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A simple method which is rigorously invariant under molecular rotations is presented for evaluation of the density functional 
exchange-correlation energy by numerical quadrature. The corresponding expressions for the first and second derivatives of the 
energy with respect to nuclear displacement are presented. In particular, such a scheme is necessary to remove the difficulties 
previously encountered in calculating Kahn-Sham harmonic vibrational frequencies for low-lying modes. 

1. Introduction 

Density functional theory [l-6] (DFI) has 
emerged in recent years as a promising alternative to 
conventional ab initio methods in quantum chemis- 
try. In a number of systematic validation studies [ 7- 
1 5 1, DFI has been shown to be successful in predict- 
ing various molecular properties, often giving results 
of a quality comparable to or better than the MP2 
perturbation theory approach. This is most encour- 
aging, given that the computational cost of DFI is 
substantially less than that of traditional correlation 
techniques, and hence DFT may be applied to larger 
molecular systems. Further thorough studies of DFI’ 
methods are still required in order to obtain a better 
understanding of their strengths and weaknesses, but 
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the future of DFT in practical quantum chemistry 
appears bright. 

The Kahn-Sham (KS) formulation [ 21 of DF’T is 
the most commonly employed, and is closely analo- 
gous to Hartree-Fock theory in that a set of molecu- 
lar orbitals is derived from an effective one-electron 
potential via a self-consistent procedure. The crucial 
difference is that the exchange term in the Hartree- 
Fock energy expression is replaced by an exchange- 
correlation (XC) energy, represented as a functional 
of the one-electron spin densities and in many cases 
their derivatives as well. These functionals are of the 
general form 

Exe = F(pa, Pp, VPm VP,, -.) dr - (1) 

It is generally true that the XC integrals which arise 
in Kahn-Sham calculations cannot be evaluated an- 
alytically, and in practice three-dimensional numer- 
ical quadrature must be employed. A number of dif- 
ferent schemes have been advocated for this purpose 
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[ 16-201. Unfortunately, there are considerations 
particular to a grid-based approach which lead to un- 
desirable effects if not taken into account properly in 
the implementation. These sorts of difficulties do not 
arise in methods where all integrals are evaluated an- 
alytically (such as in Hartree-Fock theory). 

We focus here on the behavior of the numerical XC 
energy upon rigid-body rotations of the molecule. 
Most often the molecular quadrature grid is con- 
structed by decomposing three-dimensional space 
into atomic regions which are then treated sepa- 
rately. In the widely used scheme due to Becke [ 161, 
this is done with nuclear weighting functions which 
allow the atomic contributions to be easily evaluated 
using standard one-center quadrature rules, which do 
not depend on the nuclear configuration. For a 
straightforward implementation in which the atomic 
contributions are evaluated independently, if the 
molecule is rotated leaving the Cartesian axes (to 
which the quadrature grid is referred) unaltered, the 
computed energy will change, i.e. the total energy does 
not possess the property of rotational invariance in 
the absence of external fields. This effect is entirely 
unphysical and originates solely from the use of a 
finite grid. The loss of rotational invariance also 
manifests itself in derivative calculations, and in par- 
ticular can adversely affect calculated harmonic fre- 
quencies of low-lying vibrational modes [ 2 11. 

The dilemma of rotational non-invariance in DFI 
grid calculations has been previously recognized. For 
example, randomly rotated angular grids have been 
employed [ 221 in an attempt to ameliorate the prob- 
lem. This can lessen the undesirable effects by aver- 
aging out the error, but does not rigorously remove 
them. In this Letter, we present a simple method 
which is rigorously rotationally invariant, and derive 
expressions under this scheme for the first and sec- 
ond derivatives of numerical XC integrals with re- 
spect to nuclear displacement. 

2. Rotationally invariant energy evaluation 

The XC energy as implemented in a computer pro- 
gram is 

J% = C C “‘AiF( rAi I 3 (2) 
A i 

where the first summation is over the atoms and the 
second is over the quadrature grid points for that par- 
ticular atom. The w, are quadrature weights, and the 
grid points rAi are usually given by [ 14,231 

rAi=ZiA+Si, (3) 

where RA= (RAr, RAP R&)= is the position of nu- 
cleus A, and the Si define the base points of a suitable 
three-dimensional quadrature rule centered at the or- 
igin, which is independent of the nuclear conligura- 
tion. 

For conciseness, from now on we shall use a con- 
densed grid index for the atomic and single-center 
summations, and write 

(4) 

r,=R,+s,, (5) 

where the quadrature weights have been combined 
with the functional values. This does not affect the 
generality of the analysis. 

