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ABSTRACT: We study the problem of a field-driven polymer chain of N monomers of size a colliding
with a finite-sized obstacle of radius R in the presence of thermal noise. We show that there are two
different mechanisms for chain release from the obstacle: “unhooking” and “rolling off”. The unhooking
mechanism is characterized by strong stretching of the chains at release and an unhooking time which
scales with chain length. In contrast, the “rolling-off” mechanism does not impose strong stretching on
the chain conformation and is dependent not upon the size of the chain, but rather upon the size of the
obstacle. Thus, macroscopic mobility in an array of small, widely spaced posts provides an opportunity to
separate chains according to their size, while chain mobility in an array of large circular obstacles provides
information on the size of the obstacles. While important at small time scales, diffusion does not contribute
significantly to the release kinetics from circular obstacles of any size R when the dimensionless field
strength, defined as â ) Eλa/(kBT) where λ is charge density and E is field strength, is âN > a/R.

I. Introduction

The dynamics of polymers is a well-developed field of
study.1 However, there are still several problems of
fundamental importance which have not been fully
explored. Surprisingly, many of these are in the area of
single chain dynamics. Interest in single chain problems
has been spurred in recent years by the advent of new
experimental techniques that allow one to see and to
manipulate individual polymer chains.2-4 The particular
problem presented in this paper is the collision of a field-
driven polymer with a fixed obstacle. This problem has
application in the size separation of polyelectrolytes of
the same charge density, such as DNA, using electro-
phoresis. In electrophoresis, charged chains are driven
through an array of obstacles by an applied electric field
of magnitude E. These obstacles, usually gel fibers,
impede the chain dynamics in a way that depends on
the degree of polymerization, N, or size of the chain.
The premise is that the degree to which the chains are
“held up” by the obstacle imparts size dependence to
the chain mobility, and in this way microlithographic
arrays of posts might be exploited to enhance size
separation.5-7 If chains have differing charge densities,
as in proteins, then separation occurs both in molecular
size and in molecular charge. A description of the
dynamics of a chain near an obstacle is also important
in other applications, such as the flow of a dilute
solution of chains through finely divided porous media.
Apart from this application to electrophoresis, the
interaction of a chain with an obstacle is a fundamental
problem in polymer science which is analogous to the
Rutherford scattering problem in atomic physics.

The effect of a small, frictionless obstacle upon the
dynamics of field-driven chains is demonstrated simply
by snapshots which were computer-generated using the
simulation described in this paper. Figure 1 shows long
and short chains at equivalent time steps. Note that
those chains which do not impact upon the fixed obstacle
advance downfield at a size-independent rate. The

chains that impact directly upon the obstacle undergo
dramatic conformational change, forming long-lived
hairpins. The unraveling of a hairpin requires that one
arm retract against the field, feeding the advancing arm.
The rate of this unraveling is determined, in part, by
the length or degree of polymerization, N, of the chain.
Upon “release”, the center of mass of the smaller hairpin
has advanced downfield of the larger hairpin, and
further advance occurs at a size-indpendent rate while
the chain conformation relaxes. As a result of multiple
collisions, larger chains will have a lower mobility than
smaller chains, and consequently, size separation is
possible. Although the unraveling of a hairpin, pictured
in Figure 1, can be rate determining, most chains do
not form hairpins about the obstacle.8-11 Usually, chains
do not impact the obstacle directly; impacts may range
from glancing to head on, each with a different release* Corresponding author.

Figure 1. Snapshots of simulated chains interacting with a
fixed obstacle at fixed time intervals and under high field
strength, E ) 20. Chains that do not collide with the obstacle
are observed to travel downfield at constant velocity, irrespec-
tive of chain length. On the other hand, chains that directly
impact the obstacle form hairpins and advance downfield at a
hindered rate. The large, interacting chain (a) is suspended
on the obstacle over a longer time than the shorter interacting
chain (b). The arrows point to the centers of mass of the chains
at the last time interval. The center of mass of the large
interacting chain has not advanced downfield to the extent of
that of the smaller, interacting chain. Hence, the interaction
with the obstacle has imparted size dependence to the chain’s
mobility. Beyond this last time interval, the chain conforma-
tions relax, and the center of mass of all chains advances
downfield at the same rate.
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trajectory. When hairpins do form, they may be multiple
hairpins with smaller release times, or they may be
partial hairpins which quickly slide off of the obstacle.
A deterministic model that used a wide range of impact
conditions from head-on to glancing, showed that perfect
hairpin unhooking was rare in high fields with point,
frictionless obstacles.11 However, despite the wide va-
riety of release trajectories found, the dynamic data
follow universal curves over a large range of chain
lengths and strong field strengths. These universal
curves are important in that they suggest obstacle
spacings for optimal size separation of polyelectrolytes;
however, they are limited to point obstacles with no
thermal noise.11

