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Suppose that we wish to approximate a charge distri- 
bution p(r) by a model charge distribution p* (r ) such that 

(a) the difference between their potentials is least- 
squares minimal; and (b) the distributions contain the 
same total charge. 

The obvious formulation of this potential-matching 
problem begins by defining 

e(r) =p(r) --p*(r), 

f e(r) . 

(1) 

__. 
%I = J mar (2) 

and then seeks the function p*(r) which minimizes 

Z= s vw12~ 

subject to the constraint 

s e(r) dr = 0. (4) 

(Throughout this Letter, unless otherwise noted, we will 
follow the convention that integrals are over all space.) 
Minimizing Eq. (3) subject to Eq. (4), however, poses 
some irritating numerical difficulties which have been dis- 
cussed by Hall and co-workers.’ Most of these difficulties 
arise because the integral in Eq. (3) diverges for all p*(r) 
except those which satisfy Eq. (4) exactly. Recently, in the 
context of computing the two-electron repulsion integrals 
which arise in ab initio quantum chemical calculations, 
Fortunelli and Salvetti have outlined an approximate pro- 
cedure which avoids some of these difficulties, but their 
method cannot be applied universally and is undesirably 
dependent on the geometry of the molecule under 
investigation.’ We now demonstrate that, under the con- 
straint (4)) we can transform Z to a form which is ideal for 
numerical work and in which all needed integrals can be 
computed by minor modifications of existing computer 
codes. 

We achieve the transformation of Z by recognizing 
that, if c(r) satisfies certain conditions3 (given by Fubini’s 
theorem4), the integrations implicit in Eq. (3) can be re- 
ordered and we can then invoke Eq. (4) and integrate over 
x, thus 

z= s P’W12dx 

1 
2 

dr, dr2 dx 

4rdlrl-r2le(r2)dq dr2. (5) 

The integration over x can be achieved by placing ri at the 
origin and r2 on the z axis and then using the Legendre 
expansion to express ]r,--xl - ’ as an infinite series. The 
square of this series is easily integrated term by term and 
then summed to yield 45-l rl - r,l. Equation (5) shows that, 
under the constraint (4), the least-squares minimization of 
the potential of a distribution e(r) is equivalent to the 
maximization of the self-interaction of e(r) over the dis- 
tance operator 

&w2) = Irl-r2l. (6) 

Thus, we can transform the problem of minimizing Eq. (3) 
subject to Eq. (4) into the problem of maximizing 

z’= 
JJ 4rd Irl--r2ldr2)dq do. (7) 

subject to the same constraint. 
If e(r) is a sum of Gaussian functions, Z’ can be com- 

puted efficiently using our recently developed PRISM 
algorithm:5 the [Olcm) integrals must be, redefined to ac- 
count for the fact that we are using D (instead of the 
Coulomb operator l/D) but the rest of the algorithm re- 
mains unchanged. We will develop these ideas further in a 
future paper.6 

As a simple demonstration of the use of 3 to solve a 
potential-matching problem, we will set up the equations 
to model the sum of N Gaussian functions 

p(r) = : bi(@i)-3’2 exp( -?/pi) 
I 

by a sum of M<N Gaussian functions 

(8) 
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P* b-1 = iE ail 7Tai) -3’2 exp( - g/ai), 
i 

(9) 

where all (M + N) functions share the same origin. For- 
tunelli and Salvetti have studied this problem2’*’ but, in- 
stead of maximizing Eq. (7)) they minimized 

Z” = 
J-J E(rl)lrl-r2l-‘e(r2)drl dr2 (10) 

which, as Hall et al. have argued,* results in a fit of the 
electricfields of p( r) andJ* (r), not their potentials. How- 
ever, the integrals over D are easily computed and, upon 
dropping irrelevant terms and factors, we obtain 

Z’= 5 g Upj(Cti+aj) +‘I2 
i j 

.U N 

--2 C C a&j(ai + Pj> + In9 
i j 

(11) 

t ai- ; bj=O. 
i 

(12) 

Thus, the task of determining the optimal amplitudes and 
reciprocal exponents reduces to the purely algebraic, and 
remarkably simple, problem of maximizing Eq. ( 11) 
within the constraint ( 12). 

The example above, which involves only one center, is 
a relatively simple one but our methodology is very general 
and easily extends to more complicated cases. We are cur- 
rently investigating applications of this modeling proce- 
dure to various problems in conventional and density func- 

tional quantum chemistry and we will present detailed 
accounts of our results in a forthcoming paperq6 We have 
found, as did Fortunelli and Salvetti,2 that the two-electron 
repulsion integrals (PI+), whose computation is the 
most expensive step in the direct SCF method,’ can be 
computed significantly more efficiently if the two overlap 
distributions (PY~ and IAo) are first replaced by concise, 
potential-matched models. We are also exploring the use- 
fulness ofpodifying the pzpular method* of Dunlap et al. 
by using D, instead of l/D, to project the molecular elec- 
tron density onto a finite basis set. We hope that this will 
enhance those density functional procedures’ which use 
this technique. 
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