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The performance of the local spin density approximation (LSD) of KeBham density functional theory

when applied to partitioned electron densities has been explored. Spin partitioning and core/valence patrtitioning
have each been examined and the results compared with conventional-Milsset (MP2) theory based

on the Kohn-Sham determinant. It is found that the LSD energy contributions from such subsets of electrons
are generally in poor agreement with their conventional counterparts, and it is proposed that such differences
be employed as a diagnostic measure of the quality of other density functionals.

1. Introduction workers. Because the results presented here are preliminary,
we restrict our attention to the local spin density (LSD) level.
We report detailed studies using more sophisticated levels
elsewheré. After presenting the general theory in sections 2
and 3, we describe some preliminary applications to the LSD
energy functional in sections 4 and 5. The results, already well-
QYocumented for total correlation energies, are examined piece-
wise in both spin and core/valence partitions.

A major target in density functional theory (DFT) is the
development of a general electronic energy functibriat
exchange and correlatioBxc[y], given a full one-electron
densityy. Although no systematic procedure for improving
such a functional is presently apparent, some progress is possibl
by comparing DFT techniques with more conventional methods
of calculating exchange and correlation energies, using config-
uratiqn interaction (or.related pert.urbation or coupled-clustgr 2. General Theory
theories), based on a single-determinant reference wave function.

Such research has been advanced in recent years by the use of The starting point of density functional theory is the electron
common features (orbital basis sets, integral evaluation algo-densityo(r) wherer are electronic Cartesian coordinates. In
rithms, etc.) for combined conventional-DFT computer pro- the spin-dependent form of the theory we shall use, there will
grams? This has allowed some comparisons between DFT and be two components:p* and p# for a and § electrons,
conventional (MgllerPlesset, MP) correlation energies for respectively. We shall find it convenient to use the symbol
some molecules. y(x) for the density in the full four-dimensional space,

It would be helpful if DFT and conventional methods were épresenting Cartesian and spin coordinates for a single electron.
compared in greater detail by examining their performance for ThiS notation was introduced by"alin” and followed, in part,
varioussubsetsof electrons in any molecule. Such partitions N the book by Parr and Yanig.If x = {r.s}, wheres is the
of the total correlation energy are common in conventional SPin coordinate, the full spin-dependent density is
theory. For example, the correlation energy associated with o 2 2
inner-shell electrons is often separated and ignored (the so-called y() = p“(I(9)* + L (NIBS)| (2.1)
frozen-core approximation). Also, it is possible (particularly
at the simplest MP2 level) to separate correlation between
electrons of parallelfo. + ) and antiparallel ¢3) spin. At
the MP2 level, the total correlation energy is expressible as a _ o«
simple sum of electron-pair components, so such partitions are p(r) = IV(X) ds=p*(r) + pﬂ(r) (2.2)
straightforward.

The primary purpose of this paper is to attempt similar
partitions of DFT exchange-correlation energies and enquire
whether they correspond properly to their conventional coun-
terparts. This is carried out by e>'<amining eleptron correlation \\heren = n® + rf is the total number of electrons.
relative to _the Kohr-Sham (KS) smgle_-determmant rgferen_ce Following the general principles of KS thedhthe total
wave functlon_. Such correlation energies may be obtained e't_herelectronic energy is
from conventional theory or from DFT. Each may be parti-
tiongd by dividing the occupied spin orb.itgls into two nonover- E[y] = Tdy] + Vo [y] + J¥] + Excly] (2.4)
lapping sets. This corresponds to a division of the density into
two parts, so that the resulting energy components may beHere, Ve,{y] is the potential energy in the field of the nuclei
compared. plus any external perturbation. In the absence of magnetic

Our approach follows the earlier work of Stoll et“aand effects, this isVex{p]. T{y] is the kinetic energy of a set of
Perdew et aP,and we confirm some of the conclusions of these independentelectrons, moving in an effective one-electron
potentialver(X), which leads to the prescribed densix). J[y]
® Abstract published ilAdvance ACS Abstractdjarch 15, 1996. is the total Coulomb interaction, given by
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Integration (actually summation) over the spin coordirsg®es
the regular density

The normalization condition op is

Sy dx=n (2.3)
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o(r 1) o(r ) may then be termed the “proper correlation energy” for the
T =dp =3f [Z5 "L drdr,  (25)  functional Bye.
We note that