Most of the previous studies of polymer/single-obstacle
collisions have tended to focus on small or pointlike
obstacles or have used deterministic models of chain
motion.7,11-15 While such studies represent a good
starting point for research, they do not include simul-
taneously two important and practical effects, namely
obstacle size and thermal noise. Obstacles will often
have a finite size. For example, λ-DNA with 48.6 kbp
and 20 µm contour length has natural dimensions of
≈0.5 µm, which is comparable with a 1 µm post-obstacle
fabricated using conventional microlithography. In high
field with small obstacles, thermal noise can be safely
ignored, and a deterministic description can be used.
However, as the field is lowered or the obstacle size is
increased, thermal noise plays an increasing role in the
chain dynamics. In addition, an obstacle of appreciable
size distorts the local electric field, although it is possible
to fabricate ionically conducting obstacles out of agar
gel.

In this paper we use a Brownian dynamics simulation
to investigate the effect of obstacle size upon the
collision time and distance moved during collision. We
focus solely upon the interaction of a chain with a single
obstacle, and we do not consider chain interaction with
multiple obstacles. These quantities are crucial to
determining the overall mobility of a chain in an array
of obstacles and, hence, the ability of the obstacles to
size-separate charged chains. We demonstrate that
there are two modes of release which result from
different obstacle sizes and field strengths. The first
release mode consists of “unhooking” of a chain which
is draped over the obstacle and is characterized by
dramatic chain stretching during the collision. We find
that this “unhooking” mechanism is operative for small
posts and high fields and is characterized by universal
scaling relations which suggest size separation capabili-
ties.11 The second release mode consists of a chain
“rolling off” of the obstacle with little conformational
change. Obstacles that are large in comparison to the
chain size give rise to this rolling-off mechanism. Unlike
unhooking, the characteristic time of rolling off is
independent of chain length. Consequently, such roll-
off collisions do not impart size dependence to the
overall mobility of the chains. Indeed, the roll-off time
is sensitive to the impacts, i.e., whether the chain
impact is direct or glancing, and therefore roll-off
collisions reduce resolution in size separation applica-
tions.

The remainder of the paper is organized in the
following manner. In the next section we describe the
simulation method that is used to follow the dynamics
of two-dimensional Gaussian chains impacted against
circular obstacles in constant and uniform electric fields.

Individual chain trajectories which signature unhooking
and rolling are investigated and characteristic times for
the different modes of release are discussed in section
III. In section IV we focus upon the collision of a chain
against a large obstacle allowing for a range of impacts,
varying from glancing to direct, and in section V we
investigate an ensemble of chains colliding with ob-
stacles of different sizes and in different field strengths.
We show that the unhooking and rolling mechanisms
can be separated and that chains which unhook follow
universal scaling laws. In the final section we sum-
marize our results with implications for size separation.

II. Simulation of the Dynamics of Chain Impact
upon Obstacles

In a Langevin simulation, we are interested in time
and lengths scales for which inertial effects become
negligible; i.e., Newton’s law of motion, F ) ma, becomes
effectively F ) 0. Thus, the simulation solves for the
chain displacement which occurs when the sum of forces
acting along points in the chain contour is set to zero.
A deterministic force, Fdet, is balanced by a drag force,
-êv, where ê and v are the drag coefficient and velocity,
and the displacement is ∆r ) ∆tê-1Fdet. The force of the
surrounding solvent, represented by random forces,
modifies this. The random forces are characterized by
a Gaussian distribution with zero mean and variance
2êkBT where kBT is the thermal energy. The displace-
ment due to the random noise scales as ∆t1/2, and the
total displacement is

where g(t) is a vector of Gaussian random numbers with
zero mean and unit variance. The simulations in this
paper are completed in two dimensions, i.e., ∆r ) ∆yey
+ ∆zez where ey and ez are unit vectors perpendicular
and parallel to the applied field, respectively.

