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Abstract

We apply the linear scaling continuous fast multipole method (CFMM) to form the J matrix for molecular density
functional calculations. Our implementation involves a new definition of charge distribution extent that bounds absolute
errors. We efficiently treat short range interactions via a J matrix engine without fully uncontracting the basis. Calculations
on 1-d, 2-d and 3-d carbon systems with the 3-21G basis establish crossover points versus the conventional approach, and
yield linear scaling coefficients between 10° and 10® floating point operations, depending on dimensionality. The CFMM
plus J engine is a dramatic improvement for molecules over 50 to 100 atoms.

1. Introduction

Over the last several years, a variety of methods
have been introduced addressing the scaling issues
for calculations of the Coulomb potential in systems
composed of classical point charges [1-6] !. Interest
in reducing the scaling of the Coulomb problem has
now shifted to ab initio electronic structure calcula-
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"' Ref. [2] gives a recent general audience review of fast-sum-
mation algorithms.

tions [7—10] 2, particularly for self-consistent field
theories including Kohn-Sham density functional
theory (DFT) and Hartree—Fock calculations where
it is rate-determining at present. To address this
need, we have introduced the continuous fast multi-
pole method (CFMM) [7]. This method, a generaliza-
tion of Greengard and Rokhlin’s fast multipole
method (FMM) [1-5], allows one to calculate the
Coulomb interactions of a collection of finite extent
distributions represented by continuous functions, in
work scaling linearly with system size.

% The authors of Ref. [10] have implemented a version of the
CFMM that they choose to call the Gaussian FMM (GFMM), and
an extension they term the Gaussian very fast multipole method
(GVFMM).
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The Coulomb interaction matrix, or J matrix, of
DFT is conventionally obtained by contracting the
two-electron repulsion integrals (ERIs) with the
one-particle density matrix. This operation consti-
tutes the rate-determining step in current 4-center
molecular DFT calculations as a result of the cre-
ation of a large number of intermediate quantities
(ERIs) to form a small number of final quantities of
interest (the J matrix). With the use of integral
prescreening [11-14], J matrix construction scales
as O(N?), where N is the dimension of the one-par-
ticle basis. Diagonalization of the effective Hamilto-
nian is an O(N?) step, but with such a small coeffi-
cient that it is dominated by the Coulomb problem
for the largest calculations yet performed this way
(several hundred atoms).

Very recently we have introduced a procedure for
forming the exact J matrix without explicit assem-
bly of the ERIs, by pre-summing the density matrix
into the underlying recurrence relations [15]. This J
matrix engine, and related methods [16,17], are prob-
ably the best exact N? methods available at present,
although faster N2 methods can be obtained by the
use of approximate auxiliary basis expansions of the
density [18). This Letter reports the dramatic
speedups that can be obtained by efficiently applying
the linear scaling CFMM to calculate the J matrix,
while still retaining a bounded error that is compara-
ble to the precision obtained by explicit ERI forma-
tion.

The CFMM divides Coulombic interactions into
local (near-field) and distant (far-field) contributions
to the J matrix. A linear scaling method based on
the FMM rapidly handles the distant contributions by
collectivizing charge distributions into multipoles.
The remaining local contributions must be evaluated
explicitly, but their number is only linear, scaling as
O(NM) where M is an effective number of neigh-
boring charges, and is independent of the system
size. Here, we apply our J matrix engine to handle
the near-field contributions in a rigorous yet still
highly efficient manner.

In the remainder of this Letter, we will first
discuss theoretical issues related to applying the
CFMM to treat molecular charge distributions in
Section 2. Section 3 briefly describes several key
points concerning the practical implementation of a
CFMM method for the J matrix problem. Numerical

tests of the accuracy and speed of our current imple-
mentation of the CFMM for density functional calcu-
lations are presented in Section 4. We consider
model systems of both 1-, 2- and 3-dimensional
character, and show that the linear scaling CFMM
revolutionizes the speed of J matrix assembly for
molecules in the range of 50 to 100 atoms and
upwards.