Finally, Exc[y] is the remainder, usually described as the Exs = Ene (2.13)

exchange-correlation energy. Equation 2.4 is essentially a

definition of Exc. since the HF energy is the lowest expectation energy that can
Given a proposed approximate functiorilc[y], the KS be obtained from a single-determinant wave function. Also,

treatment proceeds by writingin terms of a set of orthonormal  frogm (2.12),Ec vanishes for the HF functional.

spin orbitalsy; In the following discussion of partitioning using exchange-

correlation functionals, we will use the KS determinant (2.10)

_ 2 as the starting point for a conventional treatment of electron

r(x) = V4 il (2.:6) correlation. To this end, we need to introduce an orthonormal
= set of virtual spin orbitalsggs, all orthogonal to the occupied

The energy expression (2.4) is then minimized, subject to the x| - (We use the convention of sufficeg, ... for occupieda,
orthonormality constraint, leading to the KS spin orbitgf§ b, ... for virtual, andp, q, ... for generic spin orbitals.) If a

(i =1, ..n). These satisfy the KS equations finite basis is used, any such set)df will suffice. We can
then construct a Fock matrix for the KS determinant

n

[_1/2V2 + Ueﬁ]x:(S = EiX‘KS

2.7)

n

Fro = Toq+ Vo + if|qi 2.14
whereeiKS are the KS eigenvalues or one-electron energies. £ (pilla) ( )

In practice, they; are usually expanded in a spin orbital basis, I
some integrations are carried out over specified grids, and furtherusing the general notation for antisymmetrized two-electron
approximations may be made. However, we may develop the integrals
general theory before these are introduced.

At this point, we note that the HF procedure is a special case (pr||gs 1) 7.(2 1 1)y (2) —
of KS density functional theory in which[y] is the expectation (prilas) = fpr( 24 )r_lz[xq( )142)

value of the energy, using the single-determinant wave function 2s(1) Xq(Z)] dx, dx, (2.15)
built from the spin orbitalg;, derived in turn from the density

y. This corresponds to the following “exchange-only” func- The Fock matrix (2.14) will not be diagonal, unless we are
tional for Exc[y], using the HF functional. In particular, there will be nonzero

elementd~j; connecting occupied and virtual spin orbitals. It is
1ifj)(*i(1) %(1) x%5(2) 2(2) 28 convenient to separate the full matrix (2.14) into two parts,

Exlyl = -
M2 Fs = FS(00 + vV) + F*S(0v) (2.16)

Note that this exchange energy may be defined by (2.8) for corresponding to nonzero occupiedccupied, virtuat-virtual

any set of appropriately normalized spin orbitglsand hence blocks in the first part and nonzero occupied-virtual blocks in

for any appropriate/(x). We shall refer tdex[y] given by (2.8) the second. If the matrikkS(OO + VV) is then diagonalized,

as the “proper exchange energy” fprto distinguish it from we will obtain a new set of spinorbitalg, yj, ..., Xa Xb .

other approximation forms. We call the latter “improper These could be described as “canonical Fock orbitals for the

exchange energies”, an example being the free-electron-Dirac constrained KohinSham determinant” (CFOCKSD). They will

Slater formula play a central role in the subsequent treatment and will be

33115 denoted by, ..., xa ... Without further adornment. These new
_ 93 043 4 occupied spin orbitals will be an orthogonal transform of the
( ) f[(p )+ () r (2.9) KS occupied spin orbitals, i.e.

In particular, we note that (2.7) and (2.8) together define a proper
exchange energy for the KS orbitals. (The term “exact exchange ZOUX, (2.17)
energy” has also been used for this concept. We prefer to avoid
this since there is a proper exchange energy even for ap-
proximate functionals.)

Returning to the general exchange-correlation functigngt
[y]l, we may use the KS spin orbitals to form a single- y = |X|| = Z'X | = Yxs (2.18)
determinant wave function =

and will correspond to the same density

1 KS.KS _KS Eachy, will also be associated with an eigenvalggof the
Pys = ﬁ deth 2™ n ] (2.10) blocked Fock matriEkS(OO + VV). The single-determinant
wave function formed from the occupiggdwill be written Wy,
The expectation energy using this wave function will be it is, of course, equal t&s.

