7 —-17.4 -17.3
H,CCH, —78.03107 —72.85255 1775.9 1776.1 —263.2 -261.7
H,CO —113.86372 —107.21602 1056.7 1058.9 —-311.2 -309.9
H,NNH, —111.16800 —104.40912 1061.2 1062.4 —336.4 -335.2
H,CCH, -79.22854 —73.82606 2303.7 2302.8 —~2754 —-2740
H,COH —-115.03419 —108.16217 1513.5 1513.7 —319.1 -318.0
HCCH - 76.81560 —71.86094 1200.9 1201.9 —260.6 —258.9
HCN —92.87019 —87.23785 802.5 805.9 —296.8 -295.0
HCO —113.24518 —106.70926 740.8 743.0 -295.2 —-2939
HOOH —150.76012 —142.41897 514.0 516.4 —~374.8 —-3737
Li, —14.86689 —13.52642 10.9 13.6 -20.0 — 183
LiF —106.93418 —-101.18581 361.9 355.4 - 1953 —194.9
LiH —7.98087 -7.19726 134.6 131.7 —-15.6 -15.4
BeH —15.14731 —13.91139 215.6 211.2 —24.1 —-23.9
CH - 38.26485 —35.78739 225.1 2253 —-77.6 —-77.2
CH, ('A‘) —38.87219 —36.28291 511.6 511.7 - 101.8 —101.4
CH, (331) —38.92142 —36.33159 640.9 639.5 ~-86.0 —-85.7
CH, —39.55892 —36.85718 1006.5 1004.8 —-114.1 —-113.6
CH, —40.19507 —37.38157 1368.6 1366.9 - 1420 - 141.3
CN —92.17398 —86.65255 282.7 283.8 ~220.8 —219.7
CO —112.73448 —106.31014 708.1 709.7 —-293.7 —~292.4
Co, —187.62841 - 177.14614 996.9 1002.0 —490.0 —487.9
N, - 108.93540 —102.62432 431.9 4349 —326.2 —3244
NH —54.95924 —51.69139 198.4 198.5 —-102.2 —-101.9
NH, —55.55731 —52.17765 460.5 460.5 —136.4 —136.0
NH, —56.18384 -52.69221 797.4 796.9 - 173.5 -173.0
NO —129.24730 —122.03288 204.6 207.0 -317.2 —315.9
0, — 149.60681 — 141.48969 1023 105.8 —347.5 —346.2
OH —75.38186 —71.21088 261.7 261.8 —141.3 -141.0
OH, —76.00981 - 71.72696 602.3 602.2 ~189.4 —189.0
F, - 198.67283 — 188.52364 —~149.9 — 1469 —366.0 ~365.1
FH —100.00229 —94.81532 365.2 365.1 —181.9 —181.5
Table S
UHF/6-31G " total energies ( E;) and ionization energies (eV)
Atom Total energy (atom) Total energy (cation) Ionization energy

w=0 w=0.1 w=0 w=0.1 w=0 w=0.] i
H —0.49823 —0.38645 —0.00000 -—0.00000 13.56 10.52 3.04
He —2.85516 —2.51752 —1.99362 —1.76853 23.44 20.38 3.06
Li —7.43137 —6.76063 —7.23554 —6.67201 5.33 2.41 2.92
Be — 14.56694 - 13.44452 —14.27552 —13.26483 7.93 4.89 3.04
B —24.52204 —22.83410 —24.23406 —22.66026 7.84 4.73 3.11
C — 37.68086 -35.31512 —37.28708 —35.03592 10.72 7.60 3.12
N —54.38544 —51.22933 —53.87220 —50.83083 13.97 10.84 3.12
(o) —74.78393 —70.72469 ~74.34264 —70.39817 12.01 8.89 312
F —99.36496 —94.28980 - 98.79206 —-93.83177 15.59 12.46 3.13
Ne —128.47441 - 122.27059 —127.75171 —121.66270 19.67 16.54 3.12
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Fig. 2. Molecular orbital energies for H,O using Coulomb-at-
tenuated HF/6-31G ", traditional HF/6-31G* and traditional
LSDA /6-31G *. (Core MO not shown.)

than the traditional values but the differences are
slight in all cases. We infer from these results that
the lifeless background seems to be unimportant for
correlation energies.

