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A new simple upper bound for Coulomb integrals is presented and shown to be significantly more powerful than the bound 
based on the Schwarz inequality. 

1. Introduction 

The last decade has witnessed remarkable progress 
in the development and application of quantum 
chemistry [ 1,2 ] and readily available computer pro- 
grams can now be used to study chemical systems 
which, until a few years ago, would have been con- 
sidered prohibitively large. Moreover, there is every 
reason to believe that the next decade will be just as 
fruitful as the last. At present, the most computa- 
tionally demanding step in well-implemented Har- 
tree-Fock (HF) and density functional theory 
(DFT) calculations [ 31 #I is the treatment of the 
non-local electron-electron interactions which, 
within finite basis set methods [ 41, reduce to clas- 
sical Coulomb integrals 

(1) 
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x1 CADPACS: The Cambridge Analytic Derivatives Package Is- 
sue 5, Cambridge, 1992. A suite of quantum chemistry programs 
developed by R.D. Amos with contributions from LL. alberts, 
J.S. Andrews, S.M. Colwell, N.C. Handy, D. Jayatilaka, P.J. 
Knowles, R. Kobayashi, N. Koga, K-E. Laidig, P.E. Maslen, C.W. 
Murray, J.E. Rice, J. Sanz, E.D. Simandiras, A.J. Stone and M- 
D. Su. 

between charge distributions P(r) and Q(r). It can 
not be over-emphasized, however, that HF and DFT 
calculations on very large systems are currently fea- 
sible only because the costs of such calculations do 
not obey the frequently cited Lo (N3) and Lo (N4) 
“laws”, where N is the size of the basis set employed. 
In fact, it is easy to show that, although the total 
number of Coulomb integrals (ERIs) which arise in 
large systems is 0 (N 3, or Co ( N4) (depending upon 
whether or not density-projection techniques [ 5 ] are 
used), the number of non-negligible ERIs is only 
O(N’). 

To take advantage of the fact that most of the ERIs 
in large systems are negligible, modem quantum 
chemistry programs use upper bound formulae to es- 
timate the magnitudes of ERIs in order to avoid 
computing and handling any that would be suffi- 
ciently small. To be maximially effective, such 
bounds must be both strong (i.e. not too conserva- 
tive) and simple (i.e. based only on information 
about P(r) and Q(r) individually). Although many 
sophisticated bounds have been proposed over the 
years, relatively few satisfy both of these criteria. 

In section 2 of this Letter, we develop three simple 
upper bounds on the ERI ( 1) and then propose a 
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fourth which is the minimum of these. In section 3, 
we use an elementary ERI to define the power of these 
bounds and, in section 4, we examine their 
performance. 

2. Four simple bounds 

It has been pointed out by many authors [6-l 11 
that, since the Coulomb operator defines an inner 
product, the Schwarz inequality [ 121 can be in- 

voked to yield the simple bound 

I (fYQ)l ~G~+a=~, , 

where 

(2) 

z;= (51 p(rlMr2) & dr “2 
)rl-r2l L 2 > * (3) 

Following a detailed empirical study of its perform- 
ance, Haser and Ahlrichs concluded that B1 is “rel- 
atively sharp” [ lo] and it has been advocated by 
Ahlrichs and co-workers [ 10,111 ever since. These 
authors have also suggested that, because (2) be- 
comes an equality when P(r) = Q(r), the bound Bi 
cannot be improved without further assumptions. We 
disagree, however, with this contention. Indeed, as 
we will demonstrate in section 3, Bi can greatly ov- 

erestimate (PI Q), that is, it can be a very weak 
bound. 

Suppose now that we carry out the integration over 

rl in (1) to yield 

U?Q>= 5 Vdr)Q(r)dr, (4) 

where VP(r) is, therefore, the potential due to the 
charge distribution P(r). In the spirit of Gadre et al. 
[ 13 1, we can apply Holder’s inequality [ 12 ] to (4) 
to obtain 

for any m and n satisfying (l/m)+(l/n)=l, m, 
n > 1. Eq. (5 ) provides us with an infinite family of 
bounds on (PI Q) , parametrically determined by m. 

Letting m tend to infinity in ( 5) yields 

I (4 Q) I 6 6% =B2 , (6) 

where 

(7) 

is the maximum absolute potential due to P(r) and 

S*,= I IQ(r)1 dr (8) 

is the absolute content of Q(r). Of course, by the 
symmetry in ( 1 ), it must also be true that 

l (PlQ)I <S*,T/;=&. (9) 

Since the simple bounds B1, B2 and B3 defined by 
(2 ) , (6 ) and (9 ) are independent, an even stronger 
simple bound on (PI Q) is given by 

l(PIQ>I~Min{B,,B2,B,}=Bq. (10) 

In order to use ( 10) efftciently, one must precom- 
pute and store the I*, V* and S* values defined in 
(3), (7) and (8). The Z* are simply square roots of 
two-center ERIs and can be computed by standard 
integral methods [ 31. The V” and S* are novel 
quantities whose computation requires special tech- 
niques which we will discuss elsewhere [ 141. 

