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The performance of the local spin density approximation (LSD) of Kohn-Sham density functional theory
when applied to partitioned electron densities has been explored. Spin partitioning and core/valence partitioning
have each been examined and the results compared with conventional Møller-Plesset (MP2) theory based
on the Kohn-Sham determinant. It is found that the LSD energy contributions from such subsets of electrons
are generally in poor agreement with their conventional counterparts, and it is proposed that such differences
be employed as a diagnostic measure of the quality of other density functionals.

1. Introduction

A major target in density functional theory (DFT) is the
development of a general electronic energy functional1 for
exchange and correlationEXC[γ], given a full one-electron
densityγ. Although no systematic procedure for improving
such a functional is presently apparent, some progress is possible
by comparing DFT techniques with more conventional methods
of calculating exchange and correlation energies, using config-
uration interaction (or related perturbation or coupled-cluster
theories), based on a single-determinant reference wave function.
Such research has been advanced in recent years by the use of
common features (orbital basis sets, integral evaluation algo-
rithms, etc.) for combined conventional-DFT computer pro-
grams.2 This has allowed some comparisons between DFT and
conventional (Møller-Plesset, MP) correlation energies for
some molecules.3

It would be helpful if DFT and conventional methods were
compared in greater detail by examining their performance for
varioussubsetsof electrons in any molecule. Such partitions
of the total correlation energy are common in conventional
theory. For example, the correlation energy associated with
inner-shell electrons is often separated and ignored (the so-called
frozen-core approximation). Also, it is possible (particularly
at the simplest MP2 level) to separate correlation between
electrons of parallel (RR + ââ) and antiparallel (Râ) spin. At
the MP2 level, the total correlation energy is expressible as a
simple sum of electron-pair components, so such partitions are
straightforward.
The primary purpose of this paper is to attempt similar

partitions of DFT exchange-correlation energies and enquire
whether they correspond properly to their conventional coun-
terparts. This is carried out by examining electron correlation
relative to the Kohn-Sham (KS) single-determinant reference
wave function. Such correlation energies may be obtained either
from conventional theory or from DFT. Each may be parti-
tioned by dividing the occupied spin orbitals into two nonover-
lapping sets. This corresponds to a division of the density into
two parts, so that the resulting energy components may be
compared.
Our approach follows the earlier work of Stoll et al.4 and

Perdew et al.,5 and we confirm some of the conclusions of these

workers. Because the results presented here are preliminary,
we restrict our attention to the local spin density (LSD) level.
We report detailed studies using more sophisticated levels
elsewhere.6 After presenting the general theory in sections 2
and 3, we describe some preliminary applications to the LSD
energy functional in sections 4 and 5. The results, already well-
documented for total correlation energies, are examined piece-
wise in both spin and core/valence partitions.

2. General Theory

The starting point of density functional theory is the electron
densityF(r ) wherer are electronic Cartesian coordinates. In
the spin-dependent form of the theory we shall use, there will
be two components:FR and Fâ for R and â electrons,
respectively. We shall find it convenient to use the symbol
γ(x) for the density in the full four-dimensional space,x
representing Cartesian and spin coordinates for a single electron.
This notation was introduced by Lo¨wdin7 and followed, in part,
in the book by Parr and Yang.1 If x ) {r ,s}, wheres is the
spin coordinate, the full spin-dependent density is

Integration (actually summation) over the spin coordinatesgives
the regular density

The normalization condition onγ is

wheren ) nR + nâ is the total number of electrons.
Following the general principles of KS theory,8 the total

electronic energy is

Here,Vext[γ] is the potential energy in the field of the nuclei
plus any external perturbation. In the absence of magnetic
effects, this isVext[F]. Ts[γ] is the kinetic energy of a set ofn
independentelectrons, moving in an effective one-electron
potentialVeff(x), which leads to the prescribed densityγ(x). J[γ]
is the total Coulomb interaction, given byX Abstract published inAdVance ACS Abstracts,March 15, 1996.