The problem is that while the definition of the 
atomic grid points in (5) explicitly takes into ao 
count translations of the nuclei, it does not consider 
rotations. Thus, the XC energy computed with this 
grid is translationally invariant, but it is also clear that 
the angular orientation of the quadrature grid rela- 
tive to the nuclei will change with rotations of the 
molecule. The XC energy will therefore also change, 
by an amount on the order of the error in the quad- 
rature formula. The variation can be made small by 
using large grids, but unfortunately the magnitude of 
the effect is generally greater for derivative calcula- 
tions [ 2 1 ] than for energy calculations, and in some 
cases is significant for all grids except those which are 
too large to be convenient for routine computations. 

The loss of rotational invariance can be easily re- 
medied, however, by generalizing ( 5 ) to 

rg=Ro+Osg, (6) 

where 0 is a 3 x 3 matrix which depends upon the 
nuclear geometry and contains the essential infor- 
mation about the orientation of the nuclear confor- 
mation in the present coordinate system. The matrix 
0 is not unique, but must have certain properties. For 
example, 0 must be orthogonal, i.e. 

OTO=I, (7) 
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where I is the identity matrix. Without loss of gener- 
ality, it is convenient to define 0 implicitly via 

o=iVo=n ) (8) 

where A4 is an appropriate real symmetric second- 
rank Cartesian tensor and n is the diagonal matrix of 
the eigenvalues of M. To complete the specification 
of 0, it remains only to choose an ordering for the 
eigenvectors. Any well-defined criterion will do, e.g. 
according to increasing magnitude of the eigenval- 
ues. The columns of 0 then represent a set of princi- 
pal axes for a ‘standard’ Cartesian reference frame, 
which is inherent to the nuclear conformation. 

The theory can be mostly developed without a need 
for specification of the elements of M, as long as they 
(and their derivatives) can be evaluated in terms of 
known quantities. However, in practice we will ex- 
plicitly take M as the nuclear charge moment tensor 

M= FZ*[IR”-TI21-(RA-T)(RA-T)=1, (9) 

where Z, is the charge of nucleus A and 

T= CA ZARA 
c*z* ’ 

(10) 

is the center of nuclear charge. We have recently pro- 
posed [20] a standard nuclear orientation conven- 
tion which makes use of (9) to define the principal 
axis system through (8). 

The origin of the standard coordinate system is 
taken as the center of nuclear charge, and hence T is 
equal to 0 in the standard orientation. However, the 
explicit inclusion of T in (9) is necessary to ensure 
that M is translationally invariant and to cover (in- 
frequent) instances when energies are desired in nu- 
clear orientations other than the standard one, such 
as for finite-difference derivative calculations. Also, 
T must be included so that this aspect of the standard 
orientation definition is properly differentiated when 
computing derivatives analytically. 

This completes the specification of a grid proce- 
dure which ensures that the computed XC energy is 
the same for any orientation of the molecule in any 
Cartesian coordinate system #I. In itself, this is not of 
large consequence; in practice, single-point energy 
evaluations are almost always done with the nuclei in 
the standard orientation, so the effect of rotational 
non-invariance is not usually observed at this stage. 

However, the major significance of proper treatment 
of the grid orientation arises when computing deriv- 
atives of the XC energy. 

3. First derivatives 

In the following, it suffices to consider the case of 
a particularly simple quadrature grid consisting of a 
single point. For larger grids, the contribution from 
each of the individual points is treated in the same 
way, and hence the formulae derived for a one-point 
grid are trivially generalized by reinstating the sum- 
mation over grid points at the end. Therefore, we shall 
henceforth drop the grid indices unless they are ex- 
plicitly needed. 

In contemplating derivatives of the XC energy, it 
is useful to write 

f=f[R r(R) 1 > (11) 

where R denotes the set of nuclear Cartesian coordi- 
nates, to indicate that the functional depends on the 
nuclear positions in two ways: explicitly, and implic- 
itly through the dependence of the grid points on R. 

Then, differentiating ( 11) gives rise to two terms: 

$;=f’“‘+ VJrX . (12) 

To avoid cluttering the notation, we have used the 
familiar convention of a superscript to denote differ- 
entiation, and have abbreviated with the symbol x 
the zth component of the position of nucleus A, i.e. 

XERAi a (13) 

(Note that x need not represent an x coordinate. ) The 
superscript in parentheses is used to indicate differ- 
entiation of only the explicit nuclear dependence of 
f; to distinguish this from differentiation of the im- 
plicit dependence, which is given by the second term 
in (12). 

