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ABSTRACT: We describe the escape transition of a block copolymer chain compressed between finite-
sized obstacles. Two different and independent theoretical methods are used, and both provide a similar
description of multiple escape transitions where the number and critical compression are determined by
the sizes and ordering of the blocks. We predict that the compressive force profile could have a specific
“signature” of transitions which would give information about the polymer architecture.

1. Introduction

The problem of a polymer confined within a narrow
slit is a classic problem that is generally well under-
stood.1,2 More recently, researchers have explored a
related problem: a chain end-tethered to a surface and
compressed by an obstacle, say the flat end of a cylinder,
whose size is not much larger than the natural dimen-
sion of the chain.3-13 When compressed weakly, the
chain does not “see” the edge of the compressing
obstacle, it deforms uniformly, and the force that the
chain imposes on the obstacle grows monotonically with
compression. However, beyond a critical compression,
the chain can reduce its energy by forming a stretched
umbilical tether from the grafting point to the edge of
the disk so that many of the monomers in the chain can
“escape” from underneath the compressing obstacle.
Upon such escape, the compressive force decreases
abruptly, signaling the reduction in the number of
monomers trapped beneath the cylindrical obstacle.
Depending upon the diameter of the compressing cyl-
inder relative to the natural size of the chain, there can
be a significant energetic barrier to escape associated
with the extra energy that is needed to stretch the chain
to the edge of the obstacle. In this case, the escape
transition can be described as a first-order transition
between “states” of a chain: imprisoned and escaped.
This escape transition has been described using theory
and computer simulation, and a recent series of papers
have investigated the sharpness of this escape transi-
tion.10,11,13 The simple mean-field treatments predict a
sharp, discontinuous drop in the compressive force at
or near the transition. Several simulations confirm the
existence of this transition; however, thermal fluctua-
tions can “blur” the sharpness of the transition. An exact
calculation of the partition function of an ideal chain
shows unambiguously that the escape transition occurs
and is marked by a maximum and minimum in the force
profile. This escape transition has not been observed
experimentally, but it should be possible to investigate
this by compressing a surface-tethered chain with the
polished tip of an atomic force microscope (AFM).

We investigate the compression of a block copolymer
comprised of adsorbing blocks, distributed along the
linear backbone of an otherwise nonadsorbing chain.
Such a block copolymer can exhibit multiple escape
transitions. These additional escape transitions occur
as successive blocks or groups of contiguous blocks are
“squeezed out” from underneath the confining obstacle.
As a result of the dramatically reduced number of
monomers, the force required to compress the chain
between two finite-sized obstacles can exhibit several
maxima, and the number of these depends on the size,
number, and ordering of the blocks along the chain
contour. That is, the compressive force profiles are
sensitive to the architecture of the chain.14 The linear
chains considered here are comprised of alternating
blocks of adsorbing monomers and nonadsorbing mono-
mers with one end permanently fixed at the radial
center and midpoint in the gap between the flat ends
of two cylinders of radius L (Figure 1). The width of the
gap, H, is a controlled distance and is referred to as the
compression distance: H is small when the system is
strongly compressed and is large when the system is
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Figure 1. Schematic of the compression of a multiblock
copolymer end-tethered between the flat ends of two cylinders.
The chain consists of alternating blocks of adsorbing stickers
(which are laterally mobile) and nonadsorbing blocks with one
end permanently fixed at the radial center and midpoint
between the faces of the cylinder. The compression distance,
H, is the size of the gap between the cylinders, and L is the
radius of the cylinders. A chain is wholly confined if all
monomers are confined within the gap and between the flat
ends of the cylinders. The first escape transition occurs when
compression leads to the partial expulsion of the chain from
between the cylinder faces. Subsequent escape transitions can
occur at higher compressions (or smaller H) where there is a
sudden further expulsion of monomers.
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weakly compressed. For simplicity and theoretical trac-
tability in this treatment, ideal chains are employed;
i.e., even though monomers are excluded from the
obstacles and may be attracted to the obstacle surfaces,
there are no interactions between the monomers. We
focus upon the case where all surfaces, that is the faces
of the opposing cylinders and their sides, are equally
attractive to the adsorbing monomers, although one of
the approaches that we use allows for different adsorp-
tion strengths on the faces and on the sides.

In this paper we present calculations of the force
profile (and other quantities) that demonstrate the
multiple transitions that can occur for block copolymers.
Two different and independent theoretical methods are
employed in this paper. The first method, described in
the following section, is an approximate state model for
long chains where we express the free energy of the
chain in various “states”, each of which is characterized
by the number of escaped blocks. The conformational
entropy of a chain is usually approximated by the known
result for a polymer confined in an infinite slit; however,
we show that incorporation of the loop structure of
nonadsorbing blocks in the entropy description leads to
multiple escape transitions. This simple model provides
a simple physical picture of multiple escape transitions
for the case of strongly adsorbing monomers. The second
and more rigorous approach is described in sections 3
and 4 and consists of numerically evaluating the parti-
tion function of a finite-sized chain underneath finite-
sized obstacles. This approach allows for monomers that
adsorb with an adjustable adsorption strength; however,
we focus mainly upon the case of strongly adsorbing
blocks for comparison with the simple model of section
2. This calculation is limited only by the numerical
precision of the computer and allows us to study the
escape transitions for finite sizes via a procedure that
is essentially exact. This and the approximate state
model show similar results: the sizes and ordering of
blocks along the chain contour determine the number
of escape transitions and the critical compressions at
which they occur.