γ(x) ) FR(r )|R(s)|2 + Fâ(r )|â(s)|2 (2.1)

F(r ) )∫γ(x) ds) FR(r ) + Fâ(r ) (2.2)

∫γ(x) dx ) n (2.3)

E[γ] ) Ts[γ] + Vext[γ] + J[γ] + EXC[γ] (2.4)
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Finally, EXC[γ] is the remainder, usually described as the
exchange-correlation energy. Equation 2.4 is essentially a
definition of EXC.
Given a proposed approximate functionalEXC[γ], the KS

treatment proceeds by writingγ in terms of a set of orthonormal
spin orbitalsøi

The energy expression (2.4) is then minimized, subject to the
orthonormality constraint, leading to the KS spin orbitalsøi

KS

(i ) 1, ...n). These satisfy the KS equations

whereεi
KS are the KS eigenvalues or one-electron energies.

In practice, theøi are usually expanded in a spin orbital basis,
some integrations are carried out over specified grids, and further
approximations may be made. However, we may develop the
general theory before these are introduced.
At this point, we note that the HF procedure is a special case

of KS density functional theory in whichE[γ] is the expectation
value of the energy, using the single-determinant wave function
built from the spin orbitalsøi, derived in turn from the density
γ. This corresponds to the following “exchange-only” func-
tional for EXC[γ],

Note that this exchange energy may be defined by (2.8) for
any set of appropriately normalized spin orbitalsøi and hence
for any appropriateγ(x). We shall refer toEX[γ] given by (2.8)
as the “proper exchange energy” forγ to distinguish it from
other approximation forms. We call the latter “improper
exchange energies”, an example being the free-electron Dirac-
Slater formula

In particular, we note that (2.7) and (2.8) together define a proper
exchange energy for the KS orbitals. (The term “exact exchange
energy” has also been used for this concept. We prefer to avoid
this since there is a proper exchange energy even for ap-
proximate functionals.)
Returning to the general exchange-correlation functionalEXC-

[γ], we may use the KS spin orbitals to form a single-
determinant wave function

The expectation energy using this wave function will be

EX being given by (2.8). The difference

may then be termed the “proper correlation energy” for the
functionalEXC.
We note that

since the HF energy is the lowest expectation energy that can
be obtained from a single-determinant wave function. Also,
from (2.12),EC vanishes for the HF functional.
In the following discussion of partitioning using exchange-

correlation functionals, we will use the KS determinant (2.10)
as the starting point for a conventional treatment of electron
correlation. To this end, we need to introduce an orthonormal
set of virtual spin orbitalsøa

KS, all orthogonal to the occupied
øi
KS. (We use the convention of sufficesi, j, ... for occupied,a,
b, ... for virtual, andp, q, ... for generic spin orbitals.) If a
finite basis is used, any such set oføa

KS will suffice. We can
then construct a Fock matrix for the KS determinant

using the general notation for antisymmetrized two-electron
integrals

The Fock matrix (2.14) will not be diagonal, unless we are
using the HF functional. In particular, there will be nonzero
elementsFia connecting occupied and virtual spin orbitals. It is
convenient to separate the full matrix (2.14) into two parts,

corresponding to nonzero occupied-occupied, virtual-virtual
blocks in the first part and nonzero occupied-virtual blocks in
the second. If the matrixFKS(OO+ VV) is then diagonalized,
we will obtain a new set of spinorbitalsøi, øj, ..., øa, øb, ....
These could be described as “canonical Fock orbitals for the
constrained Kohn-Sham determinant” (CFOCKSD). They will
play a central role in the subsequent treatment and will be
denoted byøi, ...,øa, ... without further adornment. These new
occupied spin orbitals will be an orthogonal transform of the
KS occupied spin orbitals, i.e.

and will correspond to the same density

Eachøp will also be associated with an eigenvalueεp of the
blocked Fock matrixFKS(OO+ VV). The single-determinant
wave function formed from the occupiedøi will be writtenΨ0;
it is, of course, equal toΨKS.
We can now set up a conventional treatment of electron

correlation as follows. A many-electron Hamiltonian is intro-
duced with a connecting parameterλ

J[γ] ) J[F] ) 1
2∫∫

F(r1) F(r2)
r12

dr1 dr2 (2.5)