From (6) we obtain 

xl In LCAO MO calculations, ordinarily the orbital basis func- 
tions are not rotated with the nuclei; rather, these are left aligned 
with the Cart&an axes. Therefore, although the present scheme 
preserves the orientation of the grid relative to the nuclei upon a 
rigid-body rotation, the grid orientation relative to the basis 
functions changes. This does not pose a problem, though, as the 
basis functions form a complete set with respect to rotations, and 
hence invariant quantities such as the total energy are unaffected. 



380 B.G. Johnson et al. / Chemical Physics Letters 220 (1994) 377-384 

P=fJ~&i + 0% , (14) 

where the differentiation of r and 0 is on an element- 
by-element basis, and ei is the unit vector in direction 
i. The usual definition of r in (5) gives the first term 
in ( 14) but not the second. It is the second term which 
correctly differentiates molecular rotations, and since 
the orientation for any nuclear conformation is em- 
bodied in the definition of 0, this term also properly 
treats displacements of internal degrees of freedom. 
This ensures that, for example, analytically calcu- 
lated derivatives are consistent with those obtained 
by finite difference, which is not necessarily the case 
when the one-center grids are merely translated to the 
nuclear centers without any angular re-orientation. 

To complete the derivative expression, we must 
obtain the derivatives of the elements of 0. This can 
be done through the relationships in (7) and ( 8). 
Differentiation of the orthogonality condition (7) 
yields 

(0”)r0+0=0”=0. (15) 

Introducing 

PX= OTOX ) (16) 

which is the derivative of 0 expressed in the standard 
orientation, we see that 

(PX)T+PX=O, (17) 

i.e. the matrix Px is antisymmetric, and thus may be 
written generally as 

pxC(;Y ja ;) (18) 

in terms of three independent parameters. Differen- 
tiating (8) we obtain 

AP”-P”A=AX-OTM”O) (19) 

from which the independent parameters are readily 
obtained in terms of known quantities by equating 
the off-diagonal elements. 

Note that ( 19) combined with ( 16) gives the de- 
rivative of 0 for an arbitrary orientation of the nu- 
clei; in the most important case of the standard ori- 
entation (0~ I), the independent derivatives of 0 
with respect to nucleus A are 

Z&z ZA& 
a=0 9 8= 1, _A3 9 Y= *2_1: 3 

for differentiation with respect to Rkn 

CR, Z,R, 
a=-7 8=0 9 Y= & _A1 

for differentiation with respect to R,, and 

ZJL Z/J, 
a= n,_n; 9 8= - 

A1 -13 ’ 
y=o 

for differentiation with respect to Rk. 

4. Second derivatives 

(20) 

(21) 

(22) 

The derivation of the rotationally invariant second 
derivative expressions follows the same approach as 
for first derivatives. Therefore, we will omit the al- 
gebra, which is straightforward, and merely give the 
results. Differentiating ( 12) a second time yields 

fm~f(~)(Y)+ (V,f)(“)-rY+ (V,f)@)-r” 

+ (rx)T(TVJ)ry+Vlf.F, (23) 

in which the only relevant new quantities are the sec- 
ond derivatives of the grid points, 

rxy= 0%. (24) 

The second derivatives of 0 are obtained, as before, 
by differentiating (7) and (8 ) and then solving the 
resulting system of linear equations for the indepen- 
dent elements. The expressions are 

(P~)T+P~=PXPY+PYPX, (25) 

(P”y) =A +AP~=A~- OTMwO + PxAPy + P”AP” 

+ PxOTMyO+ PYOTMxO 

- OTMxOPy- OTMyOP" , (26) 

where 

pw= o=ow . (27) 

The equations corresponding to the diagonal ele- 
ments of (25) immediately yield the diagonal ele- 
ments of Pm expressed in terms of known quantities, 
while the off-diagonal equations place three addi- 
tional constraints on the remaining elements of Pw. 
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In conjunction with the three equations obtained from 
the off-diagonal elements of (26), these completely 
determine the desired second derivatives. 

5. Results and discussion 

The rotationally invariant energy and first deriva- 
tive method has been implemented by one of us 
(BGJ) within the Q-Chem quantum chemistry pro- 
gram [ 241. To illustrate the performance of the new 
method, calculations were performed on two small 
molecules with and without the orientation matrix 
producing rotationally invariant energies. Table 1 
presents S-nul1/6-31G total energies obtained with 
two grids: SG- 1 [ 20 1, which we have recommended 
for routine calculations and which has approxi- 
mately 2500 points per atom, and (20, 50), which is 
an Euler-Maclaurin-Lebedev grid [ 19,25 ] having 
1000 points per atom, more typical of the coarser grids 
commonly used in many programs. The energy was 
calculated for the same conformation of each mole- 
cule in three different orientations. Orientation I is 
the standard orientation, orientation II was obtained 
from the standard orientation by a rotation of 20” 
about the x axis, and orientation III was obtained 
from the standard orientation by successive rotations 
of 20” about the x axis and 30” about they axis. The 
energies labeled “previous” use ( 5 ) to define the grid 
point positions, while the energies labeled “this work” 
are from the rotationally invariant method, using (6) 
to define the grid points. 