2. Theoretical issues

2.1. An extent definition for molecular charge distri-
butions

Linear scaling J matrix assembly involves two
requirements. First, the number of charge distribu-
tions must grow linearly with the size of the system.
Second, a linear scaling method such as the CFMM
must calculate the Coulomb interactions of this O(N)
collection of charge distributions. In molecular calcu-
lations the charge distributions arise from products
of atom centered shells, known as shellpairs. Since
the number of shells grows linearly with the size of
the system, the number of shellpairs formally grows
quadratically. For small molecules, one cannot avoid
this scaling, but as the size of the system increases,
shellpair-based integral pre-screening techniques
[11-13] ensure linear growth in the number of signif-
icant charge distributions.

Closely related to these pre-screening techniques,
the CFMM achieves linear scaling by determining
the point at which two distributions begin to
Coulombically interact as point charges (or higher
point multipoles). This leads to the definition of an
extent which represents the closest approach of two
interacting point distributions. For a pair of Gaussian
charge distributions, this extent * takes an exception-
ally simple form,

‘/E-ln(e), (H
P

Texe =

N | —

* This definition takes a slightly different mathematical form

than given in Ref. [6]. This form is the first order correction
obtained through a Taylor expansion of erf( x).
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where p is the Gaussian exponent. This version of
the extent ensures the deviation of the classical
approximation from the exact result will be a factor
of € smaller than the absolute magnitude of the
interaction.

In molecular systems, charge distributions appear
as products of Gaussian basis functions. These charge
distributions always contain a Gaussian pre-factor
which arises from the Gaussian product rule and
depends directly upon the distance AB between the
centers of the original shells. If one relaxes the error
tolerance from the relative precision of the integral,
to an absolute tolerance as compared to the other J
matrix contributions, one can include the Gaussian
pre-factor in the definition of extent. In this case we
have

_.1 2 2
rcxl—E’V;ln(E)—AB . (2)

Eq. (2) no longer ensures that the error is small in
comparison to the magnitude of the interaction; it
simply ensures the error in the contribution to the J
matrix is smaller than some e. As would be ex-
pected, this definition leads to much smaller extents
with negligible increase in the errors introduced in
final the J matrix.

A further modification of the extent definition
could be made by including screening based on the
density. Density-based cutoffs are particularly useful
in forming an increment to the J matrix based on a
difference density. We do not exploit this technique
here, but it can be applied to reduce the number of
charge distributions to interact, as well as to slightly
modify the extent definition, and therefore the effec-
tive number of neighbors with which a given distri-
bution explicitly interacts. These advantages will
come at the price of more rapid and unpredictable
error accumulation, and will not be explored here.

2.2. Treatment of far-field interactions in the FMM
and CFMM

Using the extent definition given by Eq. (2), we
can effectively partition the Coulomb interactions
into near-field and far-field sets. The near-field inter-
actions are evaluated using standard integral tech-
niques, which in our case is the J matrix engine

[15]. The far-field interactions are treated using the
CFMM-based method. For point charge systems, the
FMM itself contains several fundamental constraints
which can limit the number of these interactions
which can be evaluated using multipoles. The intro-
duction of extent in the CFMM introduces a further
constraint, whose effect on the near-field versus
far-field partitioning must also be considered.

The fraction of interactions performed directly
without the use of multipole expansions (D) for a
point charge system approaches the ratio of number
of boxes, N,, with which charges in a reference box
interact directly, to the total number of boxes into
which the system is partitioned, N,

N,

D=—— 3
N (3)

The well-separatedness (WS) index is defined such
that WS = 1 indicates direct interactions end at near-
est neighbor boxes, while WS = 2 indicates that up
to next-nearest neighbor boxes are directly evaluated
and so forth. The connection between WS and N,
depends on the dimensionality, d, of the system via

N, =(2WS + 1), (4)

neglecting edge effects. The total number of boxes is
also a power of the dimensionality multiplied by the
tree depth, ¢

Ny, =241, (5)

where ¢ is defined as one plus the number of binary
subdivisions of the parent box (which encloses the
system) necessary to reach the finest level boxes.