γ(x) ) ∑
i)1

n

|øi|2 (2.6)

[-1/2∇2 + Veff]øi
KS ) εiøi

KS (2.7)

EX[γ] ) -
1

2
∑
i,j

n ∫∫ø*i(1) øj(1) ø*j(2) øi(2)

r12
(2.8)

- 3
2(
3
4π)

1/3∫[(FR)4/3 + (Fâ)4/3] dr (2.9)

ΨKS ) 1

xn
det[ø1

KSø2
KS...øn

KS] (2.10)

EKS ) Ts[λKS] + Vext[γKS] + J[γKS] + EX[γKS] (2.11)

EC[γKS] ) EXC[γKS] - EX[γKS] (2.12)

EKS g EHF (2.13)

Fpq
KS ) Tpq + Vpq + ∑

i)1

n

(pi||qi) (2.14)

(pr||qs) )∫∫øp(1) ør(2)
1
r12
[øq(1) øs(2)-

øs(1) øq(2)] dx1 dx2 (2.15)

FKS ) FKS(OO+ VV) + FKS(OV) (2.16)

øi ) ∑
j)1

n

Oijøj
KS (2.17)

γ ) ∑
i)1

n

|øi|2 ) ∑
i)1

n

|øiKS|2 ) γKS (2.18)

Hλ ) H0 + λH′
) H0 + λ(H - H0) (2.19)
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whereH is the full Hamiltonian andH0 is the zero-order sum
of one-electron Fock operatorsF(OO+ VV), for which Ψ0 is
an exact eigenfunction with eigenvalue∑εi. As λ changes from
0 to 1, the total energy will change from∑εi to the exact answer
(if there were no other approximations). To find the lowest
eigenvalue ofH, starting from the determinantΨ0, we may
proceed by various methods, such as configuration interaction,
coupled-cluster theory, or Møller-Plesset perturbation theory.
For the latter, the result is expanded in powers ofλ and the
series truncated at some order. The final answer, if any of these
techniques were carried out in full, would be

where the last term is the proper correlation energy for this
particular KS starting point, evaluated by conventional means.
Alternatively, the exact energy could be split as

whereENoXC[γ] is the energy functional without exchange or
correlation, as represented by the first three terms of (2.4), and
EX[γ] is given by the conventional (proper) formula (2.8). Since
ENoXC[γ] is identical in conventional and DFT theories, we
could, in principle, test the full exchange-correlation functional
by comparingEX + EC

conv in (2.21) with the DFT expression
EXC[γKS]. In practice, of course, both will have errors from
additional approximations (finite basis sets, integration grids,
etc.) which may hinder full agreement, but the objective should
be kept in mind.
In this paper, the only conventional correlation method used

is second-order Møller-Plesset theory (MP2). At first order,
the energy is just the expectation value ofH with ΨKS

and the second-order correction

Note thatFia appears in (2.23) since the off-diagonal elements
appear as part of the perturbation HamiltonianH′ in (2.19).
Equations 2.22 and 2.23 reduce to familiar forms if the HF
functional is used, allFia then vanishing. The first part of (2.23),
involving the Fia elements, really allows for the mixing of
occupied and virtual orbitals leading to a tendency for the KS
orbitals to move toward HF, therefore modifying the density.
If we suppose the density functional to give the correct density,
it could be argued that these terms should be omitted, since
any density changes introduced would have to be canceled in
higher-order terms. TheFia contributions are much smaller than
the second part of (2.23), and we shall omit them in the present
treatment.