2. An Approximate State Model

A simple state model that was used to first describe
the escape transition of an ideal end-tethered homopoly-
mer under a finite obstacle6,13 is an instructive starting
point. This approach consists of writing down ap-
proximate expressions for the energy of confinement of
the polymer trapped beneath an obstacle and for the
stretching energy associated with the umbilical tether
of a partially escaped chain. The entropic penalty of
confinement of the chain promotes escape while the
stretching penalty required for the formation of the
umbilical tether suppresses escape: a balance of these
energies predicts a critical compression at which the
chain first escapes. We can review this model in terms
of a compressed block copolymer whose nonadsorbing
blocks are ideal and are separated by adsorbing blocks
that are taken to be “sticky” points along the chain
contour. These sticky points are sufficiently strongly
adsorbing that they are always located at the surface
of the obstacle but are otherwise laterally mobile. Let
m be the number of nonadsorbing blocks and denote by
ni the number of monomers in block i, where the index
i ) 1 labels the block nearest the tethered end of the
chain. The total number of monomers is N ) Σi)1

m ni,
and the contribution of the ith nonadsorbing block to

the chain is given by the fraction ri ) ni/N. The
dimensionless compression distance is defined as H̃ )
H/Rg, and the dimensionless obstacle radius is L̃ )
L/Rg.

In this simple first-order approach, the entropic
penalty for confinement of block i between surfaces
separated by H is approximated by kBTπ2ri/H̃2 where
a , H < Rg and a is the monomer size. This ap-
proximate entropic penalty can be simply constructed
by counting the number of times that we expect a chain
confined in an infinite slit of height H to intersect the
walls and multiplying by the entropy lost upon chain
reflection from the wall, ≈kBT.15 It is important to note
that this is the leading term in the free energy of an
ideal chain of ni monomers in an infinite slit.16,17 Since
this is linear in ni, it follows that to first order the free
energy of a fully confined block copolymer depends on
the total number of monomers in these blocks and not
upon the distribution of block sizes. Thus, if part of the
chain escapes such that there are only p monomers or
r ) p/N of the chain remaining in the slit, then the
confinement penalty is approximately kBTπ2r/H̃2 ir-
respective of how those p monomers are distributed
within blocks.

The energy penalty associated with stretching a chain
tether from its tethering point to the edge of the obstacle
is approximated as kBTL̃2/(4r). Thus, at any compres-
sion, H̃, if the chain is fully confined, then its free energy
is comprised of simply the confinement penalty, kBTπ2/
H̃2. If the chain has partly escaped, then the free energy
is given by the sum of the penalty of partial confinement
and the stretching penalty, kBT(π2r*/H̃2 + L̃2/(4r*))
where r* is that value which minimizes the energy. The
minimum free energy of the escaped state is kBTπL̃/H̃,
which occurs when r* ) L̃H̃/(2π). Comparing this to the
free energy of the fully confined state, and adopting the
lowest energy configuration as representative of the
state of the chain, it can be shown that the escape of
the chain first occurs at H̃ ) π/L̃ when r ) 1/2 or when
the fraction of nonadsorbing monomers that have
escaped jumps from zero to one-half. The maximum
force f on the chain just before escape can be computed
by taking the derivative of the free energy with respect
to separation and is given by f Rg/(kBT) ) 2L̃3/π.

This first-order treatment predicts that the block
copolymer behaves under compression in the same
manner as a nonadsorbing homopolymer with the same
number of monomers, i.e., with a single escape transi-
tion upon compression. Before refining the approximate
energy expressions, we should note how well these
expressions describe the escape of an end-tethered
homopolymer. In an earlier paper,13 we solved the
partition function for the case of a nonadsorbing ho-
mopolymer chain of finite length compressed between
two cylinders. Effectively, this is an exact calculation
with full enumeration of the chain’s conformations. By
careful extrapolation of those numerical results to the
long chain limit, we find that the rigorous treatment
predicts an escape transition at H̃L̃ ) 3.0 ( 0.1 and
f L̃3Rg/(kBT) ) 0.65 ( 0.03. These estimates agree well
with the approximate state model above, which gives
values of π and 2/π, respectively. However, as we will
show in the following section of this paper, an exact
solution of the block copolymer case provides multiple
or secondary escape transitions commensurate with the
block structure of the polymer. We are able to capture
these secondary transitions in an approximate way
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by accounting for the entropic confinement penalty of
loops.

