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Abstract

A synthesis of certain of the features of the recently developed HGP method of Head-Gordon and
Pople with some of the constructs of the well-established McMurchie-Davidson (MD) scheme has led to
the development of a new algorithm for the computation of the two-electron repulsion integrals which
arise in conventional ab initio quantum chemical calculations using Gaussian basis sets. As in the MD
scheme, derivatives of the two-electron integrals with respect to the nuclear coordinates are obtained
very efficiently by the new algorithm. Moreover, in the spirit of the HGP approach, as much of the
computational effort as possible is performed outside the contraction loops. This is achieved through
the intermediacy of scaled, partially contracted integral sets and through the use of a near-optimal solution
to the central tree-search problem. Explicit FLOP (floating point operation ) counts suggest that the new
algorithm is typically a factor of 2 cheaper than the HGP method for contracted basis sets.

Introduction

There has been a recent resurgence in the development of highly efficient algo-
rithms [1,2] for the evaluation of two-electron repulsion integrals (ERIS) over
Gaussian basis functions [3]. Because their number increases with the fourth power
of the size of the basis set used, the computation and handling of these (six-di-
mensional ) integrals constitutes the rate-limiting step in most implementations of
the widely-used algebraic Hartree-Fock (HF) approximation [4]. Moreover, for
large problems, the storage and retrieval of the ERIs from disk can pose considerable
practical difficulties, and this has led to the development of so-called “direct” meth-
ods in which the ERIs are recomputed whenever they are needed. Direct algorithms
have been applied to the calculation of HF energies and gradients [5] and, more
recently, second-order Mgller-Plesset perturbation (MP2) energies [6,7] and HF
frequencies [8]. Not surprisingly, the viability of such direct calculations is found
to be critically dependent on the efficiency of the method used to compute the
required ERIS.

The state of the art in ERI evaluation prior to the contributions of Obara and
Saika and Schlegel (0ss [1]) and of Head-Gordon and Pople (HGP [2]) has been
thoroughly reviewed [9]. Of the pre-0ss approaches, the Pople-Hehre method (PH
[10]) has generally been considered to be the most efficient for ERIs involving only
s and p functions (particularly if these are significantly contracted and/or in the
form of sp shells) while the Rys (DRK [11]) and McMurchie-Davidson (MD[12])
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methods are often used for ERIs involving d (or higher) functions. For the calculation
of the derivatives of ERIs with respect to nuclear positions, a variety of methods
[1a,11,12] have proven useful.

However, in their seminal paper [ 1b], Obara and Saika demonstrated that an
eight-term recurrence relation (RR) (which had been implicit in earlier work [ la]
by Schlegel on derivatives) connecting a given ERI to others of lower angular mo-
mentum may be used to reduce the desired ERIs very efficiently to readily evaluated
[3] ERIs involving only s functions. More recently, HGP have improved upon the
oS procedure by demonstrating that a two-term RR (termed the “horizontal” re-
currence relation, HRR) can, significantly, be applied to contracted ERIs. HGP showed
[2] that a judicious combination of the eight-term and two-term RRs leads to a
particularly efficient scheme which is as fast, or faster, than all previous algorithms
(except the PH method for highly contracted sp basis sets) for the generation of
ERIs and their first derivatives.

In the present paper, following a careful examination of the features which lead
to the remarkably good performance of the HGP algorithm, we propose a synthesis
of the HGP and MD algorithms which appears to be superior to either approach and
which, additionally, appears well-suited to the computation of ERI first (and higher)
derivatives.