From Eq. (3), the fraction of direct interactions is
independent of the number of particles in the system
assuming a homogeneous distribution with each box
containing at least one particle, and neglecting edge
effects. For a fixed accuracy (as specified by the WS
value, which is usually 2) the fraction of interactions
done directly can be reduced by simply increasing
the tree depth, as is clear from Eq. (5). Furthermore,
substitution of Egs. (4) and (5) into Eq. (3) shows
that the fraction of direct interactions for a given WS
value and tree depth is a constant raised to the
dimensionality of the system. For instance, to ensure
no more than a specified fraction of direct interac-
tions, much deeper trees are required in 1-d systems,
than for 2-d systems.
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The CFMM takes account of the extent of distri-
butions by assigning a WS value to each distribution
based on the following equation:

WS = max(2[ 7o /1], WSpc), (6)

where ! is the length of a box, and WS ; is the W§
value chosen for point charges. Thus the WS value
(and hence the number of interacting neighbor boxes)
is determined by the extent of the distributions. For
distributions covering the entire system, N, effec-
tively becomes N, ; such distributions must interact
with all other distributions directly.

The useful limit on tree depth in the FMM is set
by the requirement that each box should be popu-
lated. By contrast, the dynamic definition of WS
value for the continuous distributions treated in the
CFMM means that the point of diminishing returns
(with respect to decreasing the fraction of direct
interactions) can be reached at smaller tree depths.
As the depth of the CFMM tree increases, [ de-
creases while the spatial extent, r.,,, of the distribu-
tions remains constant. Therefore, from Eq. (6), the
WS value of a given distribution potentially in-
creases, and increasing the depth of the CFMM tree
does not necessarily decrease the fraction of direct
interactions.

To achieve linear scaling using the CFMM, both
the density of the system and the extent of the charge

Table 1

271

distributions must remain constant as one increases
the size of the system. This ensures that at some
point the depth of the CFMM tree may increase
without increasing the WS values for the distribu-
tions. Fortunately this is indeed the situation which
pertains to molecular calculations, where the extent
of the shellpairs is a function only of the atom types,
and the densities are approximately invariant to size.

3. Implementation issues

3.1. Contracted shellpairs

A given contracted shellpair is a linear combina-
tion of primitive shellpairs, consisting of different
pairs of exponents. By the Gaussian product theo-
rem, primitives belonging to a single contracted
shellpair are potentially centered in different boxes.
In this case, one must split the original contracted
shellpair into (at least) two derived shellpairs, each
centered in a different box. This presents no signifi-
cant problem for the far-field CFMM. However, to
exploit the speed and design of conventional tech-
niques for the evaluation of the near-field interac-
tions, it is desirable to keep the shellpairs as highly
contracted as possible. Therefore we retain fully

C,s timing breakdowns (in seconds, recorded on a DEC Alpha 3000 Model 600 workstation) for CFMM calculations on 1-d, 2-d and 3-d

systems, as a function of the depth of the CFMM tree

System Tree Near-field Far-field Total
depth via ERI’s J engine 10 poles 25 poles 10 poles 25 poles
1d direct 2413 597 - - - -
4 1455 375 13 73 388 448
5 715 189 13 76 202 265
6 355 96 18 86 114 182
7 181 53 55 135 108 188
2d direct 26629 6229 - - - -
4 13694 3227 38 311 3265 3538
5 6019 1215 101 1993 1316 3208
6 3346 786 1127 19731 1913 20517
3d direct 116722 25631 - - - -
4 72070 13000 241 5579 13241 18579
5 33851 . 5882 6032 - 11914 -

Direct calculations are included for comparison. Calculations were performed using both 10 and 25 poles, and the 3-21G basis. Near field
times via both J engine and conventional ERI methods are presented, to show the value of a J engine-based method; totals are based on the
J engine plus CFMM combination. The diagonalization time is approximately 900 s for comparison.
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contracted shellpairs unless required to split them
because of primitive centers being located in multi-
ple boxes. This is more efficient than the possible
alternative of completely uncontracting the basis. In
the latter case, the efficiency of the CFMM might
compare well against conventional methods using
the same wuncontracted basis, but would compare
more poorly against conventional methods using the
original contracted basis.

