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Abstract 

We introduce the continuous fast multipole method (CFMM), a generalization of the fast multipole method for calculating 
Coulomb interaction of point charges. The CFMM calculates Coulomb interactions between charge distributions, represented 
by continuous functions, in work scaling linearly with their number for constant density systems. Model calculations suggest that 
for errors in the potential of 10-‘“, the CFMM becomes faster than direct evaluation for less than 10000 Gaussian charge 
distributions. Using the CFMM to form the Jmatrix in ab initio density functional and Hartree-Fock calculations shows that a 
two-three times speedup is attainable for the linear alkanes C,oH,,-CZoH42. 

1. Introduction 

The fast multipole method [ 1 ] (FMM) calculates 
the Coulomb interaction between classical point 
charges in work which scales linearly with the num- 
ber of particles in the system ‘. It has been shown to 
reduce the time involved in calculating the potential 
for a collection of discrete point charges relative to 
direct pairwise evaluation, with crossovers on the or- 
der of thousands of particles [ 3-91. However, the re- 
striction to point charges means the FMM is not im- 
mediately applicable to problems in which the charge 
distributions have significant extent. 

Ab initio electronic structure calculations consti- 
tute such a class of problems. For the largest molec- 
ular systems whose study is currently feasible by 
Hartree-Fock [ lo] and density functional theory 
[ 111, the rate-limiting step is computing the electro- 

’ For a recent general audience review of fast-summation algo- 
rithms see Ref. [ 21. 

static interactions between all pairs of electrons in the 
system. These electrons are often represented by lo- 
cal basis functions such as Gaussians [ 12 1. Over the 
last two decades, a variety of computational strate- 
gies have been suggested and implemented for treat- 
ing this problem [ 13-2 1 ] _ While these methods have 

resulted in tremendously improved efficiency, they 
all scale quadratically with the number of basis 
functions. 

To realistically treat large molecules, the quadratic 
scaling must be reduced. For this reason, we have 
generalized Greengard and Rokhlin’s FMM to treat 

these continuous distributions. The classical point 
charge FMM [ l-91 systematically organizes multi- 
pole representations of local charge distributions, so 
that each particle interacts with local expansions of 
the potential due to all distant particles. To group the 
particles, they are placed in a box which is repeatedly 
subdivided to create local collections of point charges. 
Local and distant distributions are distinguished by 
the global well-separated (WS) index [ 3 1. This is de- 
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fined as the number of boxes which must separate two 
collections of charges before they may be considered 
distant, and can interact through multipole 

expansions. 
The above prescription fails for continuous distri- 

butions because in this case, a single distribution can 
cover the entire original box. This makes the straight- 
forward division of this box to create individual local 
collections impossible. To alleviate this problem, we 
treat distributions having various extents differently 
in the method presented here, which we term the 

continuous fast multipole method (CFMM). A dis- 
tribution having a small extent relative to the total 
extent of the system must have a different definition 
of local and distant (WS index) than a distribution 
of large extent. 

In the CFMM we generalize the WS index and re- 
organize the sorting of the distributions. We can de- 
fine a unique center for each distribution, place these 
centers in a box, and subdivide this box to create lo- 

cal collections of centers of distributions. To define 
distant and local, we give each distribution its own 

WS index. The distributions are sorted by their WS 
indices as well as the positions of their centers in 
space, to properly define local versus distant 

interactions. 
This generalization will give linear scaling only in 

the case where the density of distributions in the sys- 
tem grows in a sub-linear manner with increased 
numbers of distributions. More simply, as one adds 
distributions to the system, one must increase the to- 
tal volume of the system (as measured by a box en- 
closing the centers of the distributions). In a case of 
greater than linear behavior asymptotically all of the 
distributions must overlap. In this case, there is no 
classical behavior and the CFMM becomes a fully 
quadratic method. 

This paper gives a concise description of the gen- 

eralization of FMM to create the CFMM (Sections 2 
and 3) and a numerical exploration of the error and 

timing issues involved in its use (Sections 4 and 5 ). 
Section 2 describes the specific modifications needed, 
while Section 3 summarizes the complete CFMM al- 
gorithm. In Section 4 we explore the errors and tim- 
ing issues for the use of the CFMM for a simple model 
system. Section 5 examines the application of the 

CFMM to the calculation of the J matrix typically 
used in Hartree-Fock, and density functional calcu- 

lations for a series of linear alkanes. Finally the Ap- 
pendix gives a simple method for the formation of 
the multipole integrals of continuous functions. 