It is convenient to work with free energy expressions
for various possible states where the conformational
entropy term is cast in its most general terms. Let
g(H̃/r) denote the entropic penalty for confinement of
a block of rN nonadsorbing monomers in an infinite slit
of separation H. Then the Helmholtz free energy of a
wholly confined block copolymer is

Let us define the jth state as an ensemble of chains with
the following configuration: the first j nonadsorbing
blocks are fully confined, at least part of the j + 1st block
has escaped, and the remaining j + 2 through m blocks
are wholly escaped. The Helmholtz free energy of the
jth state is denoted by Fj and for 0 e j e m - 1 is

where r* is that value which minimizes Fj and satisfies
0 < r* < rj+1. The first sum on the right-hand side is
the entropic penalty of the blocks that are fully confined
between the obstacles, while the next term is the
confinement penalty of the partially confined block, and
the last term is the energy required to stretch the
confined part of the chain from the tethering point to
the edge of the slit. The chain can readjust the number
of monomers in block j + 1 that remain confined
between the obstacles so as to minimize the free energy.
As in the first-order approximation, the free energy of
the escaped part of the chain is ignored, since this is
relatively small compared to the contributions from the
confined part of the chain.

At any given separation, the state of the chain, i.e.,
whether it is fully confined or in one of several partially
escaped j states, can now be predicted in one of two
ways. The first way is to assume that the chain resides
in the state of lowest free energy, denoted Fmin. This is
reasonable when the energy differences between states
are large compared to the thermal energy kBT such that
fluctuations between states can be safely ignored. The
compressive force f on the chain is then given by f Rg/
(kBT) ) -∂Fmin/∂H̃/(kBT). The second way is to ap-
proximate the partition function by

so that the free energy is given by -kBT ln Q. This
approach ignores prefactors that relate to the occupancy
of the different states but accounts for some fluctuations
between the states. Then the force f on the chain is
calculated from fRg/(kBT) ) 1/Q ∂Q/∂H̃.

To complete the calculation, it is necessary to specify
g(H̃), the conformational entropy of a block confined in
an infinite slit. A block of nonadsorbing monomers is
topologically equivalent to a loop as the ends of the block
stick to surfaces. Using the approach of Dolan and
Edwards,13,16 one can show that to within an additive

constant the confinement penalty of a loop is

At large separations (H̃ . 1) a useful alternative form
that converges more quickly is

If one uses only the leading term of eq 4 at small
separations, so that g(H̃) ≈ kBTπ2/H̃2, then one recovers
the first-order scaling analysis described at the start of
this section. This yields the simple, single escape
transition at r ) 1/2 that has been described for ho-
mopolymers. If further terms in g(H̃) are included in
the analysis, then in some cases additional escape
transitions are predicted to occur. We retain terms up
to n ) 5 in the numerical calculations, although es-
sentially the same results are obtained with only one
or two extra terms. We have assumed that the entropy
associated with the sticky points along the chain is
unchanged as these remain at the surface (while still
being laterally mobile) irrespective of whether the chain
is confined or escaped. This assumption of strongly
binding stickers can be relaxed in the exact calculations
in the next section, allowing the sticky monomers to
desorb from the surface.

Figure 2 is the compressive force profile for three
different sized obstacles as predicted from the state
model with the confinement penalty calculated for loops.
The chain is comprised of two nonadsorbing blocks; the
first (nearest the tethering point) has 0.4 N monomers,
while the second block has 0.6 N monomers. If the state

Fm ) ∑
i)1

m

g(H̃ri
) (1)

Fj ) ∑
i)1

j

g(H̃ri
) + g(H̃

r*) +
L̃2

4(Σi)1
j ri + r*)

(2)

Q ) ∑
j)0

m

exp(-Fj/(kBT)) (3)

Figure 2. Dimensionless force, f Rg/(kBT), vs dimensionless
compression distance, H̃, for a chain consisting of two non-
adsorbing blocks separated by sticky point blocks, as predicted
by the state model where higher-order terms are included in
the calculation of the conformational entropy. The results are
plotted for three different obstacles sizes, L̃, where the ratio
of the first block (nearest the tethering point) to the second
nonadsorbing block is fixed at 3:2. Results are given in two
approximate cases. In the first case, fluctuations between
states are disallowed, and the conformational state of the chain
is that state of lowest Helmholtz free energy (solid lines) and
results in discontinuous compressive force at escape transi-
tions. In the second case (dotted lines), fluctuations between
states are allowed and approximated by an unweighted mixing
of states in the partition function, eq 3. This leads to a
“blurring” of the force jumps.

g(H̃) ) -kBT ln(4π5/2

H̃3
∑
n)1

∞

n2 exp(-
π2n2

H̃2 )) (4)

g(H̃) ) -kBT ln(1 + 2∑
n)1

∞

exp(-n2H̃2)(1 - 2n2H̃2)) (5)
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of the chain is chosen as that of lowest free energy, then
the resulting force curves are the solid lines. For this
chain architecture there are two discontinuous escape
transitions that occur at smaller separations as the
obstacle size increases. The first transition which occurs
at the weaker compression corresponds to the chain first
escaping from between the cylinders, and the second
transition occurs as the number of monomers confined
between the cylinders is reduced discontinuously. Each
escape transition corresponds to the escape of a block.
Compressive force profiles that are calculated from the
approximate partition function, eq 3, are given by the
dotted lines. The first escape transition is “blurred” but
still distinguishable as a local maximum and minimum
in the force curve. But the second escape transition
becomes an inflection rather than a local maximum.
This may be due to the probably inappropriate weight-
ing in the approximate partition function. As we will
show in the following sections, secondary transitions are
also evident from the more rigorous partition function
calculations.