The dynamics of a polyelectrolyte is given by this
equation applied to points along the contour of the
chain. As our aims deal with molecular rather than
atomic length/time scales, the chain contour is taken
as a series of N beads connected by Hookean springs.
The charge is localized at the beads, which serve as
points over which the local forces balance. The deter-
ministic force, Fdet is comprised of the electric force, λE
where λ is the charge per bead. We have assumed that
the electric field is everywhere uniform, including near
the obstacle; i.e., the obstacle is assumed to be ionically
conductive and does not locally distort the electric field.
Another component of Fdet is the spring force, 2ks(∆l-

+ ∆l+) where ∆l( are the extensions of the adjacent
springs outside a natural length a ) 1 and ks is a spring
constant. Also included in Fdet are any repulsive forces
attributed to volume-excluding obstacles. Beads are
prohibited from intersecting the hard core obstacle of
radius H by a soft repulsion zone surrounding the
obstacle core (Figure 2). This repulsive force decreases
linearly with slope kr from the core surface to zero at a
distance R from the core center. We have neglected a
number of contributions to Fdet that arise from coun-
terions, electroosmotic flows, and hydrodynamic inter-
actions, as well as detailed potentials that distinguish
specific polyelectrolytes or proteins. A description of the
balance of hydrodynamic interactions of the monomers
and ion cloud which exist during free electrophoresis
can be found in other works ranging from early classical

r(t + ∆t) ) r(t) + ê-1Fdet∆t + (2kBTê-1)1/2g(t)x∆t
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works to the most recent of studies.16-18 However, as
recently demonstrated, the inclusion of hydrodynamic
interactions in the chain/obstacle problem has no sig-
nificant effect on the overall collision time or the extent
of chain stretching in strong fields.18 In light of this
result and of the complexity of a proper hydrodynamic
treatment, hydrodynamics are not included in this
study. The time step, ∆t, and the force constants, ks and
kr, are chosen such that the beads, their displacement
vectors, and the connecting springs do not intersect the
hard core of the obstacle.

The starting chain is created as a random, freely
jointed chain of links, whose lengths are chosen from a
Gaussian distribution. The natural size of the relaxed
chain is characterized by its squared radius of gyration,
Na2/6. The linear extent, 〈l〉, is the average maximum
separation of beads within the chain. The chain is
located at a position upfield of the obstacle with its
center of mass at ((b,z) relative to the obstacle center
at (0,0) (Figure 2). The lateral displacement, b, of the
chain is referred to as the impact parameter. Small b,
i.e., b ≈ 0, is indicative of direct impacts while large b,
i.e., b > R, describes chain impacts that will only glance
the obstacle. The initial z-location of the center of mass
is selected such that the most downfield bead is located
at z ) -R. We define a dimensionless field strength as
â ) Eλa/kBT and characterize large fields as those where
âN . 1.0 and weak field as âN , 1.0. The above
equation is solved for the positions of each of the N

beads over consecutive time steps. The time taken for
all beads to have trespassed beyond z ) H is recorded
as the collision time, tc. The downfield distance that the
chain’s center of mass has traveled during tc is recorded
as the collision distance, zc.

III. Trajectories of Chains Impacted Directly
upon Obstacles of Different Size

Using the simulation, it is possible to follow the
trajectory of the chain as it impacts the obstacle, is
slowed by the obstacle, and then is finally released. It
is convenient to represent this trajectory by the down-
field advance of the chain’s center of mass, zc(t), and to
characterize the obstacle size by the ratio of the obsta-
cle radius to the radius of gyration of the chain, γ )
R/(axN/6). In the absence of obstacles the downfield
velocity of the center of mass is ν0 ) dz/dt ) Eλ/(aê).
Prior to impact and after release, all chains will advance
at this constant velocity. However, during collision, the
chain will advance downfield at a slower rate within
the range 0 < dzc/dt < ν0. Figure 3 shows the downfield
advance of chains that impact directly (b ) 0) on an
obstacle with size γ ) 0.74, 7.4, and 15. The dotted lines
provide the unimpeded advance in the absence of the
obstacles, and the lateral displacement of these lines is
the time of the collision, tc. The time of collision of the