We can now set up a conventional treatment of electron
TdAksl + Vel Vsl + Avisl + Exlvesl  (2.11) correlatiqn as follows.. A many-electron Hamiltonian is intro-
duced with a connecting parameter
Ex being given by (2.8). The difference _ ,
H,=H,+AH

Eclyksl = Exclvksl — Ex[vsl (2.12) =H,+ A(H — Hyp) (2.19)
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whereH is the full Hamiltonian andH, is the zero-order sum

of one-electron Fock operatoFfOO + VV), for which Wy is

an exact eigenfunction with eigenvalje;. As/ changes from
0to 1, the total energy will change frop; to the exact answer

(if there were no other approximations). To find the lowest
eigenvalue ofH, starting from the determinan¥,, we may
proceed by various methods, such as configuration interaction,
coupled-cluster theory, or MgllePlesset perturbation theory.
For the latter, the result is expanded in powerstiaind the

Pople et al.
"E=E".0]
BE = E[0,%y] (3.2)
ABE — E[A%By] _AE _BE
This kind of partition was proposed and used for spin compo-

nents of the correlation energy by Stoll et*aind Perdew et
al.> but can be applied elsewhere. On the conventional side,

series truncated at some order. The final answer, if any of thesewe may treat the energies as functionals of the &gtand &y

techniques were carried out in full, would be

Exs + Eéonv[VKs]

where the last term is the proper correlation energy for this
particular KS starting point, evaluated by conventional means.
Alternatively, the exact energy could be split as

Bexact™ Enoxcl7ksl T Ex[Vksl T E?:OHV[VKS] (2.21)

where Enoxc[y] is the energy functional without exchange or
correlation, as represented by the first three terms of (2.4), and
Ex[y] is given by the conventional (proper) formula (2.8). Since
Enoxc[y] is identical in conventional and DFT theories, we
could, in principle, test the full exchange-correlation functional
by comparingEx + EZ™ in (2.21) with the DFT expression
Exc[vks]. In practice, of course, both will have errors from
additional approximations (finite basis sets, integration grids,
etc.) which may hinder full agreement, but the objective should
be kept in mind.

In this paper, the only conventional correlation method used
is second-order MglletrPlesset theory (MP2). At first order,
the energy is just the expectation valuetbfwith Wgs

Eexact -

(2.20)

E(MP1) = Eys = Enoxclvksl + Exlvksl  (2.22)
and the second-order correction
o Fo© 1 (] |ab)’
EY' = — - - (2.23)
mea— €6 AfmeT e €€

Note thatFi; appears in (2.23) since the off-diagonal elements
appear as part of the perturbation Hamiltonldhin (2.19).
Equations 2.22 and 2.23 reduce to familiar forms if the HF
functional is used, alF; then vanishing. The first part of (2.23),
involving the Fi; elements, really allows for the mixing of
occupied and virtual orbitals leading to a tendency for the KS
orbitals to move toward HF, therefore modifying the density.
If we suppose the density functional to give the correct density,
it could be argued that these terms should be omitted, since

and use a similar partition
"E=E["y.0]

°E = E[0,%(] (3.3)

PE=E" "l - "E-"E

HereE[*yi,0] means that all integrals involving B spin orbitals
are zeroed in matrix elements of the Hamiltonk&nin (2.19).

When applied to the second-order MgHté?lesset correlation
energy (2.23), this partition cleanly separates the full energy
into separate pair terms. The same applies to the computation
of the proper exchange energy (2.8) where the total is also
strictly separable into pair terms.

It may be questioned whether the partitions (3.2) and (3.3)
are strictly comparable for computation of conventional cor-
relation energies at higher levels (up to full configuration
interaction). There are many complicated many-body interac-
tions involved, which are somewhat arbitrarily assigned by (3.3).
However, we shall not address this question here, since only
MP2 computations are performed. It seems reasonable that the
DFT and conventional partitions (3.2) and (3.3) should be
comparable at a coarse level, since MP2 usually accounts for
most of the correlation in simple pair terms.

As noted in the Introduction, we will partition the density
and spin orbitals in two ways. The subsets A and B may be
theo. andf occupied spin orbitals, or they may be the core and
valence K,L) spin orbitals if we are separating correlation of
valence electrons from the rest. The procedures used are closely
related.

