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Abstract 

We have attempted to optimize the cost (the total number of floating-point operations re- 
quired) of using the McMurchie-Davidson RNLM, recurrence relation. Rigorous solutions of the 
tree-search problem inherent in the cost minimization are given for total angular momentum 
L 5 7. For L 2 8, the rigorous search algorithm is prohibitively expensive, and we propose an 
approximate algorithm that generates highly optimized trees. Cost comparisons demonstrate that 
the present scheme is consistently superior to two others currently in use. 

1. Introduction 

Many popular methods [l-71 for computation of two-electron repulsion inte- 
grals (ERIS) over Gaussian basis functions [8] are based upon the use of recur- 
rence relations to construct the needed ERIS recursively from easily computed 
quantities involving the incomplete gamma function. The familiar scheme [l] 
due to McMurchie and Davidson (MD) involves certain one-center integrals re- 
lated by a two-term recurrence relation, and some of the more recent algorithms 
for computing ERIS and their derivatives, such as the PRISM method of Gill and 
Pople [7], also make use of these one-center integrals and the associated recur- 
rence relation. 

Optimization of the use of the recurrence relation has been addressed by Gill, 
Head-Gordon, and Pople [4], as well as by Saunders [9], but prior to these, the 
topic had received little attention because the cost generally did not represent a 
major portion of the total cost of ERI evaluation by MD-based methods. However, 
in the PRISM algorithm of Gill and Pople, the cost of the MD recursion is signifi- 
cant in certain cases. For example, computing an entire class of (d ,  spld, sp) with 
degree of contraction equal to two using the PRISM CCTTT pathway [7] re- 
quires 57,766 floating-point operations (FLOPS), of which 28,189 or 48.8% corre- 
spond to the MD work. It is therefore of critical importance to optimize this 
transformation step. 

In this paper, we consider the problem of optimizing the cost, in terms of the 
number of FLOPS (adds, subtracts, multiplies, and divides), of producing the one- 
center integrals by examining the tree-search problem that is inherent in the ap- 
plication of the MD recurrence relation. We describe search algorithms that were 
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used to determine the minimum cost of transformation for maximum total angu- 
lar momentum L 5 7. For L 2 8, the search time required by these algorithms 
for rigorous elucidation of the optimal cost is prohibitive, and we propose and 
discuss a new algorithm for finding efficient transformations, or "trees," to the 
needed one-center integrals. Finally, we compare our method with other pro- 
posed methods for generating efficient trees and demonstrate that our method 
produces the most FLOP-efficient transformations found so far. 

2. Notation and Motivation 

We introduce the integrals [r]("), defined [4] by 

x exp[ - R202t2] dt , (1) 

where the Hr, is the usual Hermite polynomial of degree ri; 5, q, and 0 are given 
in terms of Gaussian exponents; and R,, R,, and R, are the components of a po- 
sition vector, with R2 = RZ + R; + R:. The integer vector r = (r,, ry, I , )  gives 
the components of angular momentum of the integral in each Cartesian direc- 
tion. The total angular momentum of the integral is defined as I = r, + ry + r,. 
In the paper by MD [l], the integral [r](") was designated by Rrxryrzm. 

In computing EMS or ERI derivatives having a total angular momentum L, it is 
in general necessary to compute the full set of [r]") with 0 I r I L. This is ac- 
complished by first forming the integrals [O]'"), 0 I rn I L,  which involve the in- 
complete gamma function, and transforming them to [r]") by the familiar MD 

identity [l, 41: 

[r](") = Ri[r - li](m+l) - ( I ;  - l)[r - 2Jrn+l), (2) 

where i represents a Cartesian variable ( x ,  y ,  or z ) ,  and li and 2; denote, respec- 
tively, one and two multiples of the unit vector in the i-direction. We shall refer 
to (2) as the MDRR (McMurchie-Davidson Recurrence Relation). The integrals 
[r - li](m+l) and [r - 2i](m+') on the right-hand side of the MDRR will be referred 
to, respectively, as a parent and grandparent of [r]'"). 

It will be useful to introduce the following shorthand notations for denoting 
integrals and sets of integrals: 

1. We use [jkl]'") to indicate the single integral [r]("), where r = ( J ,  k, 1). 
2. We use (jkl}(") to indicate the set of six (or fewer) [r]'") whose components 

are generated by all permutations of j ,  k, 1. 

The application of the MDRR to produce an integral of higher angular momen- 
tum from one or two integrals of lower angular momentum involves either one 
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FLOP (ri = l), two FLOPS (ri = 2), or three FLOPS (ri 2 3): Note that, since the 
MDRR can be used to increase angular momentum in any Cartesian direction, any 
[r]'") is expressible in terms of [r]("+') of lower angular momentum in up to three 
different ways, with each way possibly incurring a different cost. It is therefore 
evident that there are many different pathways possible to the [r]") from the 
[0Icm) and that finding the most economical pathway involves a tree-search prob- 
lem. 

It would be desirable, given a value of total angular momentum L, to find the 
tree for that angular momentum value, or L-tree, requiring the minimum num- 
ber of FLOPS to produce the [r]") from the [O]'"). L-trees that are optimal in this 
sense are not difficult to find for L I 4; however, when L 1 5, rigorous elucida- 
tion of the minimum-mops L-tree is nontrivial, and for L 2 8, it remains an un- 
solved problem. 