3. Energy Partitions

Suppose that the set of occupied spin orbitalsøi is split into
two nonoverlapping subsetsAøi andBøi. Since the densityγ is
the sum of the squares of the spin orbitals (2.6), it will be
consequently be partitioned into two partsAγ andBγ with

Any energy functionalE[Aγ,Bγ] is then split into “pure A”, “pure
B”, and “interacting AB” parts by the partition

This kind of partition was proposed and used for spin compo-
nents of the correlation energy by Stoll et al.4 and Perdew et
al.,5 but can be applied elsewhere. On the conventional side,
we may treat the energies as functionals of the setsAø andBø
and use a similar partition

HereE[Aøi,0] means that all integrals involving B spin orbitals
are zeroed in matrix elements of the HamiltonianH′ in (2.19).
When applied to the second-order Møller-Plesset correlation

energy (2.23), this partition cleanly separates the full energy
into separate pair terms. The same applies to the computation
of the proper exchange energy (2.8) where the total is also
strictly separable into pair terms.
It may be questioned whether the partitions (3.2) and (3.3)

are strictly comparable for computation of conventional cor-
relation energies at higher levels (up to full configuration
interaction). There are many complicated many-body interac-
tions involved, which are somewhat arbitrarily assigned by (3.3).
However, we shall not address this question here, since only
MP2 computations are performed. It seems reasonable that the
DFT and conventional partitions (3.2) and (3.3) should be
comparable at a coarse level, since MP2 usually accounts for
most of the correlation in simple pair terms.
As noted in the Introduction, we will partition the density

and spin orbitals in two ways. The subsets A and B may be
theR andâ occupied spin orbitals, or they may be the core and
valence (K,L) spin orbitals if we are separating correlation of
valence electrons from the rest. The procedures used are closely
related.

4. Applications

The partition schemes described in the previous section have
been implemented in the Q-Chem program2a by one of us
(R.D.A.). As a preliminary application, we have tested the LSD
(free-electron gas) functional for the first-row atoms and the
molecules H2, N2, F2, FH, OH2, NH3, and CH4.
The orbital basis used is 6-311+G(3df,2p), the largest basis

present in G2 theory.9 The actual LSD functional is Dirac-
Slater for exchange10and Vosko-Wilk-Nusair for correlation.11
Quadrature is performed using the standard SG-1 grid.12

Geometries are as in G2 theory. The individual energies may
be identified as

meaning that the functional is applied to the LSD density, using
the 6-311+G(3df,2p) density, at the MP2/6-31G(d) geometries.
The total energies are listed in Table 1. The first column

gives the energies obtained by solving the Kohn-Sham equa-
tions for the LSD functional. The other columns are energies
using this density. In particular, the final column gives the
expectation energy, using the KS single determinant. This is
EKS as given by (2.11).

Eexact) EKS + EC
conv[γKS] (2.20)

Eexact) ENoXC[γKS] + EX[γKS] + EC
conv[γKS] (2.21)

E(MP1)) EKS ) ENoXC[γKS] + EX[γKS] (2.22)

E(2) ) - ∑
ia

Fia
2

εa - εi

-
1

4
∑
ijab

(ij ||ab)2

εa + εb - εi - εj

(2.23)

γ(x) ) Aγ(x) + Bγ(x) (3.1)

AE) E[Aγ,0]

BE) E[0,Bγ] (3.2)

ABE) E[Aγ,Bγ] - AE- BE

AE) E[Aøi,0]

BE) E[0,Bøi] (3.3)

ABE) E[Aøi,
Bøi] - AE- BE

functional/LSD/6-311+G(3df,2p)//MP2(full)6-31G(d)

6350 J. Phys. Chem., Vol. 100, No. 15, 1996 Pople et al.

+ +

+ +



We note thatEKS g EHF; see (2.13). The differencesEKS -
EHF, which are listed in Table 2, follow from the final column
of Table 1 and regular HF calculations with the same orbital
basis and geometry. They arise because of differences between
the LSD and HF densities. The magnitudes of these differences
are small compared with correlation energies, but clearly not
negligible. They must be taken into account in comparing DFT
correlation energies with conventional values based on a HF
starting point.
We next turn to the partitions of the correlation energy

discussed in this paper. Table 3 shows the spin partitions
(RR,ââ,Râ) for the LSD functional using (3.2) withA) R and
B) â. It also shows the conventional MP2 correlation energies
with the KS starting point, using (2.23) (without the first term)
and (3.3). It should be noted that these arefull correlation
energies, taking account ofall electron pairs. Table 4 gives
the DFT correlation energies, split into core-core, core-