Figure 2. Schematic of the chain interacting with a fixed
obstacle at time t ) 0 and at the time of release, tc, from the
fixed obstacle. The obstacle has an inner hard core of radius
H surrounded by a soft-repulsive zone extending to a distance
R from the obstacle center at (0,0). The chain is modeled by N
beads linked by extensible springs. The chain’s center of mass
is initially (t ) 0) offset from the obstacle center by a lateral
distance b, referred to as the impact parameter, and is upfield
of the obstacle such that the most downfield bead is just
touching the repulsive core of the obstacle. Release occurs
when the last monomer has advanced past the hard core of
the obstacle (z ) H). The downfield advance of the center of
mass and the time taken from initial to release are recorded
as the collision distance, zc, and collision time, tc.

Figure 3. Downfield advance, zc(t), of the center of mass of
N ) 100 chains impacting directly upon obstacles of various
sizes (a) R ) 3 or γ ) 0.74, (b) R ) 30 or γ ) 7.4, and (c) R )
60 or γ ) 15. The dotted lines show the center of mass advance
of chains that are unimpeded by obstacles. In (a) the impacted
chain forms a hook around the small obstacle, γ ) 0.74, and
the retarded advance of the center of mass is attributed to
unhooking of the chain. In (b) the impacted chain forms a hook,
although the time required to form the hook over the larger
obstacle γ ) 7.4 is on the order of the unhooking time. In (c)
the impacted chain rolls off of the large obstacle, γ ) 15,
without hook formation.
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three trajectories shown increases with the size of the
obstacle. For the smallest obstacle, the chain’s downfield
center of mass velocity changes continuously throughout
the collision, slowing toward the midpoint in the colli-
sion and increasing afterward toward release. The
plateau in the downfield displacement-time curve
corresponds to the slow unhooking process. When the
obstacle is increased 10-fold in size, hooking still occurs
in many trajectories. The particular chain trajectory
shown in Figure 3b shows that the downfield advance
of the chain is nearly halted immediately after impact
with an additional plateau before release. This first
plateau of near-zero advance is due to the significant
size of the obstacle and reflects the time that it takes
for portions of the chain to find the “edges” of the
obstacle. Once found, the hook formation is rapid with
a significant increase in the downfield velocity of the
center of mass. The second plateau is due to the slow
unhooking process. The unhooking process is slowed by
the increased obstacle size. Simplistically, we can
understand this as a result of the breadth of the hook:
those monomers that reside at the flat top of the hook
do not contribute significantly to the downfield tension
in any of the arms of the hook. Consequently, as the
obstacle increases in size, the arm lengths of the hook
are shorter, the downfield tension on the chain is
reduced, and the unhooking procedure is slower. When
the obstacle is so large that the chain is unlikely to span
the extent of the obstacle, release occurs as the mono-
mers simply fall or roll off of the obstacle. In the
particular chain trajectory of Figure 3c, the obstacle is
much larger than the natural chain dimensions (γ )
15), chain hooking does not occur, and release occurs
through the rolling off of monomers from the obstacle.