Definitions and Conventions

We begin by defining some fundamental quantities, adopting conventions similar
to those used by HGP. Thus, an unnormalized primitive Cartesian Gaussian function
Yax centered at A and with exponent ay, is

Yar(r) = (x — A)% (¥ — 4,)%(z — 4:)* exp[—aw(r — A)?] (1)

and is uniquely defined by the vectors a = (ay, a,, a;) and A and by the scalar ay.
The angular momentum of Yy is @ = (g, + a, + a.). A contracted Gaussian
function centred at A is defined as

K
da(r) = z an\bak(r) (2)
k=1

where K is known as the degree of contraction of ¢,. A primitive ERI over four
primitive unnormalized Gaussians is the six-dimensional integral

[akb;|c,d,] = ff Yar (P ¥ (1) 713 Yem(X2)¥an(r2) dry drs (3)

We will frequently drop the subscripts when they are not of interest, thereby denoting
this primitive four-center Gaussian ERI by [ab|cd]. Finally, from Eq. (2) we define
a fully contracted Gaussian ERI (ab|cd), distinguished from a primitive ERI by the
use of parentheses in place of brackets, by

Kan Kg Kc Kp

(abled) = 2 2 2 20 Dak, DoigDeke Daiy [ 2k, biy | €] (4)
kx ks kc kp
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In an entirely analogous fashion, we define an unnormalized primitive Cartesian
Hermite function y, centered at A and with exponent oy by

@ak(r) = aa/zHax[allc/Z(x - Ax)]Hay[allc/z(y - Ay)]Haz
X [ai’?(z = 4:)] exp[—ou(r — A)?] (5)

where H, represents the usual nth degree Hermite polynomial. Henceforth, we will
retain the convention that a bar above a function indicates that it is Hermite.
Likewise, we define a contracted Hermite function ®a, a primitive Hermite ERI
[axb;|C,nd ], and a contracted Hermite ERI [ab|cd) by analogy with Egs. (2), (3),
and (4), respectively.

Finally, we will also consider “generalized” ERIs which may

(1) Contain both Gaussian and Hermite functions

(2) Be n-centered, where 7 is not necessarily 4

(3) Be contracted with respect to the functions of either or both electrons
1 and 2
These are straightforward extensions of the ERIs described above. For example, an
(ab|q] ERI might be described as a “left-contracted, three-center, mixed ERI” because
it contains contracted Gaussian functions of electron 1 and an uncontracted Hermite
function of electron 2.

The Motivation for the New Algorithm

In the paper by HGP [2], a number of contemporary procedures for ERI com-
putation were evaluated by comparing the number of floating-point operations
(FLOPs, i.e., adds, subtracts, multiplies, and divides) required by each procedure
to generate (pp| pp), (sp, splsp, sp), (dd|dd), and (ff|ff) integral classes. For
clarity, it was assumed in each case that each of the four shells is on a distinct center
and has a degree of contraction K. Each FLOP count is then expressed (Table III
of Ref. 2) as a quadratic in K?, viz.,

N = xK* + yK? + zK° (6)

The utility of such an expression lies in the fact that it indicates not only how much
total computational effort is required by a given algorithm but, also, how that effort
is distributed between

(1) FLOPS inside all four contraction loops (xK’ 4

(2) FLOPS outside the two innermost contraction loops (yK?)

(3) FLOPS outside all of the contraction loops (zK®)

For example, the margin by which the HGP method [2] is faster than the Rys
method [ 11] increases with increasing contraction of the basis set used, and this is
directly indicated by the fact that, although z{HGP) > z(DRK), it is also found that
X(HGP) < x(DRK).

One key, then, to the impressive performance of the PH and HGP algorithms with
contracted integral classes is their comparatively modest x parameters. That is, they
perform relatively little work within the innermost contraction loop. In the PH
approach [10] this is achieved by the use of carefully chosen axis systems which
enable most of the computational effort to be “factored” outside the two innermost
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contraction loops (thereby decreasing x at the expense of y) while, in the HGP
algorithm, the fact that the HRR (horizontal recurrence relation) can be applied to
fully contracted integrals enables much of the work to be “factored” outside all four
contraction loops (thereby decreasing x at the expense of increasing z). Any scheme
for ERI evaluation which aims to be competitive with the PH and HGP algorithms
for contracted basis sets must likewise “factor” work outside as many of the con-
traction loops as possible.