2. Well separatedness of local distributions 

We define the extent of a distribution such that two 
distributions separated by the sum of their extents will 
interact as classical point charges to a desired preci- 
sion [ 2 11. The mathematical expression for the ex- 

tent of a distribution will depend upon the functional 
form of the distribution. Most ab initio electronic 
structure calculations use Gaussians as the basis for 
representing quantum mechanical charge distribu- 
tions [ 121. For this reason, we will concentrate 
mainly on the application of the CFMM to Gaussian 
distributions, although the formalism presented is 
valid for any localized continuous distribution where 
a definition of an extent is possible. 

The mathematical definition for the extent of a 
Gaussian distribution is exceptionally simple. The 
Coulombic interaction of two spherical Gaussian 
charge distributions can be represented in closed form 

as 

(1) 

where R is a vector connecting the centers of the 
distributions and p and q are the exponents of the 
Gaussians. The factor erf (&m 1 R [ ) rapidly 
approaches 1 with increasing separation, and the two 
distributions then interact as classical point charges. 
Consequently, we define the extent of a distribution 

as 

(2) 

where p is the exponent of the Gaussian, and E is the 
desired precision. For higher angular momentum 
functions, the expression is similar with the classical 
limit being interactions of higher-order multipole 
moments. The purpose of the CFMM is to group dis- 
tributions in such a manner so as to know which dis- 
tributions can be treated classically through multi- 

pole expansions. 
The base well separatedness (W&) index governs 
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the error obtained in a CFMM calculation. Distribu- 
tions will not be treated through the multipole expan- 
sion if their centers are closer than the base WS in- 
dex. For example WS=2 means at least two boxes 
must separate the boxes enclosing the interacting dis- 
tributions for multipoles to be used. Since the distri- 
butions have non-zero extent, it is possible for the 
centers of two distributions to be well separated as 
defined by WS,r, and yet still be unable to interact 
classically. The actual WS index for each distribution 
used by the CFMM must reflect the true extent (as 
defined in Eq. (2) for Gaussians) of the distribution. 
We define the WS index for each distribution as 

(3) 

where 1 is the box size (which depends on the level of 
the tree). Distributions having the same WS index 
will be grouped together forming a branch of the 
CFMM tree structure (Fig. 1). In parts of the CFMM 
algorithm where information is passed up the tree 
(the first pass of Section 3), the fact that the box size 
doubles means that from Eq. (3), the WS index for 
each distribution will be halved until WSref is reached. 

Fig. 1. A ID representation of the CFMM tree structure with a 
base WS index of 2. Each level of the tree divides space into 21eve’ 
boxes (8kve’ in 3D). These boxes are used to sort the distribu- 
tions by the locations of their centers. Each level contains several 
branches, each branch containing all distributions having the same 
WS index (indicated by the encircled number). As multipole/ 
Taylor information is shifted up (A ) and down (C) the tree [ I- 
9 ], the WS index for a given branch may be reduced/increased 
by a factor of 2. This allows the sharing of multipole/Taylor in- 
formation, and gives rise to the binary-tree structure. 

3. The continuous fast multipole method 

The continuous fast multipole method closely re- 
sembles the point charge version we have described 
previously [ 31. Xn the CFMM we have multiple 
branches of boxes on the lowest level of the tree (Fig. 
1) each corresponding to a different WS index. We 
radix sort the distributions into the lowest level boxes 
by the spatial location of their centers, and by their 
extents. The distributions which cannot interact with 
any other distributions via multipoles are placed 
within a special level which only interacts directly. 
The multipole moments of all distributions centered 
within a lowest level box are formed about the center 
of that box. These moments are formed analytically 
by the method described in the Appendix, As with 
the FMM these moments are translated up the tree. 
The translations follow the pathways marked A in Fig. 
1. As discussed above, each translation up reduces WS 
by a factor of 2, which as shown in Fig. 1 allows the 
information contained in branches with different WS 
indices to be combined on higher levels. 