3.2. Data locality and the J matrix engine

Elsewhere we have described a new direct method
for forming a J matrix without explicit evaluation of
ERIs [15]. This J matrix engine has been shown to
yield significant speedups relative to methods based
on ERI evaluation, with identical precision. Here we
focus on the importance of the J engine as it relates
to the CFMM. Table 1 shows several pieces of
timing information for our 1-d, 2-d, and 3-d model
systems containing 150 carbons. For each depth of
CFMM tree, the time for the calculation of the
near-field interactions is listed as obtained using the
J engine and a conventional HGP-PRISM [19] algo-
rithm. The main contribution of the J engine can be
seen in the ratio of the near-field to far-field timings
using these two methods. The use of the J engine
drastically reduces the amount of near-field time for
these calculations making it much easier to obtain
equal balances of far-field and near-field timings.

3.3. Memory constraints and adaptive boxing

As was discussed in Section 2.2 the depth of the
CFMM tree relates directly to the total number of
possible interactions performed using multipoles. The
memory requirements for applying the CFMM to a
3-d homogeneous system grows linearly with the
size of the system. However for lower dimensionali-
ties, this is not necessarily true, because substantial
numbers of boxes may contain no charges, with the
extreme example being a linear system. To retain the
linear growth in memory demand with system size,
our implementation ensures that memory is not allo-
cated for the empty boxes, so that these vacant areas
of space are simply ignored. Memory requirements
are thus determined only by the number of boxes
enclosing charge, not by the depth of the CFMM

tree. This allows our code to reach depths of 6 and 7
tiers for linear chains with the use of less than 128
MB of memory.

4. Results and discussion

We have implemented our CFMM based method
within the Q-Chem computational chemistry package
[20]. Our current version supports s, p and sp shells
with work continuing to extend this to arbitrary
angular momenta. The CFMM far-field implementa-
tion is linked to an arbitrary angular momentum J
engine for efficient treatment of the near-field contri-
butions. This combination allows us to assess the
comparative performance of the CFMM relative to
conventional quadratic methods by timings on illus-
trative model systems. All reported calculations were
performed on a DEC Alphastation 3000 Model 600.

4.1. Model systems

Successful application of linear scaling methods
such as the CFMM to electronic structure calcula-
tions is possible only for large molecules, where in
this context the meaning of the oft-used adjective
‘large’ does not relate only to the total number of
constituent atoms. Instead it is closer to the ratio of
the number of atoms to an effective coordination
number of a single atom, and thus depends directly
on both numbers of atoms and the dimensionality of
the system. A system growing mainly in a single
dimension such as a linear chain becomes large
much more rapidly than a 3-d diamond structure; a
10-atom linear chain separates the carbons at the
ends to a much larger degree then a 10-atom globu-
lar cluster separates the atoms comprising its bound-
ing surface.

We take as our model systems, the 1-d, 2-d, and
3-d elemental forms of carbon. The 1-d system
consists of a linear chain of carbons having a bond
length representative of polyacetylene. The 2-d sys-
tem consists of a graphitic structure having the equi-
librium bond length of graphite. Finally, the 3-d
system consists of a diamond structure having the
equilibrium bond length of diamond. These 3-d sys-
tems are in some ways worst-case examples, since
they are far denser and more compact than most
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molecules of chemical interest. The contrast in the
behaviors of the different dimensionality systems
will allow us to roughly characterize the range of
performance expected for applying the CFMM to
molecular systems.

We report timings for four distinct types of meth-
ods, using the above systems with the standard 3-21G
split valence basis. The first procedure is J matrix
assembly via explicit ERI evaluation (ERI’s are eval-
uated by the HGP-PRISM method [19]), which yields
asymptotic quadratic scaling. The second method is
our recently introduced J matrix engine [15], which
avoids explicit ERI evaluation, but is also asymptoti-
cally quadratic. These calculations in the most effi-
cient manner possible, without any uncontracting or
splitting of the shellpairs. The results are typical of
the best that can currently be achieved in a quadratic
approach, without approximations such as auxiliary
basis expansions.