Another promising approach to the problem of ERI (and, particularly, ERI de-
rivative) evaluation is that due to McMurchie and Davidson (MD). A decade ago,
MD argued [ 12] that, since it is straightforward to express a primitive four-center
Gaussian ERI [ab|cd] as a linear combination of primitive two-center Hermite ERIs
[p]a] (and since integrals of this latter type are comparatively easy to evaluate),
contracted Gaussian ERIs (ab|cd) can be efficiently computed via such a pathway.
Moreover, essentially because the derivative of one Hermite function is another,

e.g.,
a - _
a (‘pa) - —‘pa+1,‘ (7)

it is easy to show that arbitrary-order derivatives of an intermediate primitive two-
center Hermite ERI [p|q] with respect to the coordinates of P (or Q) are trivial to
obtain. The MD technique is superficially quite different from the HGP and OS
approaches. However, closer inspection reveals that the algorithms have structural
similarities, and a very satisfactory synthesis of the two is possible.

On the basis of the lessons learned from the performances of previous algorithms,
we list below five guidelines for the construction of an efficient procedure for cal-
culating ERISs:

(1) Contract primitive functions as early as possible.

(2) Where possible, employ recurrence relations over contracted functions.

(3) Use recurrence relations with as few terms as possible.

(4) Solve implicit tree-search problems as well as possible.

(5) In constructing desired ERIs from intermediate ones, use one-electron trans-
formations (wherever possible), since it will then be possible to loop (vectorize)
efficiently over the functions of the other electron.

A New Algorithm for ERI Evaluation

In both the HGP and MD approaches, a complete class of the desired (ab|cd)
ERIs is formed through a combination of well-defined and distinct stages which,
henceforth, we will term generation, contraction, and transformation steps. Below,
we summarize first the HGP and MD methodologies and then our synthesis of these
into a new algorithm for ERI computation.

Head-Gordon-Pople Algorithm

(1) The generation step begins with the calculation of the necessary F,,,(T) in-
tegrals and, thence, of a set of auxiliary [00]|00]™ ERis. Finally, [e0|f0]
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are generated from these (using HGPs five-term “vertical” RR [2], a special
case of the Obara-Saika RR [1}).

(2) In the contraction step, (e0]f0) are formed from [e0]f0].

(3) Finally, in the transformation step, desired (ab | cd) are derived from (e0|f0)
using HGP’s two-term “horizontal” RR [2].

McMurchie-Davidson Algorithm

(1) The generation step includes the calculation of the necessary F,,,( T') integrals
and the subsequent generation (using MDs two-term RR [12]) of [p|q] ERIs
from these.

(2) In the transformation step, [ab|cd] are derived from [p] @] using coefficients
determined from MDs three-term RR [12].

(3) Finally, in the contraction step, desired (ab)| cd) are formed from [ab|cd].

The New Algorithm

Loop over primitives on centers C and D

Loop over primitives on centers A and B
(1) A generation step, similar to that in the MD method, in which the necessary
[p1q] are computed from the F,,(T) using one- and two-term recurrence
relations (after considering the relevant minimum-FLOPS tree-search
problem).

(2) A bra-contraction step in which [p|q] are used to form several sets of “left-
contracted scaled” (p|q],,.

(3) A bra-transformation step leading to (e0|q].
|_(4) A ket-contraction step leading to several sets of (019),..

(5) A ket-transformation step leading to (e0 | £0).
(6) A second bra-transformation step leading to (ab | 10).
(7) A second ket-transformation step leading to (ab | cd).