valence, and valence-valence parts (eq 3.2 withA ) K, B )
L); the total is also listed in the first column. The table also
shows valence-valence correlation energies by conventional
MP2 theory, again with the KS starting point. We do not show
the conventional core-core and core-valence pieces; their
significance would be limited as the orbital basis 6-311+G-
(3df,2p) permits only a very poor description of inner-shell
correlation. Finally, in the last column of Table 4, we give a
list of “best” valence-valence results for comparative purposes.
These are obtained from QCISD(T) results using regular
correlation theory based on HF starting point (these are used in
the general G2(QCI) model9) but are incremented by the∆
values from Table 2, thereby allowing for the KS reference.
In view of the inadequate nature of the orbital basis in the

inner-shell regions of the atoms and molecules, we also present
a further partition of the valence correlation intoRR,ââ and
Râ spin components. This is done by straightforward applica-
tion of the partition (3.2) (A ) R, B ) â) to the functionalEC-
[γvalence]. These results are listed in Table 5, together with the
corresponding MP2 partitions.

5. Discussion

The total correlation energies, listed in Table 4, demonstrate
the familiar overestimation by the LSD functional. These results
are close to previously published values.13 Correct total atomic
correlation energies, relative to a HF reference, are known to
range from 42 mhartrees for helium to 392 mhartrees for neon.14

The overestimate is roughly by a factor of 2.
Now consider the spin components of correlation energy listed

in Table 3. These results are closely related to early work by
Stoll et al.4 They partitioned the LSD correlation energy in
this manner, but then compared just theRâ component with
total correlation energies from conventional theory. However,
the RR andââ components ofEC(LSD) are clearly large, as
shown in the first two columns. Such spin-parallel contributions
are partly spurious, as indicated by significant nonzero values
for H, He, and H2. These represent a nonexistent self-correlation
of single electrons. Such effects undoubtedly also contribute
to the very largeRR andââ values for the other systems, which
are far greater than the corresponding conventional results also
shown in Table 3, even allowing for the core effects which are
poorly treated in the conventional calculations. Spin-parallel
correlation effects (beyond those implicit in the exchange term)
are clearly significant, but not as large as given by the LSD
functional.
The spin-antiparallelRâ components, shown in Table 3, are

still significantly larger for the LSD functional than for the
conventional (MP2) method. For the helium atom, there is only
Râ correlation, and the LSD value (58.0 mhartrees) exceeds
the known accurate value (43.7 mhartrees after applying the
1.7 mhartrees correction given in Table 2), but no longer by a
factor of 2. For the larger systems, there is greater overestima-
tion, but we note that the MP2 results will be underestimates,
partly because the orbital basis used is very crude in the inner-
shell region and will not well describe this part of the atom or
molecule. We will return to this matter below.
It is interesting to compare the contributions of parallel and

antiparallel correlation to chemical binding energies. These are
shown in Table 6, for DFT and conventional methods, together
with corresponding total correlation bindings. It is well
recognized that electron correlation plays a major role in
determining bond energies. The total MP2 correlation binding
energies listed in the final column reflect this. The DFT totals
are mostly lower (H2 and CH4 being exceptions), F2 being
remarkably lower. When broken down into spin components,

TABLE 1: Total Energiesa (hartrees)

LSD NoXC HFS EKS

H -0.478 35 -0.199 21 -0.456 63 -0.498 94
He -2.832 56 -1.856 19 -2.720 81 -2.858 21
Li -7.342 21 -5.671 52 -7.191 13 -7.430 01
Be -14.444 84 -11.924 21 -14.220 24 -14.569 33
B -24.352 42 -20.792 62 -24.063 38 -24.525 34
C -37.465 10 -34.652 74 -37.107 78 -37.682 97
N -54.129 37 -47.838 31 -53.701 41 -54.391 75
O -74.519 98 -66.652 01 -73.987 86 -74.798 81
F -99.098 82 -89.428 61 -98.461 21 -99.389 34
Ne -128.211 33 -116.498 64 -127.468 11 -128.513 82
H2 -1.136 74 -0.482 54 -1.042 56 -1.132 29
N2 -108.681 89 -95.947 00 -107.739 11 -108.947 96
F2 -198.319 88 -178.898 57 -197.022 25 -198.707 52
FH -99.835 80 -89.701 21 -99.134 77 -100.041 98
OH2 -75.901 41 -67.168 46 -75.240 27 -76.043 80
NH3 -56.101 83 -48.591 54 -55.477 29 -56.205 76
CH4 -40.115 38 -33.660 71 -39.523 60 -40.198 40

a All energies evaluated using the LSD density.