The “previous” energies indeed demonstrate the 
loss of rotational invariance, as the total energies of 
HOF and HOOF are seen to vary with the orienta- 
tion. In the case of SG- 1, the magnitude of the varia- 
tions for these small molecules is around 1 Oe5 atomic 
units (au). This amount of energy is not chemically 
significant, but the behavior is nonetheless undesir- 
able. Furthermore, for larger molecules the size of the 
variations will increase, and certainly any higher level 
of ‘noise’ in the energies would be unacceptable. For 
the (20, 50) grid, which is less accurate than SG-1, 
the variations are already at the level of 10m3 au, or 
approximately 1 kcal/mol. Errors of this magnitude 
arising from an artifact of the numerical algorithm 
clearly cannot be tolerated. In contrast, the new 
method gives the same energy (that of the standard 
orientation) for all three orientations with both grids, 
as it should. 

As we have discussed elsewhere [ 2 11, lack of rota- 
tional invariance has more serious consequences for 
the derivatives of the energy. For a properly rotation- 
ally invariant energy it follows that [ 26 ] 

with similar relationships for yz and zx. The devia- 
tion of the left-hand side of (28 ) from zero can there- 
fore be used to measure the loss of rotational invari- 
ance in first derivatives calculated by other methods. 
Table 2 lists these quantities for the same systems and 
orientations for analytically calculated gradients. 
(The geometries used are not stationary points, or 
otherwise ( 28 ) would be trivially satisfied. ) As with 

Table 1 
Total molecular energies l for various orientations 

System Orientation b SG-1 (20250) 

previous c this work d previous this work 

HOF I - 172.9645046 - 172.9645046 - 172.9651282 - 172.9651282 
II - 172.9645018 - 172.9645046 - 172.9644639 - 172.9651282 
III -172.9645315 - 172.9645046 - 172.9648349 - 172.9651282 

HOOF I -274.0686706 -247.0686706 - 247.0669064 - 247.0669064 
II -247.0686463 -247.0686706 - 247.0666277 - 247.0669064 
III -247.0686779 -247.0686706 -247.0678356 -247.0669064 

’ S-null&3 lG, units in hartme. 
b See text for definitions. 
c Eq. (5) used to define the grid points. 
d Eq. (6) used to define the grid points. 
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Table 2 
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Test for rotational invariance of energy fust derivatives a 

System Orientation b SG-1 (20,501 

previous = this work d previous this work 

HOF I 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 1.12 0.00 0.00 0.00 
II 0.00 -0.06 0.16 0.00 0.00 0.00 0.00 -0.38 1.05 0.00 0.00 0.00 
III -0.08 -0.06 0.14 0.00 0.00 0.00 -0.52 -0.38 0.91 0.00 0.00 0.00 

HOOF I 0.08 -0.23 -0.50 0.00 0.00 0.00 -0.13 9.27 7.27 0.00 0.00 0.00 
II 0.08 -0.05 -0.54 0.00 0.00 0.00 6.08 -20.58 -6.08 0.00 0.00 0.00 
III 0.34 -0.05 -0.43 0.00 0.00 0.00 -5.12 6.23 8.60 0.00 0.00 0.00 

’ S-null/6-31G, units in mhartree/rad. Derivatives are given in the order yz, zx, xy. 
b See text for definitions. 
c Eq. (5) used to defme the grid points. 
d Eq. (6) used to define the 8rid points. 

the energies, the gradients calculated by the present 
method rigorously obey rotational invariance, while 
the rotational derivatives obtained by the previous 
method deviate from zero. For SG- 1, the deviations 
are at the level of lo- 5-10-4 au, while for (20, 50) 
they are much larger, on the order of 10-3-10-2 au. 
Again, the deviations vary with the orientation. 

For HOF, two of the three rotational derivatives in 
orientation I are zero by the previous method. This 
serves to illustrate how that the invariance relation- 
ships can be satisfied by symmetry for certain orien- 
tations even when they do not hold in general. In this 
case, the molecular plane is taken as the xy plane in 
the standard orientation, and the two zeros result be- 
cause all three nuclei have zero z coordinates and gra- 
dients. As the molecule is rotated out of the standard 
orientation, these become non-zero, and the loss of 
rotational invariance is observed in all three compo- 
nents. 