The number of escape transitions predicted for a
polymer with two nonadsorbing blocks should depend
on the relative sizes of the blocks. Figure 3 shows the
locus of critical compression distances H* at which
escape transitions occur as the size of the first block, r1
) n1/N, is varied. The results are plotted as a dimen-
sionless critical compression, H̃*L̃, demonstrating that
as L̃ increases from 5 to 20, the critical compressions
H̃* scale roughly as L̃-1. That is, escape occurs at more
severe compression (i.e., smaller separations) for larger
obstacle sizes. A vertical trace on this figure corresponds
to a compression experiment where the separation is
lowered from H̃L̃ toward zero. At large separations, H̃L̃
> 3.0, the entire block copolymer is confined between
the obstacles, and as we compress, portions of the chain
discontinuously escape at H̃*L̃ where the vertical trace
intersects the loci of critical compression distances.
There is clearly a maximum size of the first block r1 ≈

0.5-0.6, below which two escape transitions occur and
above which only one transition occurs, and this maxi-
mum block size depends weakly on the obstacle size L̃.

The compression at which the first escape transition
occurs (i.e., the one which occurs at largest separation
or weakest compression) is relatively constant as r1
changes, particularly for large obstacles (i.e., large L̃).
This suggests the following picture. For large obstacles
where smaller separations are required in order to see
an escape transition, g(H̃) is well-approximated by the
leading term kBTπ2/H̃2. Consequently, the first escape
transition occurs at compressions similar to that of a
nonadsorbing homopolymer irrespective of the size of
the first block. That is, escape occurs at H̃L̃ ≈ 3.0 with
half of the monomers escaping. Note that for L̃ ) 20
our results show that the first escape transition occurs
at H̃L̃ ≈ 3.0 and is almost independent of the first block
size, r1. If r1 > 0.5, then this first escape causes the
escape of the “sticker” block that divides the two
nonadsorbing blocks such that both nonadsorbing blocks
are at least partially escaped. Consequently, there
cannot be a secondary transition. However, if r1 < 0.5,
then upon first escape the sticker block remains under-
neath the obstacle and the first block remains wholly
confined. Thus, a second transition, associated with the
escape of the first block, can occur at stronger compres-
sion. At smaller separations, the higher-order terms in
g(H̃) come into play, giving rise to another drop in the
free energy and the second escape transition. Very
similar results occur for smaller obstacles; however, here
the first escape transition occurs at larger separations
such that successive terms in g(H̃) beyond the first term
become important. For these smaller obstacles, the first
transition occurs at H̃L̃ < 3.0 and now depends slightly
more upon the size of the first block. The behavior here
is qualitatively similar to that seen for the exact solution
of finite chains that is described in the next section.

3. Exact Solution for Finite Chains
In this section we construct an exact solution of the

partition function which clearly shows the character of
the multiple escape transitions. This exact calculation
overcomes the inherent uncertainties associated with
the approximate theory of the last section and with
computer simulation.

3.1. Formalism of the Partition Function. As our
aim is to construct an exact solution, we must consider
a chain model for which the partition function and
associated properties are analytically solvable and
which describes the ideal block copolymer chain. For
tractability of the partition function, a bonding potential
between monomers i and i + 1 is chosen to be of the
form13,17

where the coordinates of monomer i are given by (xi, yi,
zi). A chain of N such monomers becomes Gaussian as
N increases, and so the properties of the chain will
become independent of the specific form of the bonding
potential. The average separation, a, between bonded
monomers in bulk solution is a2 ) 6(kBT/ k)2; the
average end-to-end distance is a(N - 1)1/2; and the
radius of gyration, Rg, is given by Rg

2 ) (N - 1/N)a2/6.
This monomer-monomer potential has been previously
used for force calculations in a slit17 and for the
squashing of a nonadsorbing ideal polymer chain.13 The

Figure 3. Locus of critical compressions at which escape
transitions occur for a copolymer with two nonadsorbing blocks
separated by a short sticky block as a function of the size of
the first nonadsorbing block (located closest to the tethering
point). The critical compression is expressed as H̃*L̃ where L̃
is the fixed size of the obstacle. The size of the first block is
expressed as the fractional contour of the chain or r1 ) n1/N
where n1 is the number of monomers in the first block and N
is the total number of monomers. These predictions are a result
of the approximate state model where higher-order terms are
included in the calculation of the conformation entropy and
where the state of the chain is determined by that of lowest
free energy.

