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The PRISM integral algorithm has been applied to the computation of the ab initio molecular electrostatic potential and its 
derivatives. Implementational details which are relevant to the additional efficiency ofthe algorithm in the electrostatic case are 
discuksed. On a range of machines, CPU timings of the PRISM electrostatic properties program, which is included in the GAUSSIAN 
92 quantum chemistry package, rcvcal a dramatic performance incnasc (in some casts more than two orders of magnitude) over 
other commonly used electrostatic programs (GAUSSIAN 90, GAMES& MOPAC ESP, CHELPG). In addition, timings are 
reported for a particularly large electrostatic potential evaluation job on the six base-pair oligonucleotide CI’CGAG 
(%&sN~G6sPt8- ). 

1. Introduction 

The molecular electrostatic potential has long been 
recognized as a useful tool in the study of how a mo- 
lecular system interacts with its surroundings. It has 
found application in varied areas of research [ I], 
including, but not limited to, molecular reactivity [ 2- 
5 ] and determination of net atomic charges [ 6- 141. 
However, despite its utility, many of the available 
programs for computing the potential are severely 
inefficient. For example, potential evaluation by 
some programs can often take longer than deriving 
a Hartree-Fock wavefunction from which the po- 
tential is computed, a decidedly unbalanced state of 
affairs. 

The electrostatic potential V(r) is rigorously de- 
fined as a quantum mechanical expectation value, 
and is given in the ab initio LCAO framework by 
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(1) 

where 2, is the nuclear charge of atom A centered at 
RA, & and @,, are orbital basis functions, and P,,” is 
the corresponding element of an appropriate density 
matrix. The first summation is the classical contri- 
bution to the electrostatic potential of the atomic nu- 
clei, treated as point charges, and is of course trivial 
to evaluate. The second summation gives the con- 
tribution of the electronic charge distribution, which 
is nontrivial due to the three-center one-electron in- 
tegrals over basis functions required. 

The evaluation of these integrals is the rate-lim- 
iting step in an electrostatic potential calculation, and 
it is their efficient computation where the basis func- 
tions are of the Gaussian type which is the focus of 
this Letter. We have applied the new PRISM integral 
algorithm [ 15-201 to this problem, with impressive 
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results. In the remainder of this Letter, we first de- 
scribe the particularization of the PRISM algorithm 
to electrostatic potential evaluation, and then com- 
pare the practical performance of our implementa- 
tion with several other electrostatic programs com- 
monly used. CPU timings demonstrate substantial 
performance improvement over the previous 
methods. 

2. Computational method 

It is not our intent to provide a comprehensive re- 
view of the PRISM algorithm, only a brief summary 
before discussing details relevant to the electrostatic 
problem. For a complete description, and for deti- 
nitions of terms and notations, the reader is directed 
to refs. [ 15-201. PRISM is a methodology for the 
computation of general quantities called brake& 
which are two-electron inner-product functionals of 
contracted Gaussians. Particular examples of bra- 
kets include two-electron repulsion integrals (ERIs ) 
and their arbitrary-order derivatives, and PRISM has 
already been demonstrated to be quite efficient in 
the computation of these [ 18,201. PRISM can be 
characterized as a synthesis of generalizations of the 
McMurchie-Davidson integral method [ 2 11, and of 
Head-Gordon and Pople’s improvement [ 221 upon 
the Obara-Saika method [ 231. The major strength 
of PRISM is its ability to perform contraction of the 
brakets at the point of maximum computational ef- 
ficiency for given angular momentum and degree of 
contraction, which is a degree of flexibility not pos- 
sible with other algorithms. This is accomplished 
through use of a set of general recurrence relations 
which provide multiple computational routes, called 
“paths”, from an initial set of auxiliary integrals with 
zero angular momentum to the desired brakets. These 
paths may be diagrammed on the surfaces of rectan- 
gular prisms, lending the algorithm its name. 

The first step in computing electrostatic potentials 
with PRISM is to express the requisite integrals as 
brakets. This can be accomplished by considering the 
electrostatic integrals in eq. (1) as the Coulomb in- 
teraction of the overlap distribution g,( r, )@,( r, ) 
(electron 1) with the distribution 6( r2 - r) (electron 
2). The bra may simply be taken as the product 
d,Jr,)&(r,), while the delta-function is phrased as 
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a ket by taking it as the product of two uncontracted 
s-type Gaussians centered at r: a normalized func- 
tion with infinite exponent, and an unnormalized 
function with zero exponent. In the notation of ref. 
[16],wesetKc=K,=l,y=oo,&O,C=D=r,and 
uo= 1. 