TABLE 2: Energy Differences EKS - EHF (mhartrees)

H 0.87 Ne 12.66
He 1.69 H2 0.71
Li 2.02 N2 24.59
Be 2.61 F2 33.78
B 5.74 FH 13.35
C 7.28 OH2 12.72
N 7.14 NH3 12.40
O 10.53 CH4 13.82
F 12.47

TABLE 3: Spin Components of Correlation Energy
(mhartrees)

DFT (LSD) conventional (MP2)

RR ââ Râ RR ââ Râ

H 21.72 0 0 0 0 0
He 26.89 26.89 57.96 0 0 29.61
Li 47.12 32.36 71.59 0.16 0 13.43
Be 54.20 54.20 116.21 0.25 0.25 43.13
B 83.70 59.77 145.57 4.29 0.33 58.84
C 118.35 64.26 174.71 14.81 0.36 72.95
N 157.03 68.06 202.87 32.76 0.38 85.06
O 165.71 101.04 265.36 34.75 5.45 129.71
F 173.04 138.46 326.11 36.68 18.05 175.56
Ne 179.45 179.45 384.32 38.51 38.51 221.25
H2 22.66 22.66 48.85 0 0 29.87
N2 227.41 227.41 487.97 56.32 56.32 339.76
F2 313.18 313.18 671.27 75.10 75.10 456.55
FH 169.16 169.16 362.71 38.91 38.91 230.33
OH2 159.44 159.44 342.25 35.58 35.58 223.61
NH3 150.54 150.54 323.46 29.30 29.30 204.97
CH4 142.58 142.58 306.62 21.15 21.15 180.98
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the contributions of parallel spins are seen to be quite small by
LSD (in spite of the large individualRR andââ values listed
in Table 3). The MP2 calculations indicate larger parallel
contributions (except H2, where there is none), although most
of the correlation binding clearly comes from the antiparallel
parts. TheRâ correlation bindings themselves (columns 2 and
3 in Table 3) show some improvement when compared with
the general overestimation of total correlation energies by a
factor of 2. However, there are wide variations with the type
of bond. For bonds to hydrogen,Râ correlation binding is
described moderately well by LSD. The triple bond in N2, on
the other hand, for which correlation between threeRâ pairs is
known to be a major stabilizing factor, showsRâ underestima-
tion by LSD by a factor of more than 2. This is particularly
disturbing, since total correlation energies (Table 4) are
oVerestimatedby factors of this order. For the F2 molecule,
the Râ correlation is also badly underestimated by the LSD

functional. The bond in F2 is quite weak and exists only by
virtue of electron correlation, since unrestricted HF theory gives
a repulsive potential curve. The full LSD energy does give
binding for F2 (122 mhartrees from the energies in Table 1),
but this arises mainly from the exchange part (HFS giving
binding of 99 mhartrees).
Now we turn to core/valence separation results, listed in Table

4. We note first that the LSD functional gives a fairly good
separation into core-core and valence-valence parts but that
the LSD core-core correlation energies are much too large.
Although we are not able to get an adequate conventional MP2
description of atomic core-core correlation with this orbital
basis, we expect that the values would be close to those for the
corresponding two-electron ions (He, Li+, Be2+, B3+, ...). On
the other hand, it is known that these remain fairly constant
and approach a limit of about 46 mhartrees14 as shown in the
final column. The LSD values are larger by a factor of up to
4 and increase steadily. Clearly, this is a major contribution to
the overestimation of total correlation energies by the LSD
functional.
The cross core-valence (KL) parts are relatively small,