k(|xi+1 - xi| + |yi+1 - yi| + |zi+1 - zi|) (6)
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interaction of each monomer with the obstacle surface
is represented by a sticky potential.18 Monomer i is
assumed to have some short-range adsorption potential
ψi(z) at a distance z g 0 from the obstacle surface, and
the Boltzmann factor is written as exp(-âψi(z)) ≈ 1 +
Wh iδ(z), where δ(z) is a one-sided delta function, â )
1/(kBT), and Wh i is referred to as the adsorption strength
of monomer i and is given by Wh i ) ∫0

∞(exp(-âψi(z)) - 1)
dz. This representation of the adsorption strength
should be adequate on length scales greater than the
range of the adsorption potential. Since the adsorption
strength can be varied independently for each monomer,
this approach can be used to model multiblock copoly-
mers, where the blocks of monomers are distinguished
by their interaction with the surfaces. (Since the chain
is ideal, the blocks do not interact with each other.)

We construct an analytic expression and solution for
the partition function of such a chain, end-tethered and
compressed between finite obstacles. The obstacle ge-
ometry, illustrated in Figure 1, is chosen to be two-
dimensional in order to reduce the complexity of the
analytic solution. The i ) 1 monomer is fixed at the (x,z)
origin, selected to be radially centered and midpoint
between the two obstacles. The two impenetrable ob-
stacles exclude monomers from the regions |x| < L, z >
H/2 and |x| < L, z < -H/2, so that the compression
distance or slit separation is H and the half-width of
the obstacle is L. The partition function for the chain is
then given by

where

Ai is the allowed area for monomer i, i.e., all area apart
from |xi| < L, |zi| > H/2. We have distinguished two
different adsorption strengths: the first, Wh i, is the
adsorption strength of monomer i on the faces of the
obstacles, and the second, Yh i, is that on the sides of the
obstacles. The solution procedure is very similar to that
employed in an earlier paper13 and is summarized in
the following sentences. As we proceed through the
integrals in eq 7 and integrate out the coordinates of
monomer i, we find that all of the resulting terms have
a certain general form as functions of xi+1 and zi+1,
making it possible to derive recurrence relations for the
coefficients of the terms. These coefficients can in turn
can be used to obtain an analytic expression for Z(H)
and its derived quantities such as compressive force,
given by f (H) ) -1/Z ∂Z(H)/∂H. The details of this
procedure and the resulting expressions are given in the
Supporting Information.

One can now evaluate the partition function and its
derivative with respect to H, as functions of H, L, a,
Wh i, and Yh i. A simple Fortran 90 code to perform this

evaluation is available from the authors. The main
limitation of the numerical scheme is due to the finite
precision of computer arithmetic. The region of most
interest in the problem is for H , Rg, and as N
increases, there is a growing loss of precision. In
ordinary double-precision arithmetic, this limits N to
about 50, depending somewhat on the value of L. This
can be extended to around N ) 100 using quadruple
precision, but at the cost of a significant increase in
computation time.

In the results that follow, we take all monomers in
the adsorbing blocks to have the same adsorption
strength while monomers in nonadsorbing blocks have
Wh i ) 0, and we restrict ourselves to the case where there
is no difference between the adsorption on the two
surfaces, i.e., Wh i ) Yh i. It is convenient to use a dimen-
sionless adsorption strength given by Wi ) âkWh i. If for
example the adsorption potential was a square well with
width equal to the monomer-monomer spacing, then
W ) 1 corresponds to a well depth of 0.34kBT per
monomer.

3.2. Exact Results from the Partition Function.
The formalism described above allows us to describe
exactly the compressive force profiles of ideal block
copolymers with a wide range of block arrangements.
Our aim is to show that multiblock copolymers may
exhibit multiple escape transitions whose number and
critical compression depend on the arrangement of the
adsorbing blocks along the contour of the chain, con-
firming the results of the approximate state model in
the previous section. Thus, we limit our results to the
following cases. First we consider the case of an adsorb-
ing homopolymer and show the effect of the adsorption
strength upon the escape transition. Then we focus upon
polymers consisting of nonadsorbing blocks separated
by short strongly adsorbing blocks or “stickers”, since
these can give rise to multiple escape transitions. Note
again that the stickers are laterally mobile on the
surfaces of the obstacles. First a chain with one sticker
is considered and then two stickers. The effect of varying
the obstacle width is examined, and then, finally, some
results are given for the root-mean-square displacement
of the free end of the chain as the polymer is com-
pressed.