Simple deterministic models can be formulated for the
unhooking of a chain from a point obstacle and for the
rolling off of a chain from a large circular obstacle in
strong fields. The characteristic time for unhooking can
be obtained from a simple analysis of an inextensible
chain with linear charge density λ, draped over the
obstacle. The unhooking process is described by the
increase in the difference in arm lengths, ∆. The time
for unhooking in strong fields is found by equating the
driving force for unhooking, ∆λE, with the drag force
along the chain contour, - ê d∆/dt where ê ) Naη and
η is the viscosity. This characteristic time of unhooking,
tunhook ≈ aη/λ(N/E), is chain length-dependent. The
second characteristic time scale of interest is that for
chain roll-off from a large circular obstacle of radius R.
The rolling-off process is described simply as the field-
induced rolling of an object of charge Nλ along the path
s on the obstacle surface. The drag on the object, -ê
ds/dt, is balanced by the component of the applied field
force tangential to the obstacle surface, λNE sin θ. The
time that it takes for the object to roll from the near
top of the obstacle to it side, s ) s0 to s ) πR/2 where ds
) R dθ is troll ≈ (aη/λ)R/E. From arc length s ) 0 to s0
diffusion is faster than rolling. Unlike the unhooking
time, the characteristic rolling time is not chain length-
dependent. This chain length independent rolling is
important in the formation of hooks about large circular
obstacles: symmetric hooks form as chain halves roll
to opposite sides of the obstacle. Likewise, release
without hooking occurs using this rolling-off mecha-
nism. Thus, in the strong field limit, both unhooking
and rolling are important in the escape of polyelectrolyte
chains impacted upon finite, circular obstacles.

These models account only for the potential-driven
motion and ignore the random thermal forces which
cause diffusive motion. Thermal motion is not important
on the time scale of chain release whenever the obstacle
is circular and the applied field is strong, âN . 1. This
is evident from the magnitude of the distance, ∆ )
xDt, diffused by the chain during tunhook and troll.
During tunhook, the distance diffused is on the order of
a/â, which is considerably less than the downfield
advance during unhooking, Na/2, for large chains and
high fields. Likewise, the distance diffused during troll
is R/â, which again is smaller than the downfield
advance of R in large fields. Diffusion is however
important at smaller time scales, for example, when the
hook is formed with equal arms or when the initial
impact occurs directly with charge/monomers distrib-
uted symmetrically over the obstacle. For circular
obstacles and high fields, diffusion is not important on
the collision time scale, even when the obstacle size is
very large. One can see this by analysis of the center of
mass trajectory on arc legnth s on a very large circular
obstacle. We postulate that the chain advances dif-
fusively from s ) 0 to s0 along the obstacle surface and
undergoes field-induced rolling from s0 until falloff.
Between s ) 0 and s0, the rate of roll off is smaller than
the rate of diffusion. Thus, the total collision time is
comprised of the diffusion and the roll-off time with the
s0 demarcation being determined from minimization of
the total collision time. The ratio of the diffusion time
to roll-off time is ≈ln[a/(âNR)]1/2, indicating that diffu-
sion is a small fraction of the collision time whenever
the obstacle or field strength is large. Moreover, from
this we also find that at field strengths âN < a/R the
collision time is dominated by diffusion. The simulation
results presented in this paper are not at sufficiently
low field strengths such that diffusion dominates the
release mechanism.

IV. Collisions with a Large Obstacle

It is instructive to look first at a wide collection of
chain collisions with a large obstacle, allowing for not
only direct but also a range of indirect impacts, b > 0.
We consider here the impact of a N ) 100 chain in high
field, E ) 20, against an obstacle of radius R ) 60 (with
an inner hard core radius of H ) 40), and dimensionless
size, γ ) 15. The average linear extent of the relaxed
chain is 〈l〉 ) 12.2. Figure 4 provides the collision
distance, zc, versus collision time, tc. The (zc,tc) data are
banded, reflecting discrete sampling of the impact
parameter from b ) 0 (rightmost vertical band of points)
to bmax ) R + 〈l〉 ) 72.5 (leftmost band). Direct impacts,
small b, retard the chain’s downfield progress, extending
the collision time, while chains with an offset of b up to
72.5 ) 1.21R at most glance the obstacle and travel
downfield relatively unaffected by the obstacle. Such
noninteracting chains have a center of mass velocity
which is independent of chain length, ν0, as delineated
by the displacement-time line in Figure 4.