3. Rigorously Optimal L-Trees (L I 7) 

We proceed to derive rigorous solutions to the tree-search problems for L I 7. 
The derivation of these trees serves also to illustrate our notation and to suggest 
a motivation for the algorithms proposed later. Although our aim is to produce 
trees that begin with [0Icm) integrals and lead to [r]") integrals, using the MDRR to 
increase angular momentum, the discussion is facilitated if we consider the tree 
in reverse; that is, we begin with the set of desired [r]") and reduce the angular 
momentum of these, producing additional integrals that must be reduced and 
proceeding in this way until all have been reduced to [O]'"). Thus, we will speak 
of the reduction cost (1, 2, or 3 FLOPS) incurred by applying the MDRR to form a 
particular integral from its parent and grandparent. 

The 2-Tree 

We omit consideration of the 1-tree as it is trivial, and begin our discussion 
with the 2-tree. Figure 1 is a McMurchie-Davidson 2-tree, showing all of the 
equations required to compute the [r](') from the [O]""). Figure 2 is a tabular rep- 
resentation of the same tree. Each row corresponds to a distinct vector r, and 
each column, to an m value. The entry in the table for each integral [r]:rl(m) in the 
tree consists of a letter ( x ,  y ,  or z ) ,  indicating the component of angular momen- 
tum reduced when applying the MDRR, and a parenthesized number (1, 2, or 3) 
indicating the associated reduction cost. We assume that the [0Icm) have been pre- 

*The stated costs are for applying the MDRR to the uncontracted integrals. Gill and Pople have 
derived analogs of the MDRR for contracted and half-contracted integrals [7], which are also im- 
plemented in the PRISM method. For the new recurrence relations, a constant is added to each of 
the individual costs given above, and the optimal tree is a function not only of the total angular 
momentum but also of the angular momenta of the individual basis functions. However, trees op- 
timized for uncontracted integrals perform well for contracted integrals, and so, to avoid a prolif- 
eration of special cases, the appropriate tree for uncontracted integrals is always used. Therefore, 
in this paper, when we speak of trees, FLOP counts, etc., we are specifically referring to the case 
of uncontracted integrals. 
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[O 0 lfO' = RZIO 0 01") 
[0 1 0]'0) = R,[O 0 01'" 
[ 1 0 0]'0' = R,JO 0 01") 

[0 0 11") = R,[O 0 0]'2' 
[0 1 01") = R,[O 0 0]'2' 
[ 1 0 01") = R,[O 0 Of2) 

[0 0 21") = R,[O 0 l]") - [0 0 O](" 
[0 1 11"' = R,[O 0 l]") 
[0 2 0](0) = R,[O 1 01") - [0 0 O](') 
[ 1 0 1 J'O' = R,[ 1 0 O]"' 
[ 1 1 0](0) = R,[O 1 01") 
[2 0 0](0) = R,[ 1 0 O]") - [0 0 01") 

Figure 1. A McMurchie-Davidson 2-tree (cost = 15 FLOPS). 

[rl 

m 

0 1 2 

* * * 

Figure 2. Tabular representation of the McMurchie-Davidson 2-tree in Figure 1 

computed and that, therefore, there is no cost associated with the first row of the 
tree. The sum of all numbers in parentheses is the cost in FLOPS of the 2-tree. It 
follows that each element of the table in Figure 2 corresponds to an equation in 
Figure 1. Henceforth, we will avoid the more cumbersome equation listing and 
only the tabular form of trees will be given. 
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We are now ready to discuss the 2-tree shown. First of all, note that any inte- 
gral belonging to a set {OOj}("), j 2 1, can be reduced in only one way (namely, 
by reducing the 'y"), producing a parent in {OOj-l}('"+l) and grandparent in 
(00j-2}(m+1) (if j > 1) which are of the same form. Hence, we are led to our 
first rule: 

Rule 1: All integrals (OOj}fmi, 0 5 j 5 L - m, 0 5 m I L, are present in 
any L-tree. 

From now on we shall refer to these integrals as "axial" integrals because their 
angular momentum vectors lie along one of the Cartesian axes. We note that 12 
of the 15 integrals in the 2-tree are axial. 

The only nonaxial integrals are (0 1 l}('). Each of these may be reduced in either 
of two ways (each costing one FLOP) and yields an axial parent that, by the previ- 
ous conclusion, must already be part of the tree; hence, the reductions introduce 
no new integrals to the tree. Therefore, reducing either component will give the 
same contribution to the total cost, and our choices in Figure 1 are arbitrary. In 
that all [r]'" have been reduced to [O]'"), the tree is now complete, and summing 
the individual reduction costs yields a total of 15 FLOPS. It is also evident from 
the preceding discussion that any 2-tree must cost exactly 15 FLOPS. 

The 3-Tree 

Figure 3 depicts a McMurchie-Davidson 3-tree. By Rule 1, all axial integrals 
appear in the tree. Furthermore, it is clear that the reductions of the (0 1 l}(') dis- 
cussed in the first example again have no consequence in determining the over- 
all cost of the tree; these reductions are carried out as for the 2-tree. 