It should be noted that, since the electrostatic po- 
tential depends upon integrals which are brakets, the 
arbitrary-order derivatives of the potential with re- 
spect to the components of the position vector r 
(electric field, electric field gradient, etc.) are also 
composed of brakets and hence can be evaluated by 
PRISM. Our implementation includes the capability 
to evaluate these derivatives, but for the purpose of 
illustrating the use of PRISM to compute electro- 
static properties, it suffices to restrict the discussion 
to the potential only, and we therefore do so. 

Before commencing integral evaluation, a prelim- 
inary pass over contracted shell-pairs is executed, in 
order to discard primitive products which yield a 
negligible contribution and to compile useful data on 
the significant shell-pair components, in the same 
spirit as when computing ERIs. The implementation 
of this phase is extremely important because it de- 
termines the scaling of the integral cost with the size 
of the molecular system, regardless of the efficiency 
of the integral algorithm itself. An algorithm which 
computes all integrals in eq. ( 1) requires 0 ( N2 ) op 
erations per potential evaluation, where N is the 
number of basis functions, regardless of how efft- 
ciently these integrals are worked out. However, for 
large systems the value of most integrals will be es- 
sentially zero due to insufficient basis function over- 
lap, and asymptotically there are only Lo(N) which 
are significant. As the most efficient way to deal with 
an integral is to avoid it if at all possible, this prob- 
lem has been carefully addressed in the general 
PRISM algorithm. 

In the electrostatic case, it is possible to develop 
stronger criteria for accepting or rejecting a shell-pair 
than used in the PRISM ERI program, as the poten- 
tial is a one-electron (shell-pair) quantity, while ERIs 
are two-electron (shell-quartet) quantities. The cut- 
off parameter 

vs = P:b w*, (2) 



Volume 206, number 1,2,3,4 CHEMICAL PHYSICS LETTERS 3OAprill993 

is computed for each primitive shell-pair [ ubl , where 
P:* is the maximum density matrix element corre- 
sponding to the shell-pair, and W$ is the maximum 
absolute potential of all the basis-function pairs in 
the shell-pair, which is found either by an exact or 
approximate method. This is then compared with a 
threshold value t/s, where c is the desired accuracy 
and s is a “safety factor” to account for error prop- 
agation of neglected integrals and the use of approx- 
imations to Wzb. We have found s= 5 to be sufft- 
cient. The primitive shell-pair is rejected if its l’s 
value is below the threshold. (Incidentally, we have 
also applied this cutoff criterion in the context of ERI 
evaluation [ 241.) 

In our implementation, exact values of Wsb are 
used for total angular momentum zero and one. This 
corresponds in the case of zero angular momentum 
to the bound previously given by Gadre et al. [ 25 1. 
For computational simplicity, an approximation to 
Wgb is used for higher angular momentum. The 
primitive basis function product with all angular 
momentum in one Cartesian direction is expressed 
as a sum of Hermite Gaussian functions (see eq. (45) 
of ref. [ 16]), and the sum of the exact W$ values 
is taken for only the s-type terms (corresponding to 
the leading terms in a multipole expansion). In the 
case of odd total angular momentum, the leading p- 
type term is also retained as there will be no s-type 
terms in the case where shells a and bare concentric. 

After the significant shell-pair data have been 
compiled integral evaluation begins. The general 
philosophy of PRISM is to compute batches of in- 
tegrals (not to be confused with classes of integrals 
[ 221) having the same angular momentum and con- 
traction characteristics together, in order to make the 
best use of intermediate quantities and to maximize 
vector performance [ 15 1. In the present context, an 
improvement upon this approach is possible which 
merits elaboration. 