4. Applications

The partition schemes described in the previous section have
been implemented in the Q-Chem progfarny one of us
(R.D.A)). As a preliminary application, we have tested the LSD
(free-electron gas) functional for the first-row atoms and the
molecules H, Ny, F,, FH, OH,, NH3, and CH.

The orbital basis used is 6-31G(3df,2p), the largest basis
present in G2 theory. The actual LSD functional is Dirae

any density changes introduced would have to be canceled ingjater for exchandg@and Voske-Wilk —Nusair for correlatiort

higher-order terms. Thig, contributions are much smaller than
the second part of (2.23), and we shall omit them in the present
treatment.

3. Energy Partitions

Suppose that the set of occupied spin orbijals split into
two nonoverlapping subsetg; and®By;. Since the density is
the sum of the squares of the spin orbitals (2.6), it will be
consequently be partitioned into two pafts and By with

y(x) = 4y(x) + Py (x)

Any energy functionak[*y,By] is then split into “pure A", “pure
B”, and “interacting AB” parts by the partition

(3.1)

Quadrature is performed using the standard SG-1 grid.
Geometries are as in G2 theory. The individual energies may
be identified as

functional/LSD/6-31%G(3df,2p)/IMP2(full)6-31G(d)

meaning that the functional is applied to the LSD density, using
the 6-31H1-G(3df,2p) density, at the MP2/6-31G(d) geometries.

The total energies are listed in Table 1. The first column
gives the energies obtained by solving the Kel®fham equa-
tions for the LSD functional. The other columns are energies
using this density. In particular, the final column gives the
expectation energy, using the KS single determinant. This is
Exs as given by (2.11).
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TABLE 1: Total Energies? (hartrees) valence, and valeneeralence parts (eq 3.2 with = K, B =
LSD NoXC HES Exs L); the total is also listed in the first column. The table also
shows valencevalence correlation energies by conventional
H —0.478 35 —0.199 21 —0.456 63 —0.498 94 . - . .
He 283256 —185619 —272081 —285821 MP2 theory,.agaln with the KS starting point. W(_a do not show
Li —734221 -567152 —7.19113 —7.43001 the conventional corecore and corevalence pieces; their
Be —14.44484 —11.92421 —14.22024 —14.569 33 significance would be limited as the orbital basis 6-30Q-
B —24.35242 —-20.79262 —24.06338 —24.52534 (3df,2p) permits only a very poor description of inner-shell
ﬁ :gz-‘l‘gg ég :ié-ggg ;‘11 :g;-%gz ‘71*13 :gz-ggi % correlation. Finally, in the last column of Table 4, we give a
o Can e o list of “best” valence-valence results for comparative purposes.
(0] 74.519 98 66.652 01 73.987 86 74.798 81 . .
E —00.09882 —89.42861 —98.46121 —99.38934 These are obtained from QC'SD(T) results using regular
Ne —128.21133 —116.49864 —127.46811 —128.513 82 correlation theory based on HF starting point (these are used in
Ho -1.13674 —-0.48254 —-1.04256 —1.13229 the general G2(QCI) mod®lbut are incremented by th&

?2 _igg-g% gg _lgg-gg; g(; _183-(7)23 %é _igg-%; gg values from Table 2, thereby allowing for the KS reference.
2 - . - . - : - : i i i is i

FH 20983580 —89.70121 —99.13477 —100041 98 _ In view of the inadequate nature of the orbital basis in the
OH, ~—75.90141 —67.16846 —75.24027 —76.04380 inner-shell regions of the atoms and molecules, we also present
NH; —56.10183 —48.59154 —55.47729 —56.20576 a further partition of the valence correlation into.,33 and