The integrals (0 12}(') are the first for which the reduction procedure is non- 
trivial. These key reductions are given in bold face in Figure 3. Reduction of the 
component of unit angular momentum costs one FLOP and involves an axial 
parent, whereas reduction of a component of two units costs two FLOPS and in- 
volves a parent in the set (0 ll}(l) (which must itself be subsequently reduced) and 
an axial grandparent. It is clear that reduction of the unit component is preferred 
for two reasons: first, it invokes the least expensive special case of the MDRR, 
and, second, it introduces no new integrals (which, themselves, would have to be 
reduced) to the tree. This argument applies, in general, to the reduction of inte- 
grals in {Olj}(m), j I 2, since the parent involved in reducing the "1" is an axial 
integral and will therefore be in the tree. As an indication of this preferred man- 
ner of reduction, we refer to such integrals as "axial child integrals and are led 
to our second rule: 

Rule 2: Axial child integrals are to be reduced in the component of unit 
angular momentum. 

It should be apparent that any reductions chosen for the remaining integral 
[l 11](0) and its parent (which is a member of (0 1 l}(')), have the same effect on 
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m 

0 1 2 3 

Figure 3. Tabular representation of a McMurchie-Davidson 3-tree (cost = 
41 FLOPS). 

the overall cost; here, we arbitrarily reduce the x-component of [111]‘0’ and the 
y-component of its parent. 

It is worthwhile to observe that, since the tree contains the minimum number 
of integrals possible and each is formed in the manner costing the fewest FLOPS, 
the cost of 41 FLOPS for the whole tree is the minimum possible for a 3-tree. 

An important feature of the 3-tree is that it contains two “holes,” i.e., Figure 3 
gives a complete path from the [O]‘“’ to the [r]‘”, but the integrals [101]“’ and 
[l 1 O](l) are not needed as intermediates. It is true, in general, that not all the in- 
termediate integrals are needed, as has been previously noted [4,9], and elimi- 
nating unnecessary integrals must be a primary focus in developing algorithms to 
produce efficient trees. 

The 4-Tree 
For the 4-tree shown in Figure 4, all integrals can be reduced as in previous 

examples except for the six integrals (0 2 2)“) and (1 1 2}(’). Applying the MDRR to 
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:2  c 21 
:2  1 1; 
:2 2 01 
[3 0 1: 
:3 I 01 
!4 0 12: 

m 

0 1 2 3 4  

Figure 4. Tabular representation of a McMurchie-Davidson 4-tree (cost = 
86 FLOPS). 

any of these will yield a parent that is not needed to form axial and axial child 
integrals. We now observe that for (1 12}(’), reduction of a component having unit 
angular momentum involves a parent that is an axial child integral; hence, such 
a reduction choice can ultimately add no more than two FLOPS to the cost of the 
tree. Since the only other reduction choice (reducing the “2”) costs two FLOPS, it 
can never be a more economical option. This argument applies to all integrals in 
the sets {llj}(m), j B 2, and it is evident that an optimal tree must exist in which 
all such integrals that are present in the tree are reduced in a component of unit 
angular momentum. For this reason, we adopt our third rule ((1 lj} rule): 

Rule 3: Integrals in the sets {llj}(m), j 1 2 are never to be reduced in the 
component of angular momentum indicated by ‘7.’’ 

It is important to note that this rule does not dictate which unit component is 
to be reduced-only that the ‘7” should not be reduced. Selection of the appro- 
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priate component for reduction depends upon the context of the reductions to be 
performed. We observe that in this case, without loss of generality, we may re- 
duce an arbitrary unit component of one of the (1 12}('). However, upon doing so, 
it is evident that one of the (0 2 2)'") can now be formed in a manner costing the 
fewest FLOPS, while introducing no additional parents and grandparents to the 
tree (which would also have to be reduced). Indeed, we may formulate a general 
rule (common parent rule): 

Rule 4: Zf the parent and grandparent associated with a minimum-mops 
reduction of an integral are present in a tree, the integral is to be reduced to the 

associated parent and grandparent integrals. 

In fact, each of the (1 12}(') may be reduced in such a way that the reduction of 
a member of (0 2 2)'" follows from the common parent rule. Because of the poten- 
tial for common parents, we say that (1 12)") and (0 2 2)'" are "coupled" sets of in- 
tegrals. For this tree, we reduce [l 121'" by applying the MDRR to thex-component. 
It then follows from the common parent rule that the y-component of [0 2 21") is 
to be reduced. These key reductions and others are given in bold in Figure 4. 
The total cost is 86 FLOPS, and we note that by the same argument as for the 
3-tree it follows that 86 FLOPS is the minimum cost for a 4-tree. 

Before proceeding, we observe that it is a general consequence of the axial 
child and (llj} rules (Rules 2 and 3) that no integrals [ill]'"', {Oil}("), m > 0, 
are present in any tree in which these rules are observed, because they can arise 
only from reductions that violate the rules (excepting, of course, one of the 
(0 11)") that must be present from the reduction of [l 11](". Therefore, for any 
tree, the first 10 rows are completely determined, and, henceforth, we consider 
only integrals with angular momentum greater than or equal to three. 

The 5-Tree 

Figure 5 shows the portion of a 5-tree consisting of the integrals with total an- 
gular momentum greater than or equal to four. The axial and axial child inte- 
grals may be immediately reduced, and the possibilities for reduction of integrals 
(1 1 2}(') and (1 13}(') are limited by the (1 1 j} rule. The reductions of the integrals 
(0 2 2}(", (1 2 2}'", and (0 2 3}(') are not determined by any previous rules. How- 
ever, by an argument similar to that establishing the (1 l j} rule, we conclude that 
reduction of a "2" for integrals in the sets (02j}("), j 2 3, will never prevent us 
from obtaining an optimal tree. Hence, we propose the (0 2 j} rule: 

Rule 5:  Integrals in the sets (02j}fm), j 1 3 are to be reduced in the component 
of angular momentum indicated by "2." 