These seven steps are discussed in depth below with reference to the evaluation of
a class of contracted (ab|ed) ERIs. Throughout, we assume that

(1) Each of the four shells involved is on a distinct center (i.e., that we are
dealing with four-center integrals)

(2) Each shell has a degree of contraction of K

(3) The Gaussian exponents and contraction coefficients, Egs. (1) and (2), of
the primitive functions at A, B, C, and D are « and D,, g and Dg, v and D, and
¢ and Dp, respectively.
L will represent the total angular momentum of the ERI class (L=a+b+c+
d), and N will represent the total number of shells in the basis set being used.
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The Generation Step

Initially, as with many ERI algorithms, the F,,,(7) integrals (0 < m < L) must
be computed for each of the K* primitive [ab|cd] classes. For a given primitive
class, we evaluate the following:

{=a+p n=vy+5o (3)
p_aAtlB _C+3D (9)
§ n
172,574 _ 172,574 —
Ke= 2T exp[ B A B)Z] Ko = exp[ LI D)Z] (10)
Y § )
Dp = DADB DQ = DcDD (11)
R=Q-P (12)
{n
9= 13
T+ 7 (13)
T = ®2R? (14)
1
F(T)= f 12" exp(—Tt) dt (15)
1]

The quantities defined in Egs. (8)-(11) are two-center quantities and can be pre-
computed in a preliminary N 2_loop. The evaluations of Egs. (12)-(15) must nec-
essarily be performed in the N*-loop but, when L > 0, they are computationally
insignificant in relation to the later steps of the algorithm.

We then form a set of [0]¢™ integrals from the F,,(T'), defined thus

_ KpDpKqDqg

Q2O)* P2+ )2
[01™ = w(20°)" Fu(T) (17)
which have Gaussian-prefactor, contraction-coefficient and u, v-scaling (vide infra)
factors “built into” them. Introducing these factors early leads to enhanced overall
efficiency because, at this stage, we are handling so few (only L + 1) integrals.

The next stage in the generation step is to form [p|q] integrals. As MD [ 12] have
shown, [p|q] integrals are readily reduced to one-center [r] integrals. Thus,

[plal =(-1)‘p +4q] (18)

w

(16)

where
1
[¥] = wf (0t)’H,x(sz?t)H,y(Ryl?t)H,z(th?t) exp(—R®W4*) dt  (19)
0

In order to compute these [F] integrals efficiently, we follow MD in defining auxiliary
integrals [F]" such that [F] = [T]‘® and then using their RR

[F10” = Ri[r — 1;]"*D — (r; — D)[r — 2,1V (20)
where 1,' = (6“, 6iy, 5,‘2) and 2,‘ = (26ix’ 26,'),, 26,‘2).
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To form the full set of [r]'” integrals (there are ;.,C; of them) from the [0]7™
using Eq. (20) as FLOP-efficiently as possible, it is desirable to solve the implicit
minimum-FLOP tree-search problem. This is difficult and, to this point, we have
been able to do so only for L < 6. In lieu of the general solution, we have developed
a rapid preliminary “sieve” (see Appendix ) which determines many of the ;,5C,
auxiliary [F]™ integrals which are redundant in the computation of the desired
[T]1 integrals. The sieve is equivalent to the exact solution when L < 5 and seems
to work well for L = 5.

The Bra-contraction Step

McMurchie and Davidson have shown [ 12] how the [p|q] integrals, once formed,
may be transformed to [ab|cd] integrals by using the elementary recurrence relation
for Hermite polynomials. Proceeding in this way, we have

FOEDRH [§V3(0 — P
= §OTDRGN G = PYH[C = P)) = 2piH,[€72( = P)]Y
= 26{[(i = 4) = (P~ A)I" 2 H,[£'/2(i = P)]
= PO H, L [§12( = P (21)

(where, as usual, i = x, y, or z). Multiplying Eq. (21) by -1,/(2¢) and using the
definition of P [Eq. (9)] gives rise to the transformation identity