consistent with the expectation that the corresponding spin
orbitals are principally located in different spatial regions.
However, we cannot compare with good conventional numbers
with our limited basis set. There has been little other work on
these components.
The valence-valence LSD correlations listed in Table 4 are

also too large, by a factor of about 2. This is partly due to the
inadequate conventional correlation level (MP2), but comparison
with the better results in the final column gives only relatively
small improvements.
One positive feature of the LSD results in Table 4 is that

core-core correlation components do carry their large errors
as a constant from atom to molecule. Thus, the failure to give
an adequate description of the inner-shell electrons isnot related
to any failures in describing chemical bonding. The same is
true for core-valence components, which also remain ap-
proximately constant from atom to molecule.
The good LSD core-valence separation found in Table 4,

and the insensitivity of chemically significant results to core
errors, suggest that we should examine valence-only LSD theory
in more detail to evaluate its behavior. We therefore turn to
the spin-component analysis of the valence correlation energies,
summarized in Table 5. Here we are able to make a more

TABLE 4: Core-Valence Components of Correlation Energy (mhartrees)

DFT (LSD) conventional

total core core/valence valence valence (MP2) valence (best) core (besta)

H 21.72 0 0 21.72 0 0 0
He 111.75 0 0 111.75 29.61 37.57 0
Li 151.08 134.28 2.61 14.18 0 0 43.50
Be 224.60 150.22 3.01 71.38 28.10 48.04 44.27
B 289.04 162.73 5.27 121.04 45.67 71.74 44.74
C 357.32 173.02 8.23 176.08 68.63 96.22 45.05
N 427.96 181.76 11.59 234.60 97.22 120.97 45.28
O 532.11 189.37 10.72 332.03 147.87 173.22 45.45
F 637.60 196.10 10.51 430.99 207.12 228.48 45.59
Ne 743.22 202.14 10.93 530.15 273.92 285.20 45.69
H2 94.18 0 0 94.18 29.87 38.52 0
N2 942.79 363.35 15.49 563.95 407.24 424.44
F2 1297.62 392.17 19.70 885.75 559.73 582.74
FH 701.03 196.08 9.92 495.03 284.32 296.02
OH2 661.14 189.34 8.87 462.93 271.61 288.76
NH3 624.54 181.71 7.80 435.03 240.67 265.37
CH4 591.77 172.90 6.74 412.13 200.65 234.61

a From ref 14.

TABLE 5: Spin Components of Valence-Valence
Correlation Energy (mhartrees)

DFT (LSD) conventional (MP2)

RR ââ Râ RR ââ Râ

Li 14.18 0 0 0 0 0
Be 17.23 17.23 36.93 0 0 28.10
B 43.08 19.63 58.33 3.50 0 42.16
C 74.61 21.53 79.93 13.41 0 55.22
N 110.59 23.14 100.87 30.74 0 66.48
O 117.26 53.60 161.17 32.68 4.49 110.71
F 122.84 88.75 219.40 34.55 16.48 156.10
Ne 127.70 127.70 274.75 36.33 36.33 201.25
N2 135.65 135.65 292.64 53.19 53.19 300.86
F2 213.23 213.23 459.29 71.25 71.25 417.24
FH 119.17 119.17 256.69 36.89 36.89 210.54
OH2 111.39 111.39 240.16 33.76 33.76 204.09
NH3 104.64 104.64 225.75 27.62 27.62 185.44
CH4 99.12 99.12 213.90 19.60 19.60 161.45

TABLE 6: Spin Components of Correlation Binding
Energy (mhartrees)

DFT (LSD) conventional (MP2)