Figure 4 shows the force profiles for N ) 40 homo-
polymers with a dimensionless adsorption strength W
ranging from 0 (nonadsorbing) to 1.2 when compressed
between cylinders of size L̃ ) 3.0. For a nonadsorbing
homopolymer, the escape transition is marked by a
maximum/minimum or an inflection at H̃ ≈ 0.55. With
larger adsorption strengths or more attractive mono-
mers, the escape transition occurs at smaller separa-
tions and eventually disappears as the monomers are
made highly adsorbing. This occurs as the energy gained
through adsorption onto the two opposing faces of the
cylinders outweighs the confinement penalty and is
more favorable than chain stretching and adsorption on
the exterior surfaces of the cylinders. In a slit of finite
width the force profile for the ideal chain with W ) 1 is
very weakly attractive, as seen in Figure 4, and for more
adsorbing polymers the force becomes strongly attrac-
tive at all separations. The critical adsorption strength,
above which a model polymer of this kind adsorbs
strongly to the surface, is W ) 1. In an infinite slit, the
ideal polymer with this adsorption strength gives a net
force of zero, since the adsorption exactly balances the
restrictive entropic effect of the walls.17 This is an

Z(H) ) ∫A2
‚‚‚∫AN

exp(-âk∑
i)1

N-1

(|xi+1 - xi| +

|zi+1 - zi|))f (xi,zi,Wh i,Yh i) ∏
i)2...N

dzi dxi (7)

f (xi,zi,Wh i,Yh i) ) 1 + Wh i(δ(zi + H
2 ) + δ(zi - H

2 ))
for |zi| e H/2, |xi| < L

) 1 + Yh i(δ(xi + L) + δ(xi - L))
for |zi| g H/2, |xi| g L

) 1 for |zi| e H/2, |xi| > L
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artifact of an ideal chain model that does not account
for any monomer-monomer interactions. Even in Θ
solvent conditions there are higher-order excluded-
volume effects which give rise to a repulsion at very
short separations as the density of the polymer increases
sufficiently.19

Now consider a tethered polymer that has one short
strongly adsorbing block of monomers which is inserted
along the chain contour. Depending upon where this
sticker is located along the chain contour, we expect
different signatures in the force profiles. Figure 5 shows
the force profiles for chains of N ) 40 monomers that
contain a sticker block of four monomers, each with W
) 10, at different positions along the chain contour. The
ordering of the blocks is indicated by the ratio x:y where,

starting from the tethered end, there are x nonadsorbing
monomers followed by the sticker block which is fol-
lowed by y nonadsorbing monomers that form the free
end or “tail” of the chain. When the sticker block is
located at the free end of the chain, then the chain is a
simple loop of nonadsorbing monomers with its free end
adsorbed onto one of the cylinder surfaces and (following
the notation of the previous section) r1 ) 1. For a single
loop, there is at most a single escape transition which
occurs at a stronger compression (smaller H̃) than that
of a simple end-tethered polymer. Indeed, this is con-
firmed by the partition function calculations of Figure
5 which show the force profile of the looplike copolymer,
labeled x:y ≡ 36:0, and the profile of the free-tail-like
copolymer, labeled x:y ≡ 0:36. Although a “critical
compression” is difficult to extract from these maximum-
minimum traces, taking the inflection point as charac-
teristic of the first escape transition shows that the
chain having the free end escapes more easily (at
weaker compression) than the loop. Note that for the
x:y ≡ 0:36 profile the compressive force continues to
decrease after escape of the free end or tail; this is due
to the bridging of the short sticker block between the
opposing cylinder faces.

If we shift the sticker block from the tethered end
toward the free end, we are effectively increasing the
size of the loop or the first block at the expense of the
second nonadsorbing block that forms the free tail.
When this loop is very small and the tail is large, for
example r1 ) 0.25 or x:y ≡ 9:27, then the tail first
escapes at roughly the same compression as a full tail
(i.e., x:y ≡ 0:36), but it takes a severe compression to
cause the escape of the small loop. Indeed, the escape
of the loop, i.e., the second escape, is much easier to
detect in these theoretical force profiles due to the high
maximum force required at such small separations. As
the sticker is shifted to make the first block or loop
bigger and the second block or tail smaller, the second
escape becomes easier (i.e., smaller forces and weaker
compression). However, as the tail becomes small (say
toward 0 as in x:y ≡ 36:0), the tail fully escapes with
the partial escape of the loop. That is, there is only one
escape transition. It is important to recognize that the
ordering of the blocks along the chain contour is
significant, since the free end escapes first. A chain with
architecture x:y ≡ 12:24 has quite a different force
profile to one with blocks x:y ≡ 24:12. Thus, the number
and location of the escape transitions provide some
information about the structure of the compressed
polymer.