Pass 2 of the FMM algorithm converts multipole 
expansions centered in one box into local Taylor ex- 
pansions about the center of another box. This con- 
version happens only for well-separated boxes. In the 
CFMM this portion of the algorithm is most altered 
from the classical point charge FMM. Pass 2 works 
independently upon each level of the tree. Each level 
is composed of several branches each containing dis- 
tributions having different WS indices. Within a given 
branch, pass 2 behaves exactly like the FMM pass 2 
for a single WS value. Between branches pass 2 uses 
the average of the WS values for each branch to de- 
termine whether particular boxes are well separated. 
For example, translation between boxes from WS = 2 
and WS = 4 branches of a given level will only occur 
if there are more than three intervening boxes (un- 
less the parent boxes are well separated in which case 
the translation occurs at the parent level). This pro- 
cedure ensures the maximal number of distributions 
contained in the two branches can interact classically 
via multipoles. 
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3.3. Pass 3: translate Taylor information to lowest 
level 

The local Taylor expansions created on higher lev- 
els of the tree in pass 2 must now be translated to the 
lowest level boxes. We now translate from each par- 
ent to all children of that parent (paths labeled with 
C in Fig. 1). At the end of this pass, we have within 
each of the lowest level boxes, a Taylor expansion 
representing the potential from all well-separated 
distributions. 

3.4. Pass 4: evaluate Taylor expansions to obtain far- 
jeld potential 

Pass 4 is identical to the point charge version. The 

Taylor expansion in each lowest-level box represents 
the potential due to all well-separated distributions. 
We can evaluate this expansion at points of interest 
(i.e. integrating over each distribution) in each low- 

est level box to produce a far field potential for each 
distribution. 

3.5. Pass 5: perform direct interactions between 
overlapping distributions 

The direct interactions of charge distributions re- 
quire the evaluation of the standard Coulomb inte- 
grals. For each distribution, we perform direct inter- 
actions with all particles located in boxes which are 
not well-separated producing a near-field potential. 
This determination is straightforward given the ini- 
tial assignment of distributions to the lowest level 
branches of the tree in pass 1, and the averaging pro- 
cedure discussed in pass 2 for distributions on differ- 
ent branches. This potential is added to the far field 

potential obtained in pass 4 to produce the total po- 
tential for each distribution. 

4. Random model system 

In the limiting case where all of the distributions in 
the system have negligible extent in comparison with 
the total size of the system, the CFMM reduces to the 
FMM with a WS value given by W& as will the er- 
rors and timings. Likewise, when all of the distribu- 
tions have a common WS value greater than W& 

the errors and timings should be governed by the 
FMM estimates for that WS value. Only in the case 
where distributions have differing extents, and thus 
different WS values, will one see behavior unique to 
the CFMM. 

We have chosen a model system of the latter type, 
which is loosely related to a random distribution of 
Coulombically interacting hydrogen atoms. As we add 
hydrogens to the system, the volume of the enclosing 
box is increased to keep the density at I hydrogen/ 
A3 2. Each hydrogen atom has a positive unit charge 
nucleus represented by a Gaussian with a large ex- 
ponent and a collection of ten Gaussians with var- 
ious exponents representing the negative electron. The 
Gaussians representing the electron are randomly 
centered throughout the system 3 with coefficients 
selected to sum to a negative unit charge thus making 
the system globally neutral. 

The exponents of the Gaussians have been ran- 
domly chosen to range between 0.1 and 20 to model 
a regime appropriate for electronic structure calcula- 
tions. Small exponents less than 3 will show poor 
CFMM performance for small systems while large 
exponents greater than 20 will show results similar to 
the point charge FMM. .4s the systems become larger 
these differences become less pronounced. 

The base WS index governs the upper bound on 
the error in the CFMM. However in the case where 
several WS values are present, this estimate is very 
conservative. If a large number of the distributions 
are located on high WS index branches, we should 
see an error much less than the FMM error estimate. 
In this section we present numerical results for our 
model system showing the growth of the error caused 
by truncation of the multipole expansion and in- 
creasing the number of particles in the system. 

Fig. 2 shows the error as a function of the level of 
multipoles used in the calculation. The plot shows 
calculations on the model system with 10000 distri- 

2 It should be noted that in the case where the density of the sys- 

tem grows at a rate greater than linear with the number of distri- 

butions, we are effectively placing the distributions directly on 

top of each other. In this case, CFMM must asymptotically scale 

quadratically. The worst case is all of the distributions centered 

about the same point. 

3 This is to ensure that each hydrogen of the system is not indi- 

vidually neutral which would make all long range interactions 

zero. 
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Fig. 2. The RMS error per distribution for a 10000 distribution system as a function of the number of multipoles used in the calculation. 

The errors indicate that to obtain the potential to lo-“‘, one need only use I5 multipoles. Several tree depths are displayed indicating 

that the size of the boxes on the lowest level of the tree also enters the CFMM error expression. The error estimate for a standard FMM 

calculation (2 tiers; WS= 2) is also shown on the graph indicating that using the CFMM base WS index gives very conservative estimates 

of the CFMM error. 

butions using various depths for the CFMM tree. At 
approximately 15 multipoles for all depths, we reach 
a point where error becomes less than 10-‘“. The 
FMM error estimate for the base WS index and a 2 
tiered tree is also shown on the figure indicating the 
conservative nature of this estimate for the CFMM 
calculation. 