The code was written on the assumption that the 
value of the electrostatic potential will in general be 
desired on a grid of a large number of points. This 
will be the case, for example, when mapping out the 
features of the potential for a reactivity study, or 
when deriving net atomic charges from the potential. 
The program is therefore structured to vectorize over 
batches of grid points, which are the identical delta- 
function kets differing only in position in space. In- 

stead of selecting as many shell-pairs as possible with 
the appropriate characteristics for bras to be paired 
with the kets, however, only one such shell-pair is 
chosen at a time, and is paired with all kets to form 
the integral batches. This strategy, referred to as the 
“fixed shell-pair” scheme, affords considerable ad- 
ditional computational efficiency, since the bra shell- 
pair data are constant for all members of the batch 
(and trivially likewise for all ket data except posi- 
tion). Furthermore, this simplification is achieved 
without loss of vector performance when the number 
of grid points is large. 

Initially, the fixed shell-pair scheme greatly sim- 
plifies computation of the elementary integrals de- 
noted [0] trn) [ 171, as their dependence upon the 
necessary “shell-quartet” quantities has been re- 
duced to merely the distance between the grid point 
and the primitive shell-pair center. The pertinent 
formula [ 161 is 

[o]‘“‘=U(282)“+“2(2/lr)“*~~(t), (3) 

where F,(t) is the well-known auxiliary function, 
and the preceding factors depend here solely on bra 
shell-pair data. Therefore, the value of this prefactor 
need be evaluated only once, with the result being 
applied in computing all members of the batch. This 
results in a computational saving both of floating- 
point operations (flops), and more importantly, of 
memory operations (mops) [ 261, as well as a saving 
of vectors of storage for the values of U and 2e2. Such 
savings are examples of general ramifications of the 
fvted shell-pair scheme in all phases of the integral 
evaluation procedure, as will be demonstrated. 

At this point, the PRISM path which is the most 
efficient for the integral class at hand is selected. In 
the case of electrostatic integrals, many sets of for- 
mally distinct paths become equivalent, because nei- 
ther the ket-contraction nor the ket-transformation 
step is required. To illustrate the path-dependent 
economizations which are possible, we consider the 
CCTTT path, which is also discussed in ref. [ 181. 

This path begins by bra-contraction of the [0] @) 
integrals (ket-contraction is absent here). The use- 
fulness of simultaneously incorporating scalings of 
exponent ratios has previously been noted [ 16 1. The 
scaled contraction formula is 
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Zj= f SjkWjk, 
k=l 

(4) 

where Zj is the jth contracted integral in the batch, 
K is the bra degree of contraction, and the sjk and 
Wjk are, reSpCCtiVely, the SCahgS and primitive in- 
tegrals. This is implemented with the innermost loop 
running over the members of the batch and the outer 
loop over primitives unrolled, and thanks to the fixed 
shell-pair scheme, the scalings become invariant with 
respect to the batch loop index& i.e. eq. (4) becomes 

zj= f SkWjk. 
k=l 

(5) 

Therefore, only one set of K scalings need be loaded 
per batch, rather than one set per innermost loop it- 
eration. This is seen to reduce the number of mops 
involved in the contraction by nearly half, a sub- 
stantial savings. Additionally, the storage required 
for the primitive scalings becomes negligible. 

The contracted integrals (0) (m1 are next trans- 
formed to scaled contracted one-center Hermite in- 
tegrals by eq. (22) of ref. [ 181, derived from the fa- 
miliar identity for uncontracted integrals due to 
McMurchie and Davidson [ 2 11. The recurrence re- 
lation has the abstract form 

+(Di-Bt)W3-mW,, (6) 

where W,- W, are intermediate integrals, m is a con- 
stant, and the batch index subscripts have been 
omitted. The relevant items in the above formula are 
the intercenter distance components (BiDA,) and 
(Ci- Di) , The first pertains to the bra shell-pair in- 
tercenter distance, and is therefore invariant in the 
innermost loop over batch members due to the fixed 
shell-pair scheme. This eliminates one mop per it- 
eration from the loop, and frees the storage other- 
wise needed for the different (Bi-Ai) values. Ad- 
ditionally, a preliminary test on the magnitude of 
(Bi-Ai) may be performed before entering the loop 
over batch members, and if it is zero, a special-case 
coding of eq. (6) with the first term omitted may be 
executed instead. This test, which can save an ad- 
ditional mop and two flops per batch member, could 
not be implemented without the fixed shell-pair 
scheme because it would have to be executed inside 
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the batch loop, sacrificing vector performance. The 
second quantity (Ci-Oi) is a ket shell-pair inter- 
center distance component, which is zero, thereby 
dropping the second term from the formula alto- 
gether. The quantity (Di-Bi) depends on the dis- 
tance from a grid point to one of the bra centers, and 
hence is not constant in the batch. The overall result 
is that the 8 mops and 7 flops required per iteration 
in the most general case are reduced to 5 mops and 
5 flops (4 mops and 3 flops when (B,-Ai) is zero), 
along with the associated memory savings. 