Lest we leave the wrong impression, we hasten to
point out that there are simple chemical problems in
which the background plays an important role and
Coulomb attenuation performs poorly. For example,
the UHF/6-31G" atomic ionization energies listed
in Table 5 are reduced markedly by Coulomb attenu-
ation. Why is the background significant for ioniza-
tion but not atomization energies? The explanation
lies in the fact that, unlike the atomization AB — A
+ B, the ionization A — A™ does not conserve par-
ticles — an electron is lost from the system - and,
consequently, the expectation value of the back-
ground for A is very different from that for A*. It is
possible to predict theoretically [9] that this differ-

ence is 3.07 eV and this is obviously in good agree-
ment with the differences observed in Table 5.

5. Concluding remarks

This Letter is a preliminary report and we have
explored our new approach on only a few small
systems. From the results obtained, we conclude that
Coulomb attenuation:

1. Has a large effect on total energies;

2. Has a small effect on correlation energies;

3. Has a small effect on the relative energies (ioniza-
tion energies are an exception);

4. Has a very small effect on molecular wavefunc-
tions;

5. Yields a remarkably simple route to quantum

chemical methods whose cost is O(n).

It will be interesting to determine the extent to which
the Coulomb and exchange-correlation holes are af-
fected by attenuating the Coulomb operator. We also
feel that Coulomb attenuation may offer a route to
inexpensive correlation treatments and we are inves-
tigating extensions in which the background is treated
as a correction, rather than being neglected com-
pletely [9].

That wavefunctions are little affected by Coulomb
attenuation is a key result of this Letter and derives
from the impressive blandness of the excluded back-
ground term erflwr)/r. This is significant, both
conceptually and computationally, for it affirms the
chemist’s first article of faith — that the behaviour
of an atom within a molecule is governed principally
by its immediate vicinity — and then exploits it by
facilitating the construction of new ab initio theories
based on an entirely short-range molecular Hamilto-
nian.

Acknowledgements

This research was supported in part by assistance
from the US National Science Foundation (Grant
DMI-9460396), New Zealand Lottery Science Board
(Grant 45088) and Q-Chem, Inc. RDA and JPD
gratefully acknowledge PhD scholarships from
Massey University.



336 R.D. Adamson et al. / Chemical Physics Letters 254 (1996) 329-336

References

[1] L. Greengard and V. Rokhlin, J. Comput. Phys. 73 (1987)
325.

[2] C.A. White, B.G. Johnson, P.M.W. Gill and M. Head-
Gordon, Chem. Phys. Letters 230 (1994) 8.

[3] R. Kutteh, E. Apra and J. Nichols, Chem. Phys. Letters 238
(1995) 173.

4] M.C. Strain, G.E. Scuseria and M.J. Frisch, Science, 271
(1996) 51.

[5] J.P. Dombroski, S.W. Taylor and P.M.W. Gill, J. Phys.
Chem. in press.

[6] R.F.W. Bader, Chem. Rev. 91 (1991) 893.

[7] W. Kohn, Chem. Phys. Letters 208 (1993) 167.

[8] E. Clementi, in Proceedings of the Robert A. Welch Founda-

tion Conferences on Chemical Research, XVI, Theoretical
Chemistry, Houston, 1972.

[9] 1.P. Dombroski, R.D. Adamson and P.M.W. Gill, in prepara-
tion.

(10] S. Wolfram et al., Mathematica (Wolfram Research Inc.,
1988).

[11] B.G. Johnson, P.M.W. Gill, M. Head-Gordon, C.A. White,
D.R. Maurice, R.D. Adamson, T.R. Adams and M. Oumi,
Q-Chem (Q-Chem Inc., Pittsburgh, PA, 1995).

[12] P.M.W. Gill, Advan. Quantum Chem. 25 (1994) 141; T.R.
Adams, R.D. Adamson and P.M.W. Gill, J. Chem. Phys. in
preparation.

[13] A. Szabo and N.S. Ostlund, Modern quantum chemistry:
introduction to advanced electronic structure theory (Mc-
Graw-Hill, New York, 1989).