The error estimates for the point charge FMM in- 
dicate a growth in the absolute error with the number 
of particles treated. Fig. 3 numerically explores the 
growth in the CFMM error with the number of dis- 
tributions. The figure shows the sub-linear growth in 
CFMM errors with the number of particles for a fixed 
level of multipoles. This coupled with the informa- 
tion contained in Fig. 2 indicates that to achieve ma- 
chine precision, one need only use between 20 and 30 
multipoles. 

All of the timings presented have been obtained on 
a DEC ALPHA/AXP 3000/600 workstation run- 
ning OSF/ 1. Fig. 4 shows the time for a CFMM cal- 
culation as a function of the number of distributions. 
In this graph we show the minimum time for treating 
systems with 10 and 20 multipoles (the errors ob- 

tained for most of these calculations are shown in Fig. 
3). It is always possible to determine whether inter- 
acting two boxes directly will be faster than interact- 
ing the boxes via multipoles: our implementation of 
the CFMM defaults to direct interactions in these 

cases. This causes the crossovers to be well under 
10000 distributions. 

5. Density functional theory: J matrix formation 

Electronic structure calculations directly benefit 
from the favorable scaling properties of the CFMM. 
In both density functional theory (DFT) and con- 
ventional Hartree-Fock (HF) theory, one requires 
the evaluation of the so-called J matrix. Jpy repre- 
sents the Coulomb interaction of a given distribution 
(formed by the overlap of two basis functions, v,(r) 
and p”(r) ) with the molecular electron density, which 
is expanded in terms of all other distributions in the 
molecule: 
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Fig. 3. This figure numerically explores the growth of the CFMM error with the number of distributions treated. Calculations using 10 

and 20 multipoles are displayed showing similar sub-linear behavior in the growth of the errors with the number of distributions. The 

timings for the calculations portrayed in this figure are given in Fig. 4. 

20 Multipoles 

10 Multipoles 

Number of Distributions 

Fig. 4. The time to perform a CFMM calculation as a function of the number of distributions contained in our simple model system. The 

shallow cusp-like behavior characteristic of fast multipole methods [ 31 can be seen as one increases the depth of the CFMM tree. Fig. 3 

can be used to assess the accuracy for a given number of multipoles and tier depth for the timings shown in this figure. The cross-overs 

for both levels of multipoles are obscured due to the scale of the graph; they occur at less than 10000 distributions with the CFMM 

calculation never more than 5 min longer than the direct calculation. 
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(4) 

The CFMM code is currently being interfaced with 
the Q-Chem [ 221 computational chemistry package. 
While the preliminary interface is not optimized, it 
does allow the CFMM to calculate the J matrix in 
DFT [ 231. This permits an initial assessment of the 
usefulness of the CFMM for treating real molecules 
with standard basis sets including non-spherically 
symmetric functions. Due to the preliminary nature 
of the interface, we will not present timings within 

this communication. However, we can report the 
number of interactions saved since this value will not 
change with changes in the interface. 

Our DFT calculations are on a series of linear al- 
kanes using the standard STO-3G basis [ 241. For all 

of the calculations, we have used 25 multipoles and 
have obtained energies correct to at least ten signifi- 
cant figures. The distributions are products of pairs 
of basis functions. A pre-screening process with a 
threshold of 1 O-‘O was used to remove the negligible 
distributions. We find the number of distributions 
asymptotically grows linearly with the size of the 
molecule. 

The number of interactions saved for several mol- 
ecules is reported in Table 1. In practice for trees less 
than 5 tiers deep, the amount of time spent perform- 
ing passes l-4 is vastly overshadowed by the time 
spent performing the direct interactions in pass 5. 
Thus we can roughly associate the Yo of interactions 
saved with the amount of time saved in the calcula- 
tion. Using this measure, we find that for this series 
of molecules we obtain a two times speedup over 
conventional methods by Ci0HZ2 and a three times 

speedup by CzsH52. 
As a final example, to gain insight into the poten- 

tial of the CFMM for very large molecules, we have 
examined a small fragment of DNA, the six base-pair 

oligonucleotideCTCGAG, which has 378 atoms. This 
molecule is beyond the memory limitations of our 
current interface, however, we have performed sev- 
eral hypothetical calculations (Table 2) which count 
the number of interactions which must be done di- 
rectly and via multipoles. The results indicate for 