We compare these quadratic methods against the
linear scaling CFMM with € = 10"'° (similar to the

30.0 T

precision sought in ERI evaluation), and WS ;= 2,
using the J matrix engine for near-field contribu-
tions. These CFMM calculations are performed with
two choices of multipole truncation, 10 poles and 25
poles. These choices are consistent with an accuracy
in far-field contributions to the J matrix of about
10”7 and 107 '° respectively. More careful optimiza-
tion of the choice of multipole cutoff, WS value, and
€ to achieve a given target accuracy is of course
possible: our purpose here is to assess the speed of
the CFMM with parameters that are possibly more
conservative than optimal.

4.1. Linear scaling in the CFMM

The timing results for calculations on the 1-, 2-
and 3-dimensional model systems are summarized in
Figs. 1, 2 and 3. The CFMM curves (including
near-field J engine contributions) show great simi-
larity to the FMM behavior we have previously
documented [3], particularly in Fig. 1 for the 1-d

250
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Time {min)

10.0

0.0 !
0 100

200 300
Carbons

Fig. 1. Timings for one-dimensional carbon chains. This graph shows the time to assemble the J matrix for a series of one-dimensional
molecules. The 1-d system consists of a linear chain of carbons having a bond length representative of polyacetylene using the standard
3-21G split valence basis. Conventional corresponds to explicit J matrix formation using the HGP-PRISM integral method. J engine
corresponds to explicit J matrix formation using only the J engine method. 10 Poles and 25 Poles correspond to CFMM calculations using
10 and 25 poles, respectively, for the far-field contributions to the J matrix and the J engine method for the near-field. The crossover with
our best quadratic technique (the J engine) occurs in the range of 20-30 carbon atoms. As discussed in the text, the coefficient of linear
scaling (obtained by connecting peaks or valleys) is approximately 10 FLOPs per basis function.
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Fig. 2. Timings for two-dimensional carbon sheets, where the meaning of the four curves is as described in Fig. 1. The 2-d system consists
of a graphitic structure having the equilibrium bond length of graphite using the standard 3-21G split valence basis. The crossover with our
best quadratic technique (the J engine) occurs in the range of 30—50 carbon atoms. The coefficient of linear scaling (obtained by connecting
peaks or valleys) is approximately 107 FLOPs per basis function (see text for discussion).
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Fig. 3. Timings for three-dimensional carbon clusters, where the meaning of the four curves is as described in Fig. 1. The 3-d system consist
of a diamond structure having the equilibrium bond length of diamond using the standard 3-21G split valence basis. The crossover with our
best quadratic technique (the J engine) occurs in the range of 50-100 carbon atoms.
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systems. Increasing depths of FMM tree cause move-
ment between locally quadratic curves (for fixed tree
depth, the CFMM scales quadratically [3,7]). Linear
scaling is achieved in the sense that straight line
tangents can be drawn bounding the CFMM curves
from above (through the cusps connecting different
numbers of tiers), or below. This manifestly estab-
lishes linear scaling in the 1-d case. In the 2-d and
3-d cases, we do not proceed to such deep trees (five
in 3-d, six in 2-d and seven in 1-d are the highest
levels employed in these calculations) and therefore
the evidence for linear scaling in Figs. 2 and 3 is less
strong, with the most extreme case being the 25 pole
curve of Fig. 3, where only the quadratic curve for a
five-level tree is evident (the cross-over to six tiers
occurs for larger systems than those considered).

The most important results that can be drawn
from Figs. 1-3 are the positions of the crossovers
relative to conventional quadratic methods. For all
three dimensionalities we obtain crossovers at sys-
tem sizes which are not beyond the realm of applica-
bility of the conventional approaches: in all three
cases the crossover relative to ERI evaluation occurs
below 100 atoms. Subject to attaining sufficient ac-
curacy, which we discuss in the following subsec-
tion, this clearly establishes the value of the CFMM
for accelerating the evaluation of the Coulomb con-
tribution to the J matrix in DFT. As is clear from
considering the large molecule region to the right of
Figs. 1 to 3, this speedup is absolutely dramatic by
the time systems of several hundred atoms are con-
sidered: well over an order of magnitude.