The final step on this path is the bra-transfonna- 
tion, since no ket-transformation is required. This is 
accomplished with cq. (45) in ref. [ 161, which has 
the form 

Z=pi W, t W’z t (Bi-Ai) W,, (7) 

where WI-W3 are intermediate integrals and pi is a 
constant. As with eq. (6), the intercenter distance 
component (B,-Ai) becomes a scalar in the fixed 
shell-pair scheme, allowing the same implementa- 
tional efficiences discussed for (Bi-Ai) above. 

3, Practical performance 

From the preceding section, PRISM is expected 
from a theoretical standpoint to be quite efficient in 
computing electrostatic integrals. However, the most 
pragmatic test of the merit of an integral algorithm 
is its performance in actual implementation on real 
systems. Therefore, a head-to-head comparison was 
performed with the following five electrostatic 
programs: 

( 1) Link 602 of GAUSSIAN 90 [ 271, which uses 
the Rys quadrature integral method [ 281. 

(2) The GAMESS electrostatic program [ 291, also 
based on Rys. 

(3) MOPAC ESP [ 301, which is based on the 
Obara-Saika integral method [ 231. 

(4) A vectorized version [ 3 1 ] of the CHELPG 
program [ 11,13 1, which uses explicit specialcase in- 
tegral formulae. 

(5) Link 602 of GAUSSIAN 92 [ 321, which uses 
the current method. 

Electrostatic potentials were computed by each 
program for two molecular systems: naphthalene, 
which is relatively small, and phenylalanine, which 
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is about twice as large. The grids of points for these 
were generated by the Singh and Kollman algorithm 
[ lo] for fitting of potential-derived atomic charges. 
Hartree-Fock wavefunctions were calculated and 
used for potential evaluation by all programs except 
the semiempirical package MOPAC ESP; here the 
MNDO method was used instead. However, this 
program projects the semiempirical wavefunction 
onto a standard orbital basis set and uses the re- 
sulting density matrix to compute the potential, and 
so timing comparisons between MOPAC ESP and 
the other programs are valid, even though the actual 
numerical results will differ. Both the STO-3G and 
6-3 lG* basis sets were used, to give a variety in the 
angular momentum and degree of contraction of the 
integrals computed. (MOPAC ESP does not support 
6-3 lG*, so only STO-3G was used there.) As the par- 
ticular grid method used here does not retain the 
molecular point-group symmetry, symmetry cannot 
be exploited in any of these calculations; however, 
G92 does have the capability to use full abelian sym- 
metry with symmetrically oriented regular grids. 

therefore wasted. Agreement to the above degree of 
the potentials computed by the various programs was 
explicitly verified (except, of course, for MOPAC 
ESP). 

The above calculations were carried out with as 
many of the five programs as were available on each 
of the following three platforms: VAX station 3100, 
IBM RS/6000 320 and Cray Y-MP/B-32. The total 
CPU times for potential evaluation are presented in 
tables 1-3, and will now be discussed in turn. 

Program defaults for integral accuracy were used 
in all cases. The G92 Link 602 default is lop6 au, 
which is sufficient to give around 10e4 to lo-’ ac- 
curacy in the potential values. The defaults of the 
other programs are all tighter than this, which is 
overconservative when the objective of the calcula- 
tion is, e.g., visualization of the electrostatic poten- 
tial or determination of potential-derived charges, 
tasks for which highly accurate potential values are 
not required and the extra computational effort is 

Table 1 gives timings on a VAX station 3100 for 
G90, MOPAC ESP and G92, with times relative to 
G92 given in parentheses. Since this is a scalar se- 
quential platform, performance on this machine is 
essentially determined simply by the number of mops 
and flops executed by the programs, so comparisons 
between the programs can be made which are in- 
dependent of vector effects. First of all, it is readily 
apparent that G90 is drastically inferior to the other 
two programs on the VAX. This is due to the use of 
a less sophisticated underlying integral algorithm 
(Rys), exacerbated by a poor implementation of that 
algorithm and an ineffectual cutoff scheme. Al- 
though G92 is the clear winner of the three, the MO- 
PAC ESP timings are also very respectable compared 
to G90, and at the time of its introduction this pro- 
gram represented a dramatic step forward in elec- 
trostatic potential codes. 