We note that (5 ) generates additional rigorous 
bounds if other values of m are chosen and the re- 
sulting extensions of .( IO) are even stronger bounds. 
For each such choice, the integrals of the absolute 
potential of P( r) raised to the power of m and of the 
absolute content of Q(r) raised to the power of 
m( m- 1) - ’ must be found. However, as we will 
show, the B4 bound is already powerful enough for 
many purposes and we will not consider such gen- 
eralizations here. 

3. The power of a simple bound 

We have chosen to develop our definition of the 
power of the B,, B2, B3 and B4 bounds with reference 
to the Coulomb repulsion between two Gaussian 
charge distributions because, in this prototypical case, 
all quantities of interest can be expressed in closed 
form. Suppose that the distributions P(r) and Q(r) 
are Gaussian with exponents c and q, respectively. 
The Coulomb repulsion between them is then given 
by the Boys formula [ 15 1, 
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(PI Q) = 2n5’2 ~v(~+rl)l/2Fo~t) ’ (11) 

where Fo( T) has its usual meaning and it is straight- 
forward to evaluate ( 3)) (7) and ( 8) to obtain 

Zf =2”4( n/l35’4 ) 

6=2(7c/U > 

I!$ = ( n/r)3’2 

and similarly for I& V$ and S& 

(12) 

(13) 

(14) 

The differences between the bounds are very clearly 
demonstrated by constructing the ratio of the exact 
integral(ll)totheB,,(n=l-4)definedby(2),(6), 
(9) and ( 10). Proceeding in this way, it is not dif- 
ficult to show that 

(PI Q)/& =~o(V,(x) , 

where 

(15) 

x=lnJrlrl (16) 

and the functions P,(x) (not to be confused with 
Legendre functions) are given by 

P,(x)=Jsechx, (17) 

P2(x)= f(l-tanhx), (18) 

P,(x>=J~, (19) 

P4(x)=Max{P,(x), P2(x), P,(x)} . (20) 

Since it is certainly not possible for a simple bound 
(one based only on information about P(r) and Q(r) 
individually) to account for the F. ( T) factor (which 
depends upon the distance between the distribu- 
tions), we can measure its performance by P,(x) 
which we will term the power of the bound B,,. We 
will describe a bound as strong whenever its power 
is close to unity and weak whenever its power is close 
to zero. The P,,(x) (n = 1, 2, 3) are plotted in fig. 1 
and P4(x) is simply the maximum of these. 

Inspection of fig. 1 reveals that the four bounds 
differ dramatically from one another: the Schwarz 
bound B, is strong if and only if x is close to zero, 
that is, when c and v are of the same order of mag- 
nitude; B2 is strong if and only if c is much smaller 
than q; B3 is strong if and only if c is much larger than 
q; B4 is strong for all x. It is easily shown that the 

Fig. 1. Powers of the bounds II,, B2 and B,. 

minimum power of B4 is 0.89 and arises when c/q= f 
or 4. 

The fact that the power of the Schwarz bound drops 
exponentially as 1x1 increases explains the obser- 
vation that this bound loses its effectiveness (i.e. be- 
comes weak) when the charge distributions P(r) and 
Q(r) differ grossly in size. This occurs, for example, 
when one pertains to valence electrons and the other 
to core electrons, a common combination in molec- 
ular quantum chemical calculations, and it has been 
found empirically [ 16 ] that the overall performance 
of the Schawarz bound in direct SCF calculations is 
inferior to that of the nonrigorous bound (with a 
safety factor of 10) described by Head-Gordon and 
Pople [ 171. It occurs, a fortiori, when constructing 
electrostatic potential maps by the evaluation of ERIs 
in which Q(r) is a normalized s Gaussian with in- 
finite exponent (i.e. a delta function); this is a case 
for which the Schwarz bound B, is vacuous but B4 

performs very well [ 18 1. 

4. The performance of the bounds 

Although, by definition, the B4 bound can never 
be inferior to the Schwarz bound B1, the degree to 
which it is superior in practical applications depends 
on the range of sizes of charge distributions present: 
in the extreme case of a completely homogeneous ba- 
sis set (one in which all exponents are equal), B1 and 
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B4 are equivalent; at the other extreme (the poten- 
tial-mapping problem mentioned above), B1 is use- 
less and B4 = B2 is optimal. 