This new rule governs the reduction of (0 2 3}(') and allows for subsequent reduc- 
tion of the (1 13}(') by the common parent rule. 

However, for the nine integrals (0 2 2}('), (1 12}('), and (1 2 2}(') that remain 
unreduced, there are no integrals already in the tree due to previous reductions 
that could be used as parents. Simply proceeding by reducing the minimum com- 
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irl 

TI 

0 1  

Figure 5. Tabular representation of a partial McMurchie-Davidson 5-tree, show- 
ing key reductions which lead to the minimum cost of 160 FLOPS. 

ponent of angular momentum for each of these (thereby minimizing the individ- 
ual reduction costs) cannot give a total cost less than 161 FLOPS, which turns out 
to be one FLOP greater than the optimal number. In fact,for L 2 5, it is no longer 
possible to produce optimal trees by any scheme that reduces all needed integrals 
by applying the MDRR in a direction costing the fewest FLOPS and a more elaborate 
method is necessary. 

We now turn our attention to the problem of determining the optimal reduc- 
tions for the nine [r]") integrals. Although Rules 1-5 do not dictate a definite re- 
duction procedure for these, they have afforded a simplification of the problem 
that is considerable, as will be seen. 

The possible parents and grandparents of the remaining [r]") are as follows: 

(0 2 2}(0) - (0 12}(') + (0 0 2}(') 

{112}(@ - {012}(1) 

(1 2 2}(@ - (0 2 2}(1),{112}(') + (1 0 2}? 



818 JOHNSON, GILL, A N D  POPLE 

Note that none of the [r](') integrals already reduced by Rules 1-5 have parents 
or grandparents in any of the above sets (except for those with axial parents andlor 
grandparents), nor is there a possibility for the [r](') integrals resulting from the 
reduction of the nine remaining [I-](') to have parents (except for axials) in common 
with any of the other needed [r]('). We see, therefore, that the rules have "decou- 
pled" the problem of reducing the nine integrals from the reduction of the rest of 
the integrals in the tree. This decoupled problem can easily be solved by examin- 
ing all possible reduction choices for the nine integrals by a simple computer pro- 
gram. Upon doing so, the optimal 5-tree cost is found to be 160 FLOPS, as 
mentioned earlier. 

In Figure 5, the reductions in bold allow a tree costing 160 FLOPS. Note that a 
nonminimum component is reduced for [12 2]('), but that this particular reduc- 
tion produces a parent [12 11") that is reducible in one FLOP, versus the two FLOPS 

required to reduce the parent [0 2 21"' associated with the minimum-FLoPs reduc- 
tion, and involves a grandparent [12 O](') that is also used as a parent for [2 2 O]('). 
Most importantly, when [12 1](') and [2 2 O](') are reduced as shown, a common 
parent results, yielding a net savings of one FLOP. 

After solving the 5-tree problem, it is useful to consider the more general 
problem of how to optimally reduce any given subset of [r](L-5), 3 I r 5 5, to 
axial integrals (which are guaranteed to be present in any L-tree by Rule 1). 
Since the optimal procedure for reduction of all integrals in a tree with the same 
m value does not depend upon the manner in which the integrals for all lower m 
values were reduced, the solution of this problem would allow the remainder of 
any partial L-tree ( L  > 5)  in which the [r](') have all been reduced to [r](L-5) to 
be solved optimally. Again, our rules allow us to decompose the problem into 
two separate ones: reduction of needed integrals in the sets (0 2 2}(L-5), (1 1 2}(L-5), 
and (1 2 2}(L-5), for which Rules 1-5 are not immediately applicable, and the 
other [r](L-5), for which Rules 1-5 fully determine the reductions. 

For the set (02 2}(L-5) U (1 1 2}(L-5) U (1 2 2}(L-5), there are 29 different subsets, 
one of which is the complete set considered in the solution of the 5-tree. Each of 
the 29 related problems is quite modest in complexity and trivially solvable by 
computer. Furthermore, each of these problems needs to be solved only once, 
with the results stored for future reference when considering L-trees with L > 5.  
Once these optimal reduction schemes are obtained, any such L-tree may be 
completed efficiently from the [r](L-5) by the algorithm given in Scheme 1. 

SCHEME 1. Algorithm for optimal reduction of nonaxial [r]'L-5), 3 5 r 5 5. 

Reduce (0 1 j } (L-5 ) ,  j 2 2, by axial child rule. 
Reduce (02 3}(L-5) by ( 0 2 j )  rule, and resulting (0 1 3}(L-4) by axial child rule. 
Reduce (1 1 3}(L-5) by (1 1 j }  rule, observing the common parent rule. If for any of these a common 

parent (from reduction of the appropriate (02 3}(L-5)) is unavailable, reduce either unit compo- 
nent, and reduce the subsequent parent in (013}'L-4) by the axial child rule. 

Obtain optimal reductions for needed (02 Z}(L-5), (1 1 2}(L-5), and (1 2 2}(L-5), from list of pregener- 
ated solutions. 
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The 6-Tree 
In the spirit of the approach for the 5-tree, we seek an efficient method for op- 

timally reducing a given set of [r](L-6), 3 I r I 6, to axial integrals. Any axial 
child integrals and (02j}(L-6), j 2 3, may, of course, immediately be reduced. 
Note that any (1 1 4}(L-6) that are not reducible by the common parent rule may 
be reduced in either unit component, as the only integrals that could have a par- 
ent in common with these are the (0 2 4}(L-6). This leaves for consideration only 
the integrals shown in Figure 6, given with their possible nonaxial parents and 
grandparents. 