Table 1 

J matrix formation ( IO-‘o threshold). CFMM/DFT calcula- 

tions on the homologous series of linear alkanes using the STO- 

3G basis [ 241 

System Basis Distributions % long-range 

functions interactions 

three-level tree 

CsH,z 37 2675 19 

C&H,, 72 6767 32 

CLSH~Z 107 10862 41 

CzoH42 142 14957 43 

CZ~HSZ 177 19052 44 

four-level tree 

CSHIZ 37 2675 29 

CtoHzz 72 6767 49 

C&32 107 10862 59 

C2oH42 142 14957 63 

C25H52 177 19052 67 

All calculations are performed using 25 multipoles to obtain 

energies correct to at least 10 significant figures. The distribu- 

tions reported arise as overlapping basis functions, a pre-screen- 

ing process enabled linear growth of the number of distributions 

with increasing molecular size. These results indicate a two-three 

times increase in speed of a CFMM calculation over a conven- 

tional direct implementation. 

Table 2 

Characterization of interactions and WS definitions in CTCGAG 

STO-3G at various tree depths 

Depth % long-range Highest % distributions 

interactions WS value atWS2 

3 66.4 2 100.0 

4 87.0 4 19.5 

5 93.4 8 52.0 

6 95.3 16 21.0 

The percentage of long-range interactions in the CTCGAG J ma- 

trix calculation using the STO-3G [ 241 basis for various depths 

of the CFMM tree. The system has 1370 basis functions, and ap- 

proximately 128000 distributions at the single-point accuracy 

used. These results indicate almost an order of magnitude in- 

crease in the speed of calculation as compared to direct methods. 

molecules of this size, we can expect a speedup of al- 
most an order of magnitude. 

6. Conclusions 

The main results and conclusions of this paper are 
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as follows: 
( 1) We have introduced the continuous fast mul- 

tipole method (CFMM) as a generalization of 
Greengard’s point charge FMM to treat Coulomb in- 
teractions of local charge distributions represented by 
continuous functions. In the FMM, long range Cou- 
lomb interactions are efficiently handled by multi- 

pole and local expansions. The CFMM organizes 
distributions having different extents into a compu- 
tational hierarchy which permits potential evalua- 
tion to scale only linearly with system size. 

Wlm(a)=q,~O~,(a)=q~a’~~,(cosa)e-imB. (-4.1) 

The multipole moments of a charge distribution about 
a given origin are the summation of the individual 
multipole moments for each charge in the distribu- 
tion about the same origin. The evaluation of the 
multipole moments of a continuous distribution re- 
quires an integration of the above expression over the 
entire distribution x( r) centered at r’, 

(2) Numerical tests of the CFMM suggest that a 
manageable number of multipoles ( z 25) will pro- 
vide results accurate to better than lo-“. The errors 
involved have also been shown to grow only weakly 
with the number of distributions. 

Notice this expression simplifies considerably if the 
origin o of the multipole expansion coincides with r’ 

the origin of the charge distribution. In this case 

( 3 ) At 1 O- lo accuracy, timings show crossovers in 
the tens of thousands of distributions for systems 
having exponents ranging from 0.1 to 20. This is a 
fairly small degradation relative to the point charge 
limit, and indicates that the CFMM may improve 
calculational speed for a wide variety of problems. 

qm(r’) = drX(r’-r).O,,(r’-r) 
s 

= drX(r).O/,(r) . 
s 

(4) One such problem is the interelectronic Cou- 
lomb interaction in density functional theory (DFT) 
calculations of molecular electronic structure. Pre- 
liminary DFT studies show the CFMM has great po- 
tential for the calculation of the J matrix in large mol- 

ecules. The number of interactions saved show a 
possible two-three times increase in speed for calcu- 
lations for the series of linear alkanes. This factor will 

increase as we begin to treat larger and larger mole- 
cules. The CFMM may complement ‘divide and con- 
quer’ methods [ 25-271 which propose the diagonal- 
ization of an effective Hamiltonian in linear time. 

This leaves a simple integral over x(r). We may now 
use the symmetry properties of X(r) to reduce the 
number of moments we need to calculate. For the 
cases we will examine, this expression can be deter- 
mined analytically. We can now translate these mo- 

ments in space to produce moments about our origi- 
nal origin 0, 

Wlm(o)= i i A$(o-r’).qk(r’) . 
J=o k= -_I 

The translation is performed using the operator 
A:? (a) = O1_j,m_k((l) developed for use in the fast 
multipole algorithm [ 3 1. 
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