The relative speedup of G92 compared to G90 is 
greater for STO-3G than for 6-3 1 G*. This is because 
the Rys method handles high contraction in the basis 
set poorly (the primitive integrals are simply added 

Table 1 
VAX station 3 100 CPU timings for electrostatic potential calculations by various programs 

Molecule Grid 
points 

Basis 
set 

Basis 
functions 

CPU time a1 (s) 

G9D MOPAC ESP b, G92 

naphthalene 916 STO-3G 58 1840 425 105 
(17.5) (4.05) 

6-31G* 166 5430 319 
(14.3) 

phenylalanine 1278 ST03G 96 6980 1540 291 
(24.0) (5.29) 

6-31G* 212 20900 1090 
(19.2) 

” Values in parentheses are relative to G92 time. 
b, The 6-3 1 G* basis set is not available with MOPAC ESP. 
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together at the end), while performing better with 
weakly contracted, high angular momentum basis sets 
like 6-3 1 G*. 

One of the most important conclusions which can 
be made from table 1 is that the relative speedup of 
G92 over both the other programs increases as the 
size of the molecular system increases. G92 com- 
pletes the naphthalene STO-3G calculation 17.5 times 
faster than G90 and 4.05 times faster than MOPAC 
ESP; however, for phenylalanine STO-3G the G92 
speedups increase to 24.0 and 5.29, respectively. This 
shows that the G92 cutoff scheme is more effective 
than in the other two programs (if they had the same 
efficiency the relative speedup would remain con- 
stant upon going to a bigger molecule), and that the 
MOPAC ESP cutoffs are better than in G90. The G90 
timings actually show that the cost per grid point is 
almost fully quadratic in the size of the basis set, in- 
dicating that virtually no insignificant integrals are 
being successfully prescreened. This is a clear illus- 
tration of the importance of having a good cutoff 
procedure, and has obvious implications for calcu- 
lations on very large systems. 

typical of the sort of platform in mind when the 
PRISM algorithm was designed. All five programs 
were run on this machine using a single processor, 
with the results compiled in table 3. The first two, 
G90 and GAMESS, are two orders of magnitude 
slower than G92 on these systems and exhibit no 
vectorization whatsoever. The timing ratios of 
MOPAC ESP to G92 are about six times as great as 
on the VAX, which is attributed to the comparative 
vectorizability of the two programs. MOPAC ESP 
mainly vectorizes over the primitive basis functions, 
which offers only limited vector performance com- 
pared to vectorizing over the grid points as is done 
in G92. 

Table 2 gives timings on an IBM RS/6000 320, a 
popular RISC-based workstation. Only G90 and G92 
were available to us on this platform. As on the VAX, 
G90 offers no competition to G92, with the same 
general trends being observed. It is worth noting that 
the G92 relative speedups are considerably greater 
here than on the VAX; this is related to the fact that 
G92 vectorizes much better than G90. 

The third machine used in this study was the Cray 
Y-MP/8-32, a large vector supercomputer which is 

Next is the vectorized CHELPG program, a ver- 
sion specially written for Y-MP in order to improve 
the performance of the original CHELPG, which does 
not vectorize. For small systems this program is quite 
fast and achieves good vectorization, coming within 
a factor of three of G92 for naphthalene STO-3G. 
The explicitly coded formulae for d-containing in- 
tegrals are not efficient, and a marked degradation 
in performance is observed when moving to 6-3 1 G*. 
As in G92, vectorization is over grid points, but full 
quadratic storage must be allocated for each point, 
which decreases the maximum vector length within 
a fixed amount of memory as the basis set size is in- 
creased. For example, a vector length of 5 12 was eas- 
ily possible for naphthalene STO-3G within the four 
megawords of memory used, but for phenylalanine 
6-3 1 G* only a vector length of 64 could be obtained, 
impairing performance. This is to be contrasted with 
the fixed shell-pair scheme in G92, which requires 

Table 2 
IBM RS/6000 320 CPU timings for electrostatic potential calculations by various programs 