For molecules belonging to non-Abelian point 
groups, for which degenerate axes occur, some of the 
denominators in (20 )-( 22 ) become zero, and since 
in general the derivatives of the charge-moment ten- 
sor occurring in the numerator are non-zero, the cor- 
responding derivatives of 0 are infinite. (It is also 
possible for this to occur through ‘accidental degen- 
eracy’ in large Ci molecules, though such is of course 
very rare). In cases where the quadrature grid does 
not lower the symmetry of the system, however, grid 
integration of the coefficient of the derivative of 0 in 
( 12) produces zero by symmetry, and thus no rota- 
tional correction is necessary. In a few instances the 

imposition of the grid does result in symmetry low- 
ering (e.g. the SG- 1 grid has local symmetry O,,, which 
when combined with a C3” NH3 molecule results in 
an effective molecular symmetry of only C, ) , in which 
case such a cancellation does not occur. Here, the 
present scheme does not apply, and must be elabo- 
rated. The simplest treatment would be to take the 
appropriate (Y, jl or y as zero (i.e. a correction is not 
applied). One could alternatively employ grids which 
preserve the molecular symmetry [ 171. Note that 
systems examined here belong to Abelian point 
groups, so this problem does not arise. 

For molecules where the nuclei are at or near con- 
figurations of very high symmetry, the possibility also 
exists that the principal axes may switch in some dis- 
continuous manner with nuclear displacements. The 
resulting grid-based potential surface may therefore 
actually possess some discontinuities and hence will 
not strictly be differentiable at such high-symmetry 
points. Such discontinuities become smaller as the 
grid becomes larger, but they cannot easily be elimi- 
nated. The number of times this type of situation is 
encountered in practice is relatively small. 

The computational cost of incorporating the ori- 
entation matrix 0 into XC energy and derivative cal- 
culations is negligible. From Eqs. (9) and (20)-( 22), 
it is clear that the number of arithmetic operations 
involved in evaluating 0 and its derivatives is pro- 
portional simply to the total number of atoms. As the 
definition of 0 does not involve the grid, in first de- 
rivative calculations, for example, the application of 
0” in ( 14) can be postponed until after the grid work 
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has been done by accumulating the intermediate 3 x 3 
matrix 

P= ; (V&)=Qg, (29) 

which is independent of x, whereupon the second 
term in ( 12) is obtained as Tr( Orv). We have re- 
cently presented [ 271 a method for evaluating the XC 
energy and potential matrix which for large mole- 
cules scales only linearly with the number of basis 
functions. The manipulations involving 0 also re- 
quire linear work in system size, but as this work does 
not depend on the basis functions indices, it is insig- 
nificant compared with the other XC work. 

Finally, we note that an added benefit of the pres- 
ent method, above rigorously remedying the defi- 
ciencies associated with molecular rotations, is that 
it permits the rotational invariance relationships for 
derivatives to be exploited to full computational ad- 
vantage. The corresponding relationships pertaining 
to analytical evaluation of two-electron integral de- 
rivatives have been known for some time [26,28], 
but are not widely used within efftcient modem in- 
tegral algorithms [ 29 ] as they are more awkward to 
apply and yield less computational savings than the 
analogous translational invariance relationships. This 
is not the case with grid-based calculations, however, 
where rotational invariance need not be applied until 
after the numerical quadrature is performed. In our 
DFT implementation, the innermost loops run over 
the quadrature points to achieve good vector per- 
formance, and thus rotational invariance can be eas- 
ily handled outside the compute-intensive region. 

To summarize, the method presented is a rigorous 
solution to the last remaining problem in the practi- 
cal implementation of grid-based calculation of the 
XC energy and its derivatives, that of the loss of ro- 
tational invariance. We have recommended [ 2 1 ] for 
KS derivative calculations that all the terms which 
depend on the nuclear coordinates be identified and 
differentiated, so that the derivative formula imple- 
mented strictly corresponds to the definition of the 
energy. This is required for consistency with the nu- 
merical implementation of the XC energy, though 
virtually all derivative implementations in currently 
used computer programs neglect various contribu- 
tions, such as the derivatives of the quadrature 
weights. Introducing the orientation matrix 0 and 

then properly d.$erentiating it as is done here is nec- 
essary in order to rectify the problems due to loss of 
rotational invariance previously encountered [ 2 1 ] in 
KS frequency calculations. 
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