26 1
2¢ 2

which can be used to relate [p|q] integrals to [ab|cd] ones. At this point, we note
an important feature of this identity, namely that it involves only functions of the
coordinates of one electron and hence leads to a transformation which affects only
one side of the bar in an ERI. This suggests that, for conciseness, we adopt a “bra-
ket” notation henceforth. For example, the bra transformation implied by Eq. (22)
is

‘/’aJ/p = pi¢a~liJ/p~li —(4;— Bi)( )%—1,-\_0.; + ( )kba—l,-‘zpﬂi (22)

] 2
[ap| = pil(a — 1,)(p — 1,)| — (4; — B,-)(;?)[(a - 1,)p|
1 -
+(§)[(3_1i)(p+1i)l (23)

and, of course, the complementary ket transformation is entirely analogous. Since
Eq. (23) pertains to uncontracted bras, we will refer to it as the uncontracted trans-
formation equation (UTE).

In constructing this algorithm, our primary aim is to reduce the amount of work
which is performed within the innermost contraction loop. That is, we wish to
introduce a contraction step as early in the method as is feasible. However, it would
appear that it is not sensible to contract the [p | q] integrals because the UTE involves
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Gaussian exponents and, as a result, could not be applied to contracted integrals.
Nonetheless, if we introduce u,v-scaled bras, defined thus

(28)*
(29)*

then we can recast the UTE into the following form:

[al—’lu,v = pi[(a l)(p t)luu . (Ai - Bi)[(a - li)l_’|u+1,v+1
+[(a = 1)(p + 1) |uons (25)

Equations (23) and (25) have identical content, but the latter is written in a form
which is not explicitly exponent dependent. This formulation is crucial to the new
algorithm, for it implies that Eq. (25) can be directly applied to contracted (u,v-
scaled) bras, i.e.,

(ailuv pl((a - 11)(]’ 1 )luv (Ai - Bz)((a - li)l_’lu+l,u+l
+((a = 1)(p + 1) |upnr (26)

[l_’lu,v:

[pl (24)

Since Eq. (26) pertains to contracted bras, we will refer to it as the contracted
transformation equation (CTE).

Thus, the final step of the K*-work in the new algorithm is the preparation of a
set of left-contracted, u,v-scaled (p|q]., integrals for each (u,v) pair which will be
required when the CTE is applied in the next step of the method. We note that the
largest of these sets is that for (¢ = 0, v = a + b), and the first factor in the
denominator of the w factor, Eq. (16), was included precisely so that scaling could
be avoided for this set.

Equation ( 18) may be used to bypass redundant calculations when the (p|q]...
sets are being formed, thus

=B p)e 20"
L= =(— 2
(plql,, sz kZB 20)° [plal =(-1) ZA kZB 20 [p +q] (27)

As there are only O(L?) of the [T] integrals which need to be scaled and contracted
in this way, the total K* work in this algorithm is strikingly less than in almost all
previous methods.

The First Bra-transformation Step

Once the left-contracted (p|q].,, integrals have been evaluated, we enter the K 2
region of the algorithm. We are now in a position to use the CTE to transform our
ERIs from the framework of P-centered Hermite bras to that of AB-centered Gauss-
ian bras. Following HGP, we choose to use the CTE to form (e0|, rather than (ab|,
bras because there are O(L*) of the latter but only O(L>) of the former. (Proceeding
in this way reduces K2 work at the expense, later on, of increased K 0 work.) At the
completion of this step, the sets of left-contracted (p|q]..» integrals have been trans-
formed into a single set of (e0|q] integrals.
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The Ket-contraction Step

By this stage, we have transformed uncontracted P-centered Hermite bras to
contracted AB-centered Gaussian bras. It is now the turn of the kets. We proceed
very similarly for these, except that a simplification comparable to Eq. (27) no
longer applies. All the required (e0 | q].» sets are prepared by scaling and then ket-
contracting the appropriate (e0|q] integrals.