The breadth of collision distances within each impact
band in Figure 4 is due to (1) a distribution of chain
dimensions, 〈l〉, at all impacts and (2) chain stretching
which may occur as part of the collision process in direct
or nearly direct impacts. The prescriptions for chain
“release” and initial configuration are based upon the
positioning of the most upfield and most downfield
monomers and not upon the center of mass’s downfield
location. Consequently, the measured downfield advance
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during collision, zc, also reflects the distribution of chain
extents, 〈l〉. This is evident on the most glancing impacts

(schematic A in Figure 4), where the chain dimension
is relatively unperturbed during the collision process.
The average collision distance is zc ) 〈l〉 + R + H ≈ 110,
with breadth in collision distance representing the
distribution of chain extents. For more direct impacts
the breadth of collision distances increases as chains
are stretched during the collision. The maximum down-
field advance occurs when the chain is fully stretched
such that its center of mass is distance Na/2 downfield
from the most upfield monomer; i.e., the maximum
collision distance is zc ≈ Na/2 + R + H + 〈l〉/2 ) 150 as
shown in the schematic D of Figure 4. The collision
distances sampled at direct (b ) 0) impact are bimodal,
indicating that upon release chains are either highly
stretched or unperturbed. The highly stretched chains
result from release through an unhooking mechanism
while the unperturbed chains result from release through
a simple rolling off of the obstacle.

We can explore the effect of obstacle size upon the
collision distance and time at fixed field strength, E )
20. Figure 5 provides (zc,tc) results from the collision of
chains of N ) 100, 50, and 20 with a post of radii R )
3 (bottom) or R ) 60 (top), corresponding to dimension-
less obstacle sizes, γ, ranging from 0.74 to 33. The
collision distances are larger for larger obstacles, indica-
tive of the larger downfield advance which is needed to
satisfy the rules of release. Focus first upon the data
for the N ) 100 chain (Figure 5a) impacted against
obstacles of dimensionless size γ ) 0.74 and for an
intermediate-sized obstacle, γ ) 15. Many of the chains
impacted against the smaller obstacle are not dramati-
cally impeded: their downfield advance occurs in times
that are not very different from the downfield advance
of a noninteracting chain, (i.e. the data points are close
to the constant velocity, ν0, line of Figure 5a). However,
if the chain is significantly “held up” by the obstacle,
i.e., tc is large, then the chain is highly stretched upon
release, i.e., zc is large. This shows that when the chain
interacts significantly with the obstacle, release occurs
predominantly by an unhooking mechanism and that
nearly all chains that impact directly with the small

Figure 4. A plot of the collision distance, zc, versus the
collision time, tc, for chains of N ) 100 impacting upon an
obstacle of radius R ) 60 (dimensionless obstacle size γ ) 15)
with inner core radius of H ) 40 and in high field, E ) 20.
Each of the 2400 points represents a simulated chain, and the
banding of the data is due to the sampling of discrete offset of
the chain’s center of mass from the obstacle center. The offsets,
quantified by the impact parameter b, are b ) 72.5 to 60
(leftmost band), 40, 30, 20, 15, 10, 6, 4, 2, and 0 (rightmost
band). These correspond to the full range of impacts 〈l〉 + R <
b < 0. Schematics of the chain at initial impact and final
release is included for (A) no impact, (B, C) near glancing
impacts, and (D) direct impact.

Figure 5. Plots of collision distance, zc, versus collision time, tc, for two different obstacles of radii R ) 3 and R ) 60 for chains
of (a) N ) 100, (b) N ) 50, and (c) N ) 20 monomers, with field strength E ) 20 and over a range of impact parameters, 〈l〉 + R
< b < 0. Small obstacles, γ < 1, provide collision data that are similar to those of point posts; i.e., direct impacts result in hairpins
which provide highly stretched chains upon release.11 Chains impacted upon large obstacles, γ . 1, show data banding with
impact parameter. There are two modes of release of chains impacted directly onto large posts: unhooking and “rolling off” of the
obstacle. The unhooking mode is characterized by a long-lived chain interaction and strongly stretched chains upon release. The
rolling-off mode is characterized by long-lived chain-obstacle interactions; however, the release conformation is unstretched and
nearly relaxed. As the obstacle size increases, the proportion of hooked conformations diminishes until all chains are released
through the rolling-off mode.
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obstacle are released after long collision times. These
results are very similar to previous results using a point
obstacle and no thermal noise.11 In contrast, more
chains are held up by the larger obstacle, γ ) 15,
including those chains that indirectly impact with b >
0 (i.e., the data points are displaced significantly to the
right of the constant velocity line in Figure 5). Moreover,
these chains are not necessarily highly stretched upon
release, indicating release by a rolling-off mechanism,
with varying degrees of stretch. At direct impact, chain
release also occurs after long collision times; however,
the released chains can be unperturbed or highly
stretched. As the obstacle increases in size, chains that
impact directly are more likely to be released in an
unperturbed conformation as opposed to a fully stretched
conformation. This is particularly evident in the top of
Figure 5a,b where the number of fully stretched chains
(with zc ≈ Na/2 + R + H + 〈l〉/2) decreases while the
number of unperturbed chains (with zc ≈ 〈l〉 + R + H)
increases at b ) 0. In essence, chains that encounter
obstacles that are large compared to the chain’s natural
dimensions will escape by a rolling-off mechanism.
Hooks and unhooking are less likely to occur as the
obstacle size increases.