Molecule Grid 
points 

Basis 
set 

Basis 
functions 

CPU time 0) (s) 

G90 G92 

naphthalene 916 S’lD3G 58 355 13.5 
(26.3) 

6-31G’ 166 1060 44.0 
(24.1) 

pheuylalanine 1278 STO-3G 96 1380 36.6 
(37.7) 

6-31G* 272 4080 120 
(34.0) 

‘) Values in parentheses are relative to G92 time. 
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Table 3 
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Cray Y-MP/S-32 CPU timings for electrostatic potential calculations by various programs 

Molecule Grid Basis 
points set 

Basis CPU time kb) (s) 
functions 

G90 GAME% MOPAC ESP ” CHELPG G92 

naphthalene 916 STO-3G 58 137 
(226) 

6-31G’ 166 411 
(195) 

phenylalanine 1278 STO-3G 96 544 
(360) 

6-3lG’ 272 2370 
(433) 

CTCGAG 9310 STO-3G 1378 
(C,,sH,s~%OesPt~- 1 

62.8 
(104) 
190 
(90.0) 
217 

(144) 
623 

(114) 

14.0 1.95 0.606 
(23.1) (3.22) 

8.90 2.11 
(4.23) 

48.4 7.27 1.51 
(32.1) (4.81) 

42.4 5.47 
(7.75) 

163 

‘I One processor, vector mode. 
b, Values in parentheses are relative to G92 time. 
‘) The 6-3 lG* basis set is not available with MOPAC BSP. 

extremely little storage for basis set information for 
each batch of integrals, maximizing the vector length. 
All G92 calculations on the Y-MP had a vector length 
equal to the total number of grid points, ensuring es- 
sentially perfect vectorization. However, due to its 
memory restrictions, the scope of CHELPG is lim- 
ited to small and medium-sized systems. It should be 
noted that the drawbacks mentioned above mainly 
result from the structure of the original program, 
which imposed constraints on the subsequent ap- 
proach to vcctorizing the code. As this program is 
the second fastest of the five in spite of this, the ef- 
fort put into this code has been quite successful. 

As mentioned earlier, G92 is able to obtain high 
vector performance with little difficulty. The dom- 
inant subroutines in terms of CPU time are CalcOG, 
which generated the initial [0] cm) integrals, and 
DoConG, which performs the contraction. These to- 
gether account for around 55W of the total CPU time, 
and both run at speeds of 175 Mflops or more on a 
single processor. No other individual routine ac- 
counts for more than loo/o of the total CPU time. 

Finally, the last row of table 3 gives the timing of 
anextremelylargeelectrostaticpotentialjob. TheHF/ 
STO-3G potential of the oligonucleotide CTCGAG 
(molecular formula C,,6H,38N46068P1g-, 1378 ba- 
sis functions) was calculated on a Singh-Kollman 
grid of 9310 points in 163 seconds. This is totally 
insignificant compared with approximately 11 h of 

CPU time required for the SCF calculation. The vec- 
tor length was the full 93 10 points. Comparison with 
the corresponding time for phenylalanine shows that 
the cost per grid point is indeed essentially linear in 
system size. The undertaking of this job would ab- 
solutely not be advised using each of the other four 
programs; MOPAC ESP and CHELPG due to mem- 
ory requirements, and G90 and GAMESS due to ex- 
tremely poor performance. We estimate this calcu- 
lation by G90 would require approximately nine Y- 
MP CPU days. 

4. Conclusion 

The PRISM algorithm, originally designed for the 
efficient computation of ERIs and their derivatives, 
is also very well suited to the computation of the 
electrostatic potential and its derivatives. Our im- 
plementation, which is included in GAUSSIAN 92, 
has been shown to perform extremely well on a va- 
riety of machines, and to be vastly superior to the 
four other electrostatic programs studied. It is now 
possible to evaluate the potential on large grids in a 
very small fraction of the time required to solve the 
HF SCF equations, dramatically illustrated by the 
under-three-minute CTCGAG potential calculation 
on the Y-MP. One especially rewarding area of ap 
plication for this method would be the calculation of 
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semiempirical electrostatic potentials of extremely 
large systems, as the SCF time is negligible com- 
pared with ab initio methods and most of the CPU 
time is spent in the electrostatic calculation. 
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