CH, —40.11538 —33.66071 —39.52360 —40.198 40 o3 spin components. This is done by straightforward applica-

a Al energies evaluated using the LSD density. tion of the partition (3.2)4 = a, B = f) to the functionaEc-
[yvalencd- These results are listed in Table 5, together with the
TABLE 2: Energy Differences Exs — Enr (mhartrees) corresponding MP2 partitions.
H 0.87 Ne 12.66
He 1.69 ) 0.71 5. Discussion
Li 2.02 N, 24.59 . o .
Be 2.61 > 33.78 The total correlation energies, listed in Table 4, demonstrate
B 5.74 FH 13.35 the familiar overestimation by the LSD functional. These results
CN: ;-fi S"i 5471(2) are close to previously published valdésCorrect total atomic
0 1053 c||—-1!3 13.82 correlation energies, relative to a HF reference, are known to
= 12.47 ' range from 42 mhartrees for helium to 392 mhartrees for Aton.
The overestimate is roughly by a factor of 2.
TABLE 3: Spin Components of Correlation Energy Now consider the spin components of correlation energy listed
(mhartrees) in Table 3. These results are closely related to early work by
DFT (LSD) conventional (MP2) Stoll et al* They partitioned the LSD correlation energy in
a0 BB 0B ao 8B 0B this manner, but then compared just 8 component with
total correlation energies from conventional theory. However,
H 21.72 0 0 0 0 0 h d LSD learlv |
He 2689  26.89 57.96 O 0 2961 theao andjf components ofEc(LSD) are clearly large, as
Li 47.12 32.36 71.59 0.16 0 13.43 shown in the first two columns. Such spin-parallel contributions
Be 54.20 54.20 116.21 0.25 0.25 43.13  are partly spurious, as indicated by significant nonzero values
B 83.70  59.77 14557 429 033 5884  forH, He, and H. These represent a nonexistent self-correlation
C 118.35 64.26 17471 14.81 0.36 72.95

of single electrons. Such effects undoubtedly also contribute

N 157.03 68.06 20287  32.76 0.38 8508 tothe very largexa andgp values for the other systems, which

o 165.71 101.04 265.36 34.75 545 129.71 : d ’

= 173.04 13846 32611 36.68 18.05 17556 are far greater than the corresponding conventional results also
Ne 179.45 179.45 384.32 3851 3851 221.25 shown in Table 3, even allowing for the core effects which are
Hz 2266 2266 4885 O 0 29.87 poorly treated in the conventional calculations. Spin-parallel

Np 22741 22741 487.97 5632 5632 339.76  correlation effects (beyond those implicit in the exchange term)

F. 313.18 313.18 67127 7510 75.10 456.55 L :
FH 16916 16916 36271 3891 3891 23033 are clearly significant, but not as large as given by the LSD

OH, 159.44 15944 34225 3558 3558 223.61 functional.
NH; 150.54 150.54 32346 29.30 29.30 204.97 The spin-antiparalled5 components, shown in Table 3, are
CH, 14258 14258 306.62 2115 21.15 180.98 still significantly larger for the LSD functional than for the
conventional (MP2) method. For the helium atom, there is only
We note thaExs = Enr; see (2.13). The differencé&xs — a3 correlation, and the LSD value (58.0 mhartrees) exceeds
Enr, which are listed in Table 2, follow from the final column  the known accurate value (43.7 mhartrees after applying the
of Table 1 and regular HF calculations with the same orbital 1.7 mhartrees correction given in Table 2), but no longer by a
basis and geometry. They arise because of differences betweefactor of 2. For the larger systems, there is greater overestima-
the LSD and HF densities. The magnitudes of these differencestion, but we note that the MP2 results will be underestimates,
are small compared with correlation energies, but clearly not partly because the orbital basis used is very crude in the inner-
negligible. They must be taken into account in comparing DFT shell region and will not well describe this part of the atom or
correlation energies with conventional values based on a HF molecule. We will return to this matter below.
starting point. It is interesting to compare the contributions of parallel and
We next turn to the partitions of the correlation energy antiparallel correlation to chemical binding energies. These are
discussed in this paper. Table 3 shows the spin partitions shown in Table 6, for DFT and conventional methods, together
(ao,BB,08) for the LSD functional using (3.2) witA = o and with corresponding total correlation bindings. It is well
B = /. Italso shows the conventional MP2 correlation energies recognized that electron correlation plays a major role in
with the KS starting point, using (2.23) (without the first term) determining bond energies. The total MP2 correlation binding
and (3.3). It should be noted that these &k correlation energies listed in the final column reflect this. The DFT totals
energies, taking account @l electron pairs. Table 4 gives are mostly lower (H and CH, being exceptions), Fbeing
the DFT correlation energies, split into cereore, core- remarkably lower. When broken down into spin components,
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TABLE 4: Core —Valence Components of Correlation Energy (mhartrees)