RR + ââ Râ total RR + ââ Râ total

H2 1.88 48.85 50.74 0 29.87 29.87
N2 4.64 82.23 86.87 46.37 169.64 216.01
F2 3.37 19.05 22.41 40.74 105.44 146.18
FH 5.10 36.60 41.70 23.09 54.77 77.86
OH2 8.69 76.89 85.58 30.96 93.89 124.85
NH3 10.83 120.59 131.42 25.46 119.91 145.37
CH4 15.65 131.91 147.56 27.13 108.03 135.16
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satisfactory comparison with conventional MP2 results since
the orbital basis is of high quality in the valence region.
The spin-parallel (RR and ââ) components of valence

correlation energies are still too large and still show the spurious
self-interaction effects (as in Li and Be, where such terms should
vanish). On the other hand, the comparison of the LSDRâ-
valence terms with conventional values (columns 3 and 6 in
Table 5) shows a significant improvement over the all-electron
results. The LSD results are still mostly too large, but now by
a factor of only about 1.5, rather than 2 as before.
We can also analyze the spin components of the correlation

energy to the binding energy, using only the valence electron
density. These can be found from Table 5, yielding the results
in Table 7. Clearly, the performance of valence-only theory in
this regard is very similar to the all-electron results of Table 6.
The correlation bindings are mostly too small and are incorrectly
divided between parallel and antiparallel components. This is
consistent, of course, with a good cancellation of inner-shell
contributions between atoms and molecules as noted above.
Finally, in Table 8, we present spin components of the

correlation energy to ionization energies. The total LSD
correlation contributions to the ionization of the five molecules
studied are consistently around 60 mhartrees and bear little
resemblance to the conventional values. The LSD spin analysis
implies that most of the total contribution comes from the
antiparallel component whereas the conventional analysis
indicates roughly equal contributions fromRR + ââ andRâ.

6. Conclusions

The following conclusions may reasonably be drawn from
this work: (1) Density functional correlation energies can be
compared in a partitioned manner with corresponding energies
obtained by conventional theories. This may be done by using
the Kohn-Sham single determinant as a reference. (2) The
spin orbital or density partitions, core/valence andR spin/â spin,
may be implemented using the same general procedure. In this
work, we have only considered partition of conventional
correlation energies at the MP2 perturbation level. (3) When

applied to the local density (LSD) energy function, the spin
partition shows strong overestimation ofRR + ââ correlation
(including well-known spurious one-electron effects). TheRâ
correlation is also overestimated but by a smaller factor. (4)
The core/valence partition of the LSD correlation energy shows
core values which are much too large. The numbers also fail
to approach a limiting value, as they should. On the other hand,
these core errors are fairly constant between atoms and
molecules, leading to good systematic cancellation (as already
noted for conventional theories). (5) When the LSD functional
is applied to valence electrons only, the spin partition continues
to show major errors for theRR + ââ parts; theRâ components,
however, are now overestimated by a factor of only about 1.5.
(6) The relative contributions ofRR + ââ andRâ correlation
to chemical bond energies are poorly given by the LSD
functional. In particular, the contribution of antiparallel spins
to correlation binding is usually too low, even though the overall
binding energies calculated at the LAD level are generally too
high.
The theory developed above is applicable to any energy

functional and should permit a more detailed evaluation of the
many that are available. We will present such an evaluation
elsewhere.6 It is to be hoped that such studies of the piece-
by-piece inadequacies will help in the search for systematic
convergence toward the ultimate, correct energy functional.
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TABLE 7: Spin Components of Valence Correlation
Binding Energy (mhartrees)

DFT (LSD) conventional (MP2)

RR + ââ Râ total RR + ââ Râ total

N2 3.85 90.89 94.74 44.89 167.90 212.79
F2 3.28 20.49 23.77 40.45 105.04 145.48
FH 5.02 37.29 42.31 22.76 54.44 77.20
OH2 8.47 78.99 87.46 30.36 93.38 123.73
NH3 10.39 124.88 135.27 24.49 118.95 143.44
CH4 15.20 133.97 149.17 25.80 106.23 132.02

TABLE 8: Spin Components of Correlation Ionization
Potentials (mhartrees)

DFT (LSD) conventional (MP2)

RR + ââ Râ total RR + ââ Râ total

N2 24.92 32.25 57.17 -12.32 -8.86 -21.18
FH 26.00 36.08 62.08 24.02 21.22 45.24
OH2 24.27 34.31 58.58 21.43 19.78 41.21
NH3 22.43 32.58 55.01 17.27 17.14 34.41
CH4 23.33 32.20 55.53 9.45 11.49 20.93
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