While it is immediately evident from comparing
Eqgs. (1) and (2) that the new definition of extent
advocated here reduces the effective WS value as-
signed to distributions, it is interesting to assess its
effectiveness in these calculations. As an example,
we have repeated the 2-d calculation on C5, re-
ported in Table 1 using the original definition of
extent, and find that the calculation runs 4 times
slower using 10 poles, and 2 times slower using 25
poles, due to extra near-field work.

As discussed in Section 2.2, the treatment of
extent in the CFMM can lead to new effects in the
size-dependence of computational effort. This is
manifested in the data plotted in Figs. 2 and 3, where
there is extra structure corresponding to system sizes
at which distributions become point charge-like for a

particular tree depth. Since we are dealing with
carbon systems only, the distribution of Gaussian
exponents is rather small, and a large number of
interactions (e.g. between distributions in boxes sep-
arated by two intervening boxes) can become ‘classi-
cal’ all at once. This explains some otherwise strange
effects such as molecules having more atoms run-
ning faster than those having less atoms.

The timings for the CFMM-based calculations
depend quite strongly upon the level of multipoles
chosen, as is evident in the differences between
results with 10 poles and 25 poles in Figs. 1-3. The
difference in timing results primarily from the O(L*)
scaling of the translation operators of CFMM, and
indicates that methods which improve the efficiency
of far-field evaluation are desirable. The fact that
far-field contributions are significant is a reflection
of the efficient treatment of the short range interac-
tions via the J matrix engine. From Table 1, if we
were employing conventional ERI evaluation for this
step, the near-field contributions would increase by a
factor of roughly four in these calculations. Finally,
in the context of the timing breakdowns of Table 1,
it is interesting to consider the relative time taken to
diagonalize the Fock matrix, which is approximately
900 s for the C,5, case. Comparing with Table 1,
diagonalization is already dominating J matrix for-
mation in 1 dimension, and for 10 poles it is roughly
comparable to J matrix formation in 2-d, while for
3-d C5, it remains insignificant.

One final feature of considerable interest which
can be roughly extracted from Figs. 1-3 is an esti-
mate of the effective coefficient of linear scaling for
these model systems. This gives a coefficient which
is specific to the computers employed in the calcula-
tions, but with an estimate of the floating point
operations (FLOPs) per second performance of the
code, we can convert this data to a transferable form
in units of FLOPs per basis function. We estimate
approximately 10° FLOPs per basis function in 1-d,
and roughly 107 FLOPs per basis function in 2-d,
while the diamond-like structures appear to corre-
spond to roughly 10® FLOPs per basis function,
although we do not have enough data for a reliable
estimate.

These coefficients very roughly summarize the
current performance of the CFMM; of course further
improvements will occur in the future, and we note
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that the coefficients may be larger for more extended
basis sets and elements in lower rows of the periodic
table. They are already enough to indicate that if
diagonalization of the Hamiltonian proceeds with a
coefficient of between 10 and 100 N7, then we can
expect this step to be rate determining on calcula-
tions above roughly 1000 to 3000 basis functions,
depending on dimensionality, consistent with our
C 5o results discussed above.

4.2. CFMM errors

The RMS errors in J matrix elements (consider-
ing only elements which are above our elimination
threshold of 10™'%) for our 1-d model systems are
portrayed in Fig. 4. This figure includes results
obtained by performing CFMM calculations using
several depths of CFMM tree for both 10 and 25
multipoles. The dotted lines connecting tree depths
indicated the points at which one must increase the