DFT (LSD) conventional
total core core/valence valence valence (MP2) valence (best) cord) (best

H 21.72 0 0 21.72 0 0 0

He 111.75 0 0 111.75 29.61 37.57 0

Li 151.08 134.28 2.61 14.18 0 0 43.50

Be 224.60 150.22 3.01 71.38 28.10 48.04 44.27

B 289.04 162.73 5.27 121.04 45.67 71.74 44.74

C 357.32 173.02 8.23 176.08 68.63 96.22 45.05

N 427.96 181.76 11.59 234.60 97.22 120.97 45.28

(0] 532.11 189.37 10.72 332.03 147.87 173.22 45.45

F 637.60 196.10 10.51 430.99 207.12 228.48 45.59

Ne 743.22 202.14 10.93 530.15 273.92 285.20 45.69

H, 94.18 0 0 94.18 29.87 38.52 0

N> 942.79 363.35 15.49 563.95 407.24 424.44

F 1297.62 392.17 19.70 885.75 559.73 582.74

FH 701.03 196.08 9.92 495.03 284.32 296.02

OH, 661.14 189.34 8.87 462.93 271.61 288.76

NH; 624.54 181.71 7.80 435.03 240.67 265.37

CH, 591.77 172.90 6.74 412.13 200.65 234.61

aFrom ref 14.
TABLE 5: Spin Components of Valence-Valence functional. The bond in Fis quite weak and exists only by
Correlation Energy (mhartrees) virtue of electron correlation, since unrestricted HF theory gives

DFT (LSD) conventional (MP2) a repulsive potential curve. The full LSD energy does give
o 8B o o 88 o binding for F, (122 mhartrees from the energies in Table 1),

T 1218 0 0 o 0 0 but this arises mainly from the exchange part (HFS giving
Be 1723 1723 3693 O 0 2810 binding of 99 mhartrees).
B 43.08 19.63 58.33 3.50 0 42.16 Now we turn to core/valence separation results, listed in Table
c 7461 2153  79.93 1341 0 55.22 4, We note first that the LSD functional gives a fairly good
N 110.59 23.14 100.87 30.74 0 66.48

o 117 26 5360 16117 3268 449 11071 separation into corecore an.d valenceyalence parts but that

F 122.84 8875 21940 3455 1648 15610 the LSD core-core correlation energies are much t(_)o large.
Ne 127.70 127.70 27475 36.33 36.33 201.25 Although we are not able to get an adequate conventional MP2
N> 135.65 135.65 292.64 53.19 53.19 300.86 description of atomic corecore correlation with this orbital

F 21323 213.23 459.29 7125 7125 417.24 pagjs, we expect that the values would be close to those for the
i, HRA HBi ey g9 s6d 2195 comespondng tuo-lecion o (He,LBE". B¥ ). On

NH, 104.64 10464 22575 27.62 27.62 18544 the other hand, it is known that these remain fairly constant
CH, 99.12 99.12 213.90 1960 19.60 161.45 and approach a limit of about 46 mhartr¥eas shown in the
final column. The LSD values are larger by a factor of up to
4 and increase steadily. Clearly, this is a major contribution to
the overestimation of total correlation energies by the LSD

TABLE 6: Spin Components of Correlation Binding
Energy (mhartrees)

DFT (LSD) conventional (MP2) functional.
aot+pB8  of total  ao+pBB  of total The cross corevalence KL) parts are relatively small,
Ho 1.88 48.85 50.74 0 20.87 29.87 consistent with the expectation that the corresponding spin
N2 4.64 82.23 86.87  46.37  169.64 216.01 orbitals are principally located in different spatial regions.
F 337  19.05 2241 4074 10544 146.18 owever we cannot compare with nventional number
FH 5.10 36.60 41.70  23.09 54,77 77.86 owever, We canno: compare good conventiona bers

OH, 8.69 76,89 8558  30.96 93.89 12485 with our limited basis set. There has been little other work on
NH3 10.83 120.59 131.42 25.46 119.91 145.37 these components.