All these reductions are coupled in that each set of [r](L-6) listed has at least 
one set of possible parents or grandparents in common with those of at least one 
other [r](L-6) set. Since there can be up to 22 of these [r](L-6’, it is inefficient to 
determine the optimal reductions by examining all possibilities (up to 2l23lo) for 
this coupled set. However, we observe that there exist two coupled subsets of the 
[r](L-6) that are nearly disjoint, indicated by the groupings in Figure 6, and only 
the (1 2 3}(L-6) are members of both the coupled subsets. This indicates that, for 
each possible reduction of the needed (123}(L-6) (up to 36 = 729), the larger 
problem of simultaneously considering the reductions of up to 16 remaining in- 
tegrals is decomposed into two smaller problems, namely, the reduction of 
(0 2 2}(L-6), (1 1 2}(L-6), (1 2 2}(L-6), and [2 2 2](L-6) and, separately, the reduction of 
(1 1 3}(L-6) and (0 3 3}(L-6). 

For efficiency in solving any given set of [r](L-6), the solutions for all possible 
special cases of these two subproblems may be precomputed and then merely ref- 
erenced, as was done for certain sets of [r](L-5). However, in this case, the pos- 
sible presence of integrals in the sets (1 1 2}(L-5) and (1 2 2}(L-5) (from reduction of 

[ 1 1 3](L-6) + ( 0  1 3)(L-5’ 
2 3)(L-5’ + { O  1 3](L-5) 

Figure 6. Coupled sets of [r](L-6) and their nonaxial parents and grandparents. 



820 JOHNSON, GILL, AND POPLE 

(1 2 3}(L-6)) must be considered in the first subproblem, as they are potential par- 
ents or grandparents for some of the integrals to be reduced. Similarly, in the 
second subproblem, we must consider the possibility that integrals in (0 1 3}(L-5) 
and (0 2 3}(L-5) might be present and, hence, could be used as parents and grand- 
parents. Also, integrals in (1 1 3}(L-5) must be considered, as they could potentially 
have parents in common with the other relevant [r](L-5). These extra considera- 
tions merely increase the number of different special cases of the two subprob- 
lems whose solutions are precomputed and do not affect the efficiency of the 
resulting tree. 

After these "dictionaries" of optimal reductions have been compiled, the [ T ] ( ~ - ~ )  
reductions may be solved efficiently by the algorithm given in Scheme 2. Since 
all possible reductions are examined only for the needed (1 2 3}(L-6), the maxi- 
mum number of different combinations is only 36, as opposed to 2l23l0. 

In particular, this algorithm may be used to determine an optimal 6-tree by 
setting L = 6 and requiring the full set of nonaxial [r]"', 3 I r 5 6 (except for 
[ll l]"), which will not be considered because of the (1 lj} rule). The cost of the 
tree is obtained as the cost of the reductions performed by the algorithm, plus 
two FLOPS for reducing [lll]'o) and its parent, plus the cost of reduction for all 
axials, which can easily be shown for an L-tree to be 3/2 (3L2 - 3L + 2) .  This 
gives the minimum 6-tree cost as 268 FLOPS. 

The 7-Tree 

After reducing as many integrals as possible with Rules 1-5 for a given set of 
[r]'L-7), 3 5 r 5 7, we are still faced with over 40 [r](L-7) remaining; the reduc- 
tions of which are, in general, highly coupled so as to preclude an efficient 
method similar to that of the 6-tree for determining their optimal reduction. 
However, since a highly efficient method is available for solving the reduction 
problem for any given set of [r](L-6), the approach in finding the optimal 7-tree 
cost was to determine a set of partial 7-trees, consisting of all the [r]") and cer- 
tain of the [r]('), 3 I r I 6, which are viable (in the sense that every [r]"', 4 I 

SCHEME 2 .  Algorithm for optimal reduction of nonaxial [r]('-@, 3 5 r 5 6. 

Reduce (0 1 j}'L-6), j 2 2 ,  by axial child rule. 
Reduce {02j}(L-6) ,  j e 3, by (0 2 j )  rule, and resulting (0 lj}(L-5) by axial child rule. 
Reduce (1 1 4}(L-6) by (1 1 j )  rule, observing the common parent rule. If for any of these a common 

parent (from reduction of the appropriate ( 0 2  4}'L-6') is unavailable, reduce either unit compo- 
nent, and reduce the subsequent parent in (014}'L-5' by the axial child rule. 

Obtain optimal reductions for needed (0 2 2}(L-6), (1 1 2}(L-6), (1 2 2}'L-6', and [2  2 2]'L-6' in pres- 

Obtain optimal reductions for needed (1 1 3}(L-6) and (0 3 3}(L-6) in presence of needed {0 1 3}(L-5), 

Obtain cost of optimally reducing resulting [r](L-s) by algorithm in Scheme 1 .  

For each possible reduction of needed (1 2 3}(L-6) 

ence of needed (1 1 2}'L-5' and (1 2 2}('-') from list of pregenerated solutions. 

(0 2 3}(L-51, and (1 1 3}(L-5) from list of pregenerated solutions. 