< 29y

(eolq)u,v = gc: %(zn)v

(eD|q] (28)

The First Ket-transformation Step

Having found the requisite (e0|q),,, integrals, we enter the K°-region of the
algorithm, i.e., all subsequent work is outside the contraction loops. The CTE (in
its ket form) can now be used to transform our ERIs from the framework of un-
contracted Q-centered Hermite kets to that of contracted CD-centered Gaussian
kets. As before, we choose to transform to |f0), rather than |ed), kets and this
eventually leads to a set of all the necessary (e0|f0) ERIs.

The Second Bra-transformation Step

At this point, outside all of the contraction loops, we rejoin the HGP algorithm
which, by the conclusion of its VRR and contraction steps, has produced the same
set of (e0|f0) ERIs as we now have. At this point, HGP use their HRR (horizontal
recurrence relation ) to transform from (e0| to (ab| bras, viz.,

(ab] = ((a +1)(b— 1,)| + (4, ~ B;)(a(b — 1,)] (29)

and this eventually leads to the set of all necessary (ab|f0) ERIs.

When the integral class in question contains d (or higher) functions, the HRR
can be applied in more than one way and another tree-search problem is implied.
Solving this tree-search problem leads to significant savings in the total computa-
tional effort required by the HRR, and we use a preliminary sieve (like that in the
generation step) for this purpose.

The Second Ket-transformation Step

The last step of the algorithm is also shared with that of HGP (except that, as
above, we begin by sieving), who employ their HRR again to transform from |f0)
to |ed) kets, thus

led) = [(e +1,)(d — 1)) + (C; — Dy)|e(d — 1,)) (30)

and this eventually leads to the desired (ab|cd) integral class.

Theoretical Performance Assessment

In Tables I and II, we compare the FLOP counts of the present algorithm (hence-
forth referred to as GHP) against those of the Pople-Hehre [ 10], Rys [11], Mc-
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TABLE . FLOP counts® for the formation of a (pp/ pp) integral class.

PH DRK MD HGP GHP
x (X K% 220 1800 1100 840 300
y (X K?) 2300 50 600 30 610
7 (X K9 4000 0 0 330 630
Cost (K = 1) 6,500 1,900 1,700 1,200 1,600
Cost (K = 2) 17,000 29,000 20,000 14,000 7,900
Cost (K = 3) 43,000 150,000 95,000 69,000 30,000
Cost (K = 4) 97,000 460,000 290,000 220,000 87,000
Cost (K = 5) 200,000 1,100,000 700,000 530,000 200,000

a The coefficients x, y, and z refer to Eq. (6) (see text). PH = The axis-switch method of Pople and
Hehre, see Ref. 10. DRK = The Rys polynomial method of Dupuis, Rys, and King, see Ref. 11. MD =
The Hermite method of McMurchie and Davidson, see Ref. 12. HGP = The recurrence relation method
of Head-Gordon and Pople, see Ref. 2. GHP = The present algorithm. The PH, DRK, MD, and HGP results
are computed from values given in Ref. 2. Two significant figures are given. The x coefficient includes
one square root and one F,,(T’) evaluation.

TABLE II. FLOP counts® for ERI formation.

Class PH DRK MD HGP GHP

(pp/pP)

X 220 1,800 1,100 840 300

y 2,300 50 600 30 610

z 4,000 0 0 330 680
(sp)*

X 220 3,600 1,500 1,400 450

y 2,300 50 1,700 30 1,300

z 4,000 0 0 800 1,700
(dd/dd)

X — 30,900 27,300 14,600 2,450

y — 220 24,000 30 25,800

z — 0 0 11,300 28,900
T

X — 276,000 342,000 108,000 11,000

y - 600 383,000 30 600,000

z — 0 0 135,000 600,000

8 See footnotes for Table I.

Murchie-Davidson [ 12], and Head-Gordon-Pople [2] schemes for the generation
of (pp| pp), (sp, sp|sp, sp) [abbreviated (sp)*1, (dd|dd), and (ff|ff) integral
classes. The FLOP counts are conveniently expressed via the quartic coefficients of
Eq. (6) but, in Table L, the total FLOP counts are also given explicitly for a range
“of degrees of contraction K. It is clear from both tables that the new algorithm
represents a significant advance over previous methods for the computation of
contracted ERI classes.