To quantify the performances of the bounds under 
various conditions, we may consider all of the pos- 
sible Coulomb repulsions in the one-parameter model 
system consisting of a large number of Gaussian 
charge distributions whose exponents C are such that 
the In ci are uniformly distributed between 0 and N. 
Clearly, the parameter N measures the heterogeneity 
of the charge distributions. The mean power 

of each bound Bi can then be computed within this 
model as a function of N. The (Pi) obtained by 
evaluating (2 I) numerically for N= 0, 1, . . . , 10 are 
given in table 1. 

Although the mean power of the Schwarz bound 
B1 eventually falls to zero for large N, it does so rather 
slowly which explains the empirical usefulness of this 
bound. For example, even when the largest Gaussian 
exponent is as much as 1000 times larger than the 
smallest one, (PI ) is still greater than 0.9. None- 
theless, for the highly heterogeneous model systems 
(N> 3 ), the mean power of the bound B4 is signif- 
icantly greater than that of B,. 

Table 1 

Mean powers (P,) of the bounds Bi-B., as a function of the het- 

erogeneity parameter N for a model system 

N (PI> (Pz> = (P3> <p4> 

0 

8 
9 

10 

1.000 0.707 1.000 
0.990 0.704 0.990 
0.962 0.694 0.967 
0.924 0.681 0.958 
0.881 0.668 0.957 
0.836 0.655 0.960 
0.792 0.642 0.963 
0.751 0.631 0.966 
0.711 0.621 0.969 
0.675 0.613 0.971 
0.641 0.605 0.973 

Acknowledgement 

We gratefully acknowledge a generous allocation 
of resources on the Cray Y-MP at the Pittsburgh Su- 
percomputer Center. BGJ thanks the Mellon College 
of Science for a Graduate Fellowship. Additional 
support for this research was provided by the Na- 
tional Science Foundation (Grant No. 89 18623) and 
the New Zealand Lottery Grants Board (Grant No. 
AP32002). 

References 

[ 1 ] W.J. Hehre, L. Radom, P. von R. Schleyer and J.A. Pople, 
Ab initio molecular orbital theory (Wiley, New York, 1986). 

[ 21 R.G. Parr and W. Yang, Density-functional theory of atoms 

and molecules (Oxford Univ. Press, Oxford, 1989). 

[3]P.M.W. Gill, G.B. Johnson, CA. Gonzalez, C.A. White, 
D.R. Maurice and M. Head-Gordon, Q-Chem (Q-Chem, 

Inc., Pittsburg, PA, 1993); 

P.M.W. Gill, Advan. Quantum Chem., in press; 

P.M.W. Gill, B.G. Johnson and J.A. Pople, Chem. Phys. 

Letters, submitted for publication. 

[4] A. Szabo and N.S. Ostlund, Modem quantum chemistry: 

introduction to advanced quantum chemistry (McGraw- 
Hill, New York, 1989). 

[ 5 ] B.I. Dunlap, J.W.D. Connolly and J.R. Sabin, J. Chem. Phys. 

71(1979)3396;71(1979)4993. 

[6] J.C. Maxwell, A treatise on electricity and magnetism 

(Clarendon Press, London, 1904). 

[7] J.L. Whitten, J. Chem. Phys. 58 (1973) 4496. 

[ 81 J. Power and R.M. Pitzer, Chem. Phys. Letters 24 (1974) 
478. 

[9] R. Ahlrichs, Theoret. Chim. Acta 33 (1974) 157. 
[lo] M. Hlser and R. Ahlrichs, J. Comput. Chem. 10 (1989) 

104. 

[ 111 H. Horn, H. Weiss, M. Haser, M. Ehrig and R. Ahhichs, J. 

Comput. Chem. 12 (1991) 1058. 

[ 121 M. Abramowitz and LA. Stegun, eds., Handbook of 

mathematical functions (Dover, New York, 1972). 

[ 131 S.R. Gadre, L.J. Bartolotti and N.C. Handy, J. Chem. Phys. 
72 (1980) 1034. 

[ 141 P.M.W. Gill, Chem. Phys. Letters, to be submitted. 

[ 151 SF. Boys, Proc. Roy. Sot. (London) A 200 (1950) 542. 

[ 161 M. Head-Gordon and M.J. Frisch, private communication 

(1988). 

[ 171 M. Head-Gordon and J.A. Pople, J. Chem. Phys. 89 ( 1988) 
5777. 

[ 18 ] B.G. Johnson, P.M.W. Gill, J.A. Pople and D.J. Fox, Chem. 

Phys. Letters 206 (1993) 239. 

68 