Next (1 2 3}(L-6) reduction 
Select the (1 2 3}(L-6) reductions, along with the associated optimal reductions for other integrals, 

which yield the minimum sum of reduction costs for the [r](L-6' and associated [r](L-5). 
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r 5 7, can be formed from the [rf')), such that at least one of the partial trees 
will yield an optimal tree if all [r](') and subsequent intermediate integrals are re- 
duced optimally. An optimal 7-tree was then found by completing each partial 
tree by the algorithm in Scheme 2 and noting the minimum cost obtained. 

Because of the vast number of reduction choices available for the [r]'" in a 
7-tree, it is evident that any feasible procedure for optimizing the 7-tree must 
consider only a minute fraction of all viable [r](') sets. Fortunately, simplifica- 
tions are possible that reduce the partial trees that must be examined to a man- 
ageable number. 

First, note that by Rules 3-5, applied to {02j}(0' and {llj}("), 3 5 J I 5, all 
(0 lJ}('), 3 I j 5 5 will be in any such [r](') set; hence, we need to consider these 
and the [r]"' associated with them no further. The problem of completing the 
[r](') sets is simplified considerably if we consider each different angular momen- 
tum value (r = 3, .  . . ,6) separately, by generating for each angular momentum 
all sets of [r](') that are "parent-viable," meaning that each m = 0 integral with 
angular momentum r + 1 has at least one parent in the set. These are easily gen- 
erated by examining all reduction choices for the associated [r]"' and collecting 
all distinct sets of parents that result. For example, there are 18 [r](') with angular 
momentum seven that remain after initial application of Rules 1-5 for which 
there are 26312 ( >lo7) reduction choices, but only 45,605 distinct parent-viable sets. 

After initially applying Rules 1-5 to the full set of [r]"' and relevant interme- 
diate integrals generated, we note that it is not a restriction to arbitrarily choose 
the reduction of the integral having all three components equal with highest total 
angular momentum ([2 2 21"'). By predetermining that the x-component be re- 
duced, we require that [12 21"' be present in the parent-viable sets for angular 
momentum five and that [022]"' be present in the sets for angular momentum 
four. This reduces the number of five-sets roughly by one-third and halves the 
number of four-sets. Less restrictively, the possibilities can be slightly limited 
further for angular momentum less than or equal to five by recognizing that 
some of the integrals must be used as grandparents as well as parents. For exam- 
ple, a reduction of [223]") demands that one of the three integrals [023]"', 
[2 0 3]'", and [2 2 11'') be present in any 7-tree. Therefore, any set of [r](') with an- 
gular momentum five that does not contain at least one of these three need not 
be considered, even if it is parent-viable. Such "grandparent restrictions" allow 
approximately 10% of parent-viable sets for angular momentum less than or 
equal to five to be discarded. 

Once all relevant parent-viable sets have been obtained, all sets of [r]"' differ- 
ing by one unit of angular momentum are paired such that each [r]"' of appropri- 
ate angular momentum can be formed by the MDRR from integrals in the paired 
sets. As for the individual parent-viable sets, in certain cases it is possible to elimi- 
nate a viable pairing because of other considerations, hence, reducing the num- 
ber of 7-trees that need ultimately be considered. Particularly, since any set of 
[r](') with angular momentum three will contain only axial child integrals, which 
reduce immediately to axials by Rule 2 (and, hence, are not coupled with any 
other integrals other than trivially), it is evident that we need pair each parent- 
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viable set with angular momentum four with only one set with angular momen- 
tum three, if we choose the pairing such that cost of completely reducing the 
[r](’) with angular momentum five (using the integrals in the paired sets as inter- 
mediates) is minimized. 

We may reduce the number of viable pairings considered for sets of integrals 
with angular momentum five and six by noting that [r](’) integrals with angular 
momentum six are used only as parents in a 7-tree (never as grandparents). 
Therefore, any pairing may be discarded that contains any integrals with angular 
momentum six that are not necessary to form all [r]“) with angular momentum 
seven in the cheapest manner allowed by the available [r](’), as the unnecessary 
integrals can only add to the cost of the tree. This eliminates approximately 90% 
of viable pairings from further consideration, a substantial reduction. 

Since reduction of an integral by the MDRR involves only integrals differing by 
one unit of angular momentum, no more intermediate pairings are necessary, 
and we may proceed directly to construct [r](](’) sets, implied by the pairings al- 
ready obtained, which are viable for constructing all [r]“). Note that any such set 
of [r](l) that contains an unnecessary integral may be discarded, as was done 
when pairing set of integrals of angular momentum five and six. This ultimately 
results in approximately 7.7 x lo5 partial trees, each of which is completed opti- 
mally by the algorithm in Scheme 2 to yield a 7-tree. Since all restrictions we 
have introduced eliminate only partial trees that are nonviable, contain unneces- 
sary integrals, or are trivially equivalent to another partial tree considered, the 
trees obtained having the minimum cost, which is 418 FLOPS, are optimal. 

When the total angular momentum is greater than seven, the time required to 
rigorously determine the minimum L-tree cost by algorithms such as these is pro- 
hibitive. We now turn our attention to the development of an algorithm that gen- 
erate trees for higher L values, which, although not proven optimal, are believed 
to be the most efficient yet known. 