C.A. White et al. / Chemical Physics Letters 253 (1996) 268-278

tree depth in order to obtain linear scaling. Thus the
errors involved in an actual calculation would be
given by the path traced by the dotted lines. The
calculations performed using 25 poles show rela-
tively little change with the size of the molecule
indicating we are effectively obtaining the far-field
contribution to the J matrix to the same level of
accuracy (107'°) that we evaluate ERIs in the
quadratic algorithm. This illustrates the ability of the
CFMM to give large speedups with little or no
sacrifice in accuracy. In contrast, the 10 pole calcula-
tions show a gradual increase in accuracy as we
increase the amount of near-field work thus indicat-
ing a poorer description of the far-field interactions,
as would be expected. These results have no strong
dependence on the dimensionality of the system.
The errors within the CFMM procedure arise
from two distinct sources. The simplest source is the
level of multipoles used to perform the calculations.
This error is essentially given by standard FMM

107 . : .
7 Tiers
10°
6 Tiers
5 Tiers
L‘g 4 Tiers
-8
% 10
7 Tiers
-10 6 Tiers
10 r 5 Tiers
4 Tiers
10"1 1 L . 1
0 50 100 150 200
Carbons

Fig. 4. RMS errors per J matrix element for one dimensional carbon chains. This graph shows the RMS absolute error in a J matrix
element for our 1-d model systems. The two collections of horizontal lines correspond to the use of two different levels of multipoles (10
and 25) for the treatment of far-field interactions. In all calculations the extent definition given by Eq. (2) was used with €= 10~ '°. Within
each set of lines, we present data for several depths of CFMM trees, the dotted line dictates when the choice to increase the tree depth is
made for these systems and thus should be considered the actual errors for a real calculation.
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error estimates with the appropriate WS definition.
This represents the difference between the 10 and 25
pole calculations shown in Fig. 4. The second source
of error is the determination of extent. As described
in Section 2, we use an extent criterion containing a
single adjustable threshold designed to achieve a
given relative precision (here set to € = 107'°). This
contribution dominates the errors seen for the 25
pole calculations, since this level of multipoles gives
essentially machine precision for the far-field inter-
actions.

As molecular size increases, numerical roundoff
errors become important. In the case of conventional
techniques, this problem is driven by the numbers of
intermediate quantities (the two-electron integrals)
used to produce the J matrix growing quadratically
with molecular size. In the case of the CFMM, the
number of intermediate quantities grows only lin-
early with size, and the error in all contributions
remains bounded. For this reason error accumulation
in the CFMM can actually be less severe than in
quadratic methods. For this reason, one could argue
that the CFMM is in fact more accurate then conven-
tional methods in the limit of really large systems.

5. Conclusions

In this paper we have reported details of the
application of the CFMM to solve the Coulomb
problem in density functional calculations. This first
involved technical advances such as efficient treat-
ment of short-range interactions, minimal uncontract-
ing of the shellpairs, and most importantly an im-
proved treatment of the extent of shellpair distribu-
tions. The second issue addressed is the characteriza-
tion of the performance of the CFMM relative to
conventional methods for J matrix assembly via
split valence basis calculations on 1-d, 2-d and 3-d
carbon systems. Our principal conclusions are the
following:

(1) The crossover points at which the linear scal-
ing CFMM approach becomes more efficient than
conventional quadratic methods are for quite small
molecule sizes: approximately 25, 40 and 65 atoms
for the 1-d, 2-d, and 3-d model carbon systems with
the 3-21G basis. We can estimate the coefficients of
linear scaling for the CFMM as being roughly 10°,

107 and 10® floating point operations per basis func-
tion, for 1-d, 2-d and 3-d systems respectively
(although the value for 3-d systems is very rough
due to insufficient data). We emphasize that errors in
the CFMM are bounded.

(2) The small crossover points, and relatively
modest coefficients of linear scaling open the way
for DFT calculations on systems containing hundreds
and very likely even thousands of atoms in the
future. The CFMM is an effective linear scaling
solution for the Coulomb problem in DFT. Presum-
ing that existing methods for linear scaling solutions
to the problem of iteratively solving for the density
in the solid state physics context [21,22] are success-
fully transferred or extended to molecular DFT cal-
culations, then the dream of linear scaling DFT
calculations will have become a reality, as the ex-
change-correlation contributions to the SCF Hamilto-
nian are already well-established as scaling linearly
[23].
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