CH, 1565 13191 14756  27.13  108.03 135.16 The valence-valence LSD correlations listed in Table 4 are
also too large, by a factor of about 2. This is partly due to the
inadequate conventional correlation level (MP2), but comparison
with the better results in the final column gives only relatively
small improvements.

the contributions of parallel spins are seen to be quite small by
LSD (in spite of the large individuaka. and 35 values listed

in Table 3). The MP2 calculations indicate larger parallel
contributions (except & where there is none), although most - . )
of the correlation binding clearly comes from the antiparallel ~ ©On€ Positive feature of the LSD results in Table 4 is that
parts. Theng correlation bindings themselves (columns 2 and €oré-core correlation components do carry their I_arge errors
3 in Table 3) show some improvement when compared with &S @ constant from. a’Fom to mqlecule. Thus, the fa!lure to give
the general overestimation of total correlation energies by a @ adequate description of the inner-shell electronstselated
factor of 2. However, there are wide variations with the type t© any failures in describing chemical bonding. The same is
of bond. For bonds to hydrogen correlation binding is true.for core-valence components, which also remain ap-
described moderately well by LSD. The triple bond ig Nn proximately constant from atom to molecule.

the other hand, for which correlation between thegepairs is The good LSD corevalence separation found in Table 4,
known to be a major stabilizing factor, show$ underestima- and the insensitivity of chemically significant results to core
tion by LSD by a factor of more than 2. This is particularly errors, suggest that we should examine valence-only LSD theory
disturbing, since total correlation energies (Table 4) are in more detail to evaluate its behavior. We therefore turn to
overestimatedby factors of this order. For the;Fnolecule, the spin-component analysis of the valence correlation energies,
the o correlation is also badly underestimated by the LSD summarized in Table 5. Here we are able to make a more
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TABLE 7: Spin Components of Valence Correlation applied to the local density (LSD) energy function, the spin
Binding Energy (mhartrees) partition shows strong overestimation @é. + 343 correlation
DFT (LSD) conventional (MP2) (including well-known spurious one-electron effects). T
aa+ BB af total  aa-+pB  af total _cl:_cr)]rrelatio/n ils also ovt(_atfestir??r:edl-ggt by alstr_naller factorh 4)
e core/valence partition of the correlation energy shows
:;‘22 g:gg gg:ig gg:;‘; ig:zg igg:gg 5411%:47159; core values which are much too large. The numbers also fail
FH 5.02 3729 4231 2276 5444 7720 toapproach a limiting value, as they should. On the other hand,

OH, 8.47 78.99 87.46  30.36 93.38 123.73 these core errors are fairly constant between atoms and
NH; 1039  124.88 13527 2449  118.95 14344 molecules, leading to good systematic cancellation (as already
CH, 1520 13397 14917 2580  106.23 132.02 npoted for conventional theories). (5) When the LSD functional
TABLE 8: Spin Components of Correlation lonization is applied to valence electrons only, the.spln partition continues
Potentials (mhartrees) to show major errors for thea. + 5 parts; then s components,
- however, are now overestimated by a factor of only about 1.5.
DFT (LSD t I (MP2 ! . oo -
(LSD) conventional (MP2) (6) The relative contributions afo. + 5 anda correlation
oaatpp of total aatpp of total to chemical bond energies are poorly given by the LSD
N 24.92 32,25 57.17 -1232 —-8.86 —21.18 functional. In particular, the contribution of antiparallel spins
FH 26.00  36.08 62.08 24.02 2122 4524 g correlation binding is usually too low, even though the overall

OH; 24.27 3431 58.58 21.43 19.78 41.21 R ;
NH. 5943 3258 5501 1727 1714 3441 binding energies calculated at the LAD level are generally too

CH, 2333 3220 5553 9.45 1149 2093 high.

The theory developed above is applicable to any energy
satisfactory comparison with conventional MP2 results since functional and should permit a more detailed evaluation of the
the orbital basis is of high quality in the valence region. many that are available. We will present such an evaluation

The spin-parallel ¢ and A8) components of valence elsewheré. It is to be hoped that such studies of the piece-
correlation energies are still too large and still show the spurious by-piece inadequacies will help in the search for systematic
self-interaction effects (as in Li and Be, where such terms should convergence toward the ultimate, correct energy functional.
vanish). On the other hand, the comparison of the L&D
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