4. Near-OptimalL-Trees (L  2 8) 

A motivation for constructing an algorithm to produce near-optimal trees for 
high angular momentum values can be drawn from the fact that it is quite often 
the case that an optimal L-tree “contains” an optimal (L - 1)-tree, in that it is 
only necessary to remove some integrals from an optimal L-tree to reveal an op- 
timal (L - 1)-tree. Furthermore, the optimal L-tree (for L > 1) is not unique- 
there are actually many distinct L-trees that have the minimum possible cost. 
For example, out of all the 7-trees examined in the exhaustive search described 
above, 298 were optimal. This suggests that if an efficient 8-tree is desired, an 
excellent starting point (“skeletal tree”) is one of the optimal 7-trees. We require 
that all the integrals in the 7-tree be present in the 8-tree, and then complete the 
8-tree by adding the [r]“) with r = 8 and selecting a scheme for performing all 
necessary reductions. This procedure may then be continued inductively, using 
the best (L - 1)-trees as skeletal trees for constructing L-trees. 

It now remains only to specify a method for carrying out the remaining reduc- 
tions that are necessary to complete the tree. Of course, Rules 1-5 may be used 
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to determine as many reductions as possible, and once all integrals have been re- 
duced to a set of [r](L-6), we may proceed according to the algorithm in Scheme 2. 
For the integrals that remain, there are three factors that must be taken into ac- 
count when deciding their reductions: 

1. The immediate cost (1, 2, or 3 FLOPS) of applying the MDRR to reduce an in- 

2. The cost of reducing any new integrals introduced to the tree by a reduction. 
3. The effect of a current reduction on other, later reductions (such as by intro- 

ducing integrals to the tree that would allow some subsequent reductions to 
follow by the common parent rule). 

tegral. 

As a means of succinctly considering all these effects when faced with ambigu- 
ous reduction choices for a particular integral, we introduce the notion of a cost 
index for each nonzero component of an integral, which serves as an indication 
of the contribution of reduction of the component to the total cost of the tree. It 
is designed such that reduction of components with lower indices should be pre- 
ferred to reduction of components with higher indices when striving to produce 
trees of minimum total cost. 

Component cost indices were taken as the sum of three contributions, one for 
each of the three considerations above: 

1. The cost of applying the MDRR to reduce the component. 
2. The minimum over all possible reduction combinations of any new parent 

and/or grandparent introduced by the reduction, of the MDRR costs of reduc- 
ing these plus the minimum cost of reducing any new integrals that would 
be added to the tree by the particular reduction choice of the new parent 
and/or grandparent. 

3. The sum of the minimum cost index of all other needed integrals with the 
same value of m, which would result ifthe particular component under con- 
sideration were reduced. The cost index for an integral is defined as the 
minimum over all nonzero components of the sum of the first two contribu- 
tions to the component cost index given above. 

In defining the component cost index, we place more emphasis on the third 
consideration, since as L increases, the proportion of reductions that cost three 
FLOPS tends asymptotically to one, and, hence, minimization of the number of in- 
tegrals in the tree through common parents becomes more and more important. 

At this point, a simple example is useful to illustrate the computation of a com- 
ponent cost index. We consider again the nine integrals (0 2 2}('), (1 1 2}('), and 
(1 2 2}(') discussed in the rigorous solution for L = 5 and compute the cost index 
of the y-component of [12 21"). Although the notion of a component cost index 
was not used in solving the 5-tree problem, this particular case demonstrates the 
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index without the lengthiness involved in its computation for integrals in trees of 
higher angular momentum. The first contribution is two FLOPS, and since the re- 
duction would introduce [112]") and [102]"' to the tree, the second contribution 
is seen to be three FLOPS (one each for the reduction of the two [r]('), plus one for 
the reduction of the member of {012}'2' that must appear from the reduction of 
[112]"'). It now remains only to sum the cost indices of the other integrals. It is 
obvious that the integral cost indices of [112]"' and [2 0 2]"', which could be re- 
duced by the common parent rule if the y-component of [12 21'" is reduced, are, 
respectively, one and two FLOPS. On the other hand, the indices for remaining 
members of (1 12}(') and (0 2 2}('), whose reductions are not coupled to the cur- 
rent one, are seen to be two and three FLOPS, respectively. This demonstrates the 
general effect of lowering of cost indices through the potential for common par- 
ents. Similarly, it is easily shown that the integral cost index of [2 12](0) is three 
FLOPS and that of [2 2 11'" is four FLOPS, with the former being less, again, due to 
the potential for a common parent with [12 21"). This gives the third contribu- 
tion as 20 FLOPS, and, hence, the component cost index is 2 + 3 + 20 = 
25 FLOPS. It is interesting to note that the cost index of the x-component of 
[122]'", given the same set of needed [r]"', is 27 FLOPS; hence, the component 
cost index would indicate that a nonminimum component of angular momentum 
be reduced for [12 21'". As previously demonstrated, it is necessary that at least 
one of the (1 2 2}(') be reduced in a nonminimum component in order to obtain 
an optimal 5-tree. 

After the cost index has been used to guide the reduction of a set of [r](Icm) to a 
set of [r](Icm+'), we may sieve certain of the [r]('"+') from the tree, which will only 
increase the total cost, as was done when exhaustively searching the 7-tree. An 
integral [r](Icm+') is considered unnecessary if its removal does not cause the mini- 
mum cost of computing the needed [rIcm) from the remaining [r](m+') to increase. 
Such integrals, if allowed to remain in the tree, can do nothing but introduce in- 
tegrals by their reduction that may themselves be unnecessary and make spuri- 
ous contributions to the cost indices of other integrals and their components. 
Once a complete tree is obtained, its minimum possible cost, given the interme- 
diate [r]('"), is trivially obtainable, as it is simply the sum over all individual inte- 
grals of the minimum cost of formation of each integral from the integrals 
available in the tree. 