In the above example, it was shown that a polymer
with two nonadsorbing blocks can have a force profile
with two escape transitions. So the question arises as
to whether a polymer with a more complex architecture
can give rise to more than two escape transitions.
Consider a chain with N ) 44 monomers and two sticky
blocks, each of length four monomers with an adsorption
strength of W ) 10. These two sticky blocks partition
the chain into three nonadsorbing blocks, and the
arrangement of these blocks is labeled x:y:z where x is
the number of nonadsorbing monomers in the block
closest to the tether end and z is that at the free end of
the chain. Figure 6 shows the predicted force profiles
for some possible multiblock arrangements. If the non-
adsorbing blocks are of equal size (x:y:z ≡ 12:12:12), then
two distinct escape transitions are observed. The one
at larger separation corresponds to the escape of the two

Figure 4. Dimensionless force, f Rg/(kBT), vs dimensionless
compression distance, H̃, for an adsorbing homopolymer of N
) 40 monomers between obstacles of half-width L̃ ) 3. The
results, obtained from a rigorous numerical evaluation of the
partition function, are plotted for different values of the
dimensionless adsorption strength, ranging from W ) 0,
corresponding to an inert nonadsorbing homopolymer, to W )
1.2, where adsorption is so favorable that the obstacles are
weakly attractive.

Figure 5. Dimensionless force, fRg/(kBT), vs dimensionless
compression distance, H̃, for a N ) 40 block copolymer which
has one sticker block and is compressed between obstacles of
half-width L̃ ) 4. The block copolymer has one adsorbing
sticker block of four monomers, each with adsorption strength
W ) 10, and separates two nonadsorbing blocks. The results
are plotted for several different positions of the sticker block.
The position of the sticker block is specified as x:y, where x is
the number of nonadsorbing monomers in the first nonadsorb-
ing block (positioned at the tethering point) and y is the
number of monomers in the nonadsorbing block positioned at
the free end of the polymer chain.
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nonadsorbing blocks at the end (or at least the escapes
of these two blocks are too close together to yield distinct
local maxima in the force curve), and a second escape
transition at smaller separation corresponds to the
escape of the nonadsorbing block nearest the tethering
point. As the sizes of the nonadsorbing blocks are made
more disparate (e.g., x:y:z ≡ 7:11:18), further structure
appears in the force curve, until for the architecture x:y:z
≡ 5:10:21, three distinct escape transitions are observed,
corresponding to the successive, individual escapes of
the three nonadsorbing blocks. If the order of the blocks
in the last case is changed to 10:5:21, then the first
transition is the same, but there is only one other escape
transition. Once the outermost nonadsorbing block has
escaped, then the compression of the remaining part of
the polymer between the obstacles is similar to the
examples in Figure 5 for a single sticky block, which
indicated that two further transitions are only possible
for increasing block sizes. These numerical predictions
and the more qualitative, coarse-grained description of
the previous section provide the following simple ob-
servation. An ideal polymer with m distinct nonadsorb-
ing blocks will most likely exhibit m escape transitions
if the ratio of block sizes increases in some geometric
progression as one moves along the chain contour from
the tethered end to the free end.

Does the structure of the force profile change as the
size of the compressing cylinders, L̃, is varied? Figure
7 shows the force profiles for a N ) 44 copolymer with
block arrangement x:y:z ≡ 5:10:21 compressed between
cylinders of radii L̃ ) 0.1, 1, 3, and 5. This shows that
as we progressively increase the cylinder radii, we see
additional transitions. When the cylinders are smaller
than the radius of gyration of the copolymer, no escape
transition is observed; in fact, the force is monotonically

attractive. At L̃ ) 1 compression leads to a single
transition at very small separations. At L̃ ) 3, this
transition at very small separations is retained, albeit
shifted to yet smaller separations and at higher com-
pressive force. But there is also another transition that
appears at weaker compression (larger separation).
Finally, at L̃ ) 5 yet another transition occurs at even
weaker compression.

The effect of chain architecture on the escape transi-
tion can be further understood by examining the root-
mean-square displacement of the monomers on the free
end of the chain in the z direction (the “vertical”
direction, along the axis of the two obstacles) as a
function of compression and for different values of L/Rg.
This is shown in Figure 8 for a 5:10:21 copolymer and
the same set of cylinder radii as in Figure 7. When the
obstacles are much smaller than the radius of gyration
of the first nonadsorbing block (e.g., the solid curve for
L/Rg ) 0.1), the sticker blocks are largely adsorbed on
the outside surfaces of the obstacles as much of the
chain has already escaped. Thus, as the separation
decreases and the cylinders are displaced toward each
other, the relative height of the free end from the
tethered end (i.e., the z distance) decreases. When L/Rg
is larger and the chain is initially confined, there is first
a compression of the polymer chain in the vertical z
direction, and then as it begins to escape, the free end
can move out from underneath the obstacle and up in
the vertical direction. For this multiblock chain, at
larger values of L/Rg the vertical z displacement vs
separation curve begins to show additional structure,
with steps corresponding to the escape of the next
nonadsorbing block along the chain, which allows the
free end to explore further in the vertical direction.
Thus, the displacement of the chain end in the vertical
direction as a function of separation also gives informa-
tion on the chain architecture and confirms the inter-
pretation of the successive escape transitions.

4. Discussion
Here we have used two different theoretical ap-

proaches to study the compression under a finite

Figure 6. Dimensionless force, f Rg/(kBT), vs dimensionless
compression distance, H̃, for a N ) 44 block copolymer which
has two sticker blocks and is compressed between obstacles
of half-width L̃ ) 4. The block copolymer has two adsorbing
sticker blocks of four monomers, each with adsorption strength
W ) 10 which separate three nonadsorbing blocks. The results
are plotted for several different positions of the sticker blocks.
The position of the sticker blocks is specified as x:y:z, where x
is the number of nonadsorbing monomers in the first non-
adsorbing block (positioned at the tethering point), y is the
number of monomers in the middle nonadsorbing block, and
z is the number of monomers in the nonadsorbing block
positioned at the free end of the polymer chain. However,
depending upon the size of the chain, these compression
distances may be on the order of a monomer size where the
compressive force is experimentally inaccessible and questions
regarding the model cloud the interpretation.

Figure 7. Dimensionless force, f Rg/(kBT), vs dimensionless
compression distance, H̃, for a N ) 44 block copolymer which
has two sticker blocks with positioning x:y:z ) 5:10:21 and is
compressed between obstacles of various half-width, ranging
from L̃ ) 0.1 to L̃ ) 5. The block copolymer has two adsorbing
sticker block of four monomers, each with adsorption strength
W ) 10 which separate three nonadsorbing blocks. Note that
as the obstacle size increases, the maxima/minima in the
compressive force profile associated with the three escape
transitions become more pronounced.
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obstacle of an end-grafted ideal copolymer comprised of
alternating adsorbing and nonadsorbing blocks. Both
techniques show that the size and ordering of the blocks
determine the number of escape transitions and the
critical compressions at which they occur. Such escape
transitions are marked by a discontinuous exchange of
monomers from the confined slit to outside of the
obstacles and a decrease in the compressive force. The
first approach is an approximate solution for long chains
having large nonadsorbing blocks separated by short,
strongly adsorbing blocks. The procedure is to estimate
the Helmholtz free energy of the chain in various states,
each state corresponding to the partial escape of suc-
cessive nonadsorbing blocks. From these state energies
we can express the state of the chain as being that with
the minimal free energy, or alternatively we can con-
struct an approximate partition function from these
discrete states. This solution is simple and provides a
simple physical picture, but it is not obvious how the
approximations involved affect the quantitative predic-
tions. The second approach that we adopted is a solution
of the exact partition function for model chains of finite
length where monomers are assigned specific adsorption
strengths depending upon the block in which they
reside. This solution has the advantages that it is exact
and therefore provides unambiguous results. However,
due to computational constraints, we are limited to
relatively short chains so that limited comparison can
be made with the long chain approximate solution.

The qualitative behavior predicted by the two ap-
proaches is broadly similar. For a nonadsorbing ho-
mopolymer, when the dimensionless separation H̃ )
H/Rg is such that H̃L̃ ≈ 3 (where L̃ ) L/Rg is the size of
the obstacle and Rg is the radius of gyration of the
polymer), then the outer half of the chain escapes from
between the obstacles, giving rise to a local maximum
in the force vs separation curve. If the homopolymer is
made uniformly adsorbing, then the escape transition
moves to smaller separations and disappears entirely
above a critical adsorption strength. For a chain com-
posed of m nonadsorbing blocks separated by short

stickers, there can be up to m escape transitions upon
compression, depending upon the obstacle size and the
ratios of block sizes. The maximum number of transi-
tions is generally seen when L̃ . 1, and the sizes of the
nonadsorbing blocks increase along the chain away from
the tethering point.

We have shown theoretical predictions using a range
of compressions, including very high compressions or
H̃ approaching 0. Depending upon the size of the chain,
these compression distances, H, may be on the order of
a monomer size, a, where the compressive force is
experimentally inaccessible and questions regarding the
model cloud the interpretation. As H approaches the
(statistical) monomer length scale (<10 nm), the rough-
ness of the AFM tip and surface forces may mask any
forces attributable to the chain and its conformation.
On the theoretical side, the energy formalism used in
the approximate state model is only appropriate when
H . a. In addition, the spring potential used in the exact
partition function evaluation allows predictions that
correspond to the squeezing out of all monomers (other
than the anchoring one) out of the slit. That is, it
predicts a finite compressive force as H tends to 0. Thus,
care is needed in interpreting our results when H̃ tends
to 0.

Finally, it is also important to recognize that all of
our results correspond to chains continually in equilib-
rium at any compression. This is an important point as
the activation energy between the confined and (first)
escaped state, corresponding to the energy of stretching
a chain to the edge of the obstacle, can be appreciable,
i.e., many kBT. The activation energy between the first
escaped state and a secondary escape state (or between
two secondary escape states) is associated with the
“extra” stretching that the chain must accomplish for
the secondary escape without significant relief of con-
finement of nonadsorbing monomers. Thus, we antici-
pate that the activation energy for subsequent escape
transitions should increase with the size of the outer-
most, confined adsorbing block.

Supporting Information Available: An appendix giving
the equations for the exact solution of the discrete chain
between two finite obstacles. This material is available free
of charge via the Internet at http://pubs.acs.org.
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