V. An Ensemble of Collisions with Chains and
Obstacles of Different Size

Figure 6 provides collision time and distances for N
) 100 and N ) 20 over a range of field strengths where
collisions are explored over a full range of impacts with
an obstacle of fixed radii R ) 3 and dimensionless sizes
γ ) 0.74 and γ ) 1.6. The N ) 100 chains are in fields
ranging from â ) 20 to 0.01. The banding of data with
impact parameter is not evident on these logarithmic
scales; instead, the data are banded according to the
applied field strength. As the field strength decreases,

there is an increase in collision time, as one would
expect from the decreased driving force. There is also a
reduction in the maximum collision distance, signifying
the diminished stretching of the arms of hooked chains
in smaller applied fields. The signature of an unhooking
mechanism is evident at all high field strengths: a rise
in collision distance with collision time followed by a
plateau in the collision distance at longer collision times.
For the N ) 20 chains, the obstacle size, while small, is
on the order of the chain size, γ ) 1.6, and the field
strength ranges from â ) 20 to â ) 0.01. The N ) 20
data are characteristic of the unhooking mechanism in
strong fields, but this is lost when the field becomes
weak. In weak field there is a characterless range of
collision times and distances, with a loss of the plateau
in collision distances. Thus, chains are not stretched in
collision processes that occur at lower fields. Unhooking
is not realized at weak fields simply because hairpins
or hooks are not formed.

The universal scaling behavior found by Sevick and
Williams for point obstacles shows that when chains
impact a point obstacle, release occurs through an
unhooking mechanism which follows simple scaling
formulas.11 Does the universal scaling behavior found
for point posts in high field still hold for finite-sized
posts and thermal motion? We can test this by measur-
ing the degree to which the collision impedes the chains
downfield advance in strong fields and by scaling with
the same parameters as those used for point posts. In
the simulations of Sevick and Williams, collision time
and distance were measured only when the center of
mass velocity was slower than ν0, i.e., when the chain
was “slowed” by the post. Thus, it is first necessary to
reduce a portion of the collision time and distance which
result from unimpeded advance past a finite-sized
obstacle. To recover zero collision distances in the finite
post problem, the collision distance of a noninteracting
chain, 〈l〉 + R + H, is subtracted from all collision
distances zc. The time taken to traverse this distance
in the absence of posts, (〈l〉 + R + H)/ν0, is subtracted
from all collision times, tc. This is done to recover zero
collision time and distance for noninteracting chains.
Finally, the collision time is scaled by the characteristic
time for simple unhooking in a strong field, tunhook ≈
E/N, while the collision distance is scaled by the
maximum extent of the chain, Na. All high field data
with γ ) 0.74 and 1.6 of Figure 6 were scaled in this
fashion and result in Figure 7. Figure 7 shows that the
universal behavior found for point posts with no thermal
noise (see inset) is qualitatively reproduced for small,
but finite-sized, obstacles with thermal noise. Noticeable
in both is the long-lived state associated with hooked
and fully stretched chains and the scaled constant
velocity envelope, νo* ) dz*/dt* ) λ/(2a2ê). Double-
hooked hairpins which are distinguishable with point
obstacles (zc* ) 0.25) are also evident for finite-sized
obstacles with thermal motion.

Similar treatment of the collision distance and time
for large obstacles (γ ) 15, 20, and 