GENERATION OF TWO-ELECTRON REPULSION INTEGRALS 279

For uncontracted (pp| pp) classes (Table I), the HGP methodology appears to be
superior to GHP but, as we will discuss in another paper [13], it is more efficient
for GHP to transform uncontracted bras and kets using the UTE, rather than the
CTE, and this leads to substantial savings in the X = 1 case.

As a rule of thumb, since common basis sets consist of both uncontracted and
contracted basis functions, the K = 2 FLOP counts give a good indicator of “overall”
algorithm performance in a typical molecular calculation. From Table I we see that
GHP represents an improvement by a factor of roughly 2 over the HGP and PH
approaches for this degree of contraction. The DRK and MD methods are even less
competitive.

As the degree of contraction increases, GHP improves even further relative to all
other methods except PH, which eventually (K = 5) becomes the cheapest algorithm.
Even in the (sp)* case (for which the PH method was optimized), GHP is cheaper
than PH for K = 2 and is comparable for K = 3.

From Table II it is apparent that GHP retains its comparative efficiency for ERI
classes of higher angular momentum. The fact that the x parameters in the GHP
algorithm are so much smaller than those for previous algorithms implies that, for
sufficiently contracted ERI classes, GHP will inevitably be the cheapest approach.
We note, however, that the degree of contraction necessary for GHP to be better
than HGP seems to increase somewhat as the angular momentum of the ERI class
increases. For example, HGP is superior to GHP when K < 2 for (ff|ff) classes.

The ramifications of a faster algorithm for calculating ERIs will be most significant
in the increasingly popular “direct” procedures [5-8], where integrals must be
recalculated many times. Moreover, as the new algorithm promises to be even more
efficient for ERI derivatives [ 13] than it is for ERIs themselves, we expect it to render
the new “simultaneous” optimization methods [14,15] even more competitive
with their conventional analogues.

Appendix: The Generation-Step Sieve

In the present algorithm, we employ a “sieve” to eliminate as much unnecessary
work as possible in the generation step where the [r] are derived recursively from
the [0]. There are O(L*) “auxiliary” [F]"™, but it turns out that many of these
are not needed in order to form the complete set of [r], of which there are
only O(L?).

Our sieve systematically eliminates, from an originally complete list, those []""
which do not need to be computed. It works as follows:

For each integral I = [r]‘™
Find all integrals J; which could be formed from I using (20)
If, for each J;, there is at least one other integral I’ (still on the list) from which
J; could be formed, then 7 is not needed and is removed from the list.

Multiple passes of this type may be made through the list until no further integrals
are eliminated. This conceptually simple algorithm appears to work very well. For
example, it finds that almost a third of the auxiliary integrals are unnecessary in
forming the complete set of [r] with r < 16.
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Note Added in Proof: Further investigations have established that, in certain circumstances, the loop
structure given in this paper is not optimal. Two straightforward improvements are as follows:

(1) When the desired ERI class is sufficiently highly contracted, it is more efficient to reverse the
order of the ket-contraction and bra-transformation steps. Such a reversal serves to reduce
the y parameter of Eq. (6) at the expense of increasing the z parameter.

(2) For certain types of integral class, it is more efficient to transform directly from (p| bras to
(ab| bras than to form intermediate (e0| bras.

For example, if both of these modifications are employed in generating a (pp|pp) class, the x, y, and z
parameters (which are otherwise 300, 610, and 680 respectively ) become 300, 215, and 1035, respectively.
As we will discuss further in an upcoming paper [13], we suggest that an efficient computer program
should be capable of rapidly predetermining the optimal loop structure for the production of any given
type of integral class.