We are now ready to give an algorithm for finding efficient trees, which is out- 
lined in Scheme 3. The algorithm was used to find trees for 8 5 L 5 16. All best 
(L - 1)-trees were used as skeletal trees in searching for L-trees, starting with 
the 298 known optimal 7-trees as a basis for finding &trees. 

5. Results and Discussion 

Table I summarizes the results of the present study in terms of the best costs 
obtained for trees with L I 16. (Copies of our optimized trees, if desired, are 
available from the authors upon request.) Also listed are the corresponding costs 
for two other methods for generating trees: the sieve method of Gill, Head- 
Gordon, and Pople [4], and that which we term the "full" method, in which all 
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SCHEME 3. Algorithm for producing efficient McMurchie-Davidson L-trees. 
~ ~ ~~ 

Produce a skeletal L-tree from an efficient (L - 1)-tree. 
Form = 0, ..., L - 7 

Reduce as many [r]cm) as possible by Rules 1-5. 
For each of [r]'"') that are needed but have not yet been reduced, select first by increasing maxi- 

mum component of angular momentum, then by dictionary order. 
Compute the cost index for each nonzero component of angular momentum. 
Reduce the component of angular momentum having the minimum cost index. If the mini- 

mum cost index is not unique, apply the following criteria, in order, to determine which 
component with minimum index is to be reduced. 

1. Select the component whose reduction introduces the fewest new integrals to 

2. Select the maximum component of angular momentum. 
3. If there are exactly two components with minimum cost index, select the compo- 

the tree. 

nent according to the cyclic scheme 

( x  and y) + x, (y and z) 3 y, (z and x) + z. 
4. If there are three components with identical cost indices, select the x-component. 

Reduce as many [r]'"') as possible by the common parent rule. 
Next [r]"") 
Remove any [r]'m+l) from the tree whose removal does not increase the minimum cost of form- 

ing the needed [r]'". 
Next m 
Reduce the needed [r](L-6) integrals optimally by the algorithm in Scheme 2. 
Compute the minimum cost of transforming [O]'"') + [r]") using the intermediate [r]""). 

TABLE I. FLOP-costs of McMurchie-Davidson L-trees obtained by 
various methods. 

L Present Sieve" Fullb 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

3* 
15' 
41* 
86* 

160' 
268* 
418* 
622 
890 

1233 
1668 
2219 
2866 
3638 
4554 
5633 

3* 
15* 
41* 
86* 

161 
272 
428 
648 
936 

1302 
1776 
2358 
3060 
3924 
4944 
6135 

3* 
15* 
43 
95 

180 
312 
507 
783 

1161 
1665 
2322 
3162 
4218 
5526 
7125 
9057 

"The sieve method of Gill, Head-Gordon, and Pople [4]. 
bAll [r]'"", 0 5 r 5 L - m, 0 c m 5 L are formed as cheaply as possible. 
*FLoP-cost is rigorously the smallest possible. 
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intermediate [rIcm) are formed. An asterisk beside a cost indicates that the cost 
is optimal. 

It should be noted that the L-tree costs by the present algorithms are always 
equal to, or smaller than, those by other algorithms. The failure of the other 
methods to perform as well as the present one can be attributed to violation of 
one or more of the three considerations given in the last section for selecting re- 
ductions. It is obvious that, since all integrals are generated in the “full” method, 
it will become inferior to the others as soon as the possibility of unnecessary in- 
tegrals arises. As was previously noted, this happens for L 1 3, and it is seen 
that the “full” method is the most expensive for L >_ 3. 

Conversely, the sieve method [4] concentrates solely on removing unnecessary 
integrals. This is done by systematically eliminating from the complete tree any 
integral [rIcm), m > 0, which is redundant in that every integral which could be 
formed from [rIcm) could also be formed from some other integral in the tree. 
This process is repeated until no further integrals can be removed. Although 
many unnecessary integrals are removed by this procedure, no account is explic- 
itly taken of reduction costs in determining which of the removable integrals 
should actually be eliminated. Hence, one would expect that the sieve method 
would produce L-trees that are far more economical than are the corresponding 
“full” trees (in that approximately one-third of the integrals in the “full” tree 
may be removed), but are not as efficient as trees produced by the present al- 
gorithm. Comparison of the costs in Table I shows that this is indeed the case. 

Furthermore, improvements over the present scheme may be obtainable for 
high values of L by regarding the minimization of the number of integrals in the 
tree as the foremost concern, since, as previously noted, in the limit of large L,  
all integrals have the same reduction cost. 

Finally, we note that, although total tree cost in FLOPS is the proper quantity to 
be optimized in most cases, this is not always the case. Certain computers are 
capable of performing more than one FLOP simultaneously. This suggests that, for 
these machines, the trees should be reoptimized using costs for the special cases 
of the MDRR of one (ri I 2) or two (ri 2 3) when an add and a multiply may be 
“chained” together or of one everywhere when an add and two multiplies may be 
chained. Of course, the second case is simply equivalent to minimizing the num- 
ber of integrals in the tree. To give a particular example, a 5-tree exists that con- 
tains fewer integrals than do known ~ ~ O - F L O P  5-trees, yet it costs more than 
160 FLOPS; hence, a tree that is a solution of one of the three optimization prob- 
lems is not necessarily a solution of the other two. However, approaches similar 
to the ones used here in optimizing the total number of FLOPS should be useful in 
performing the new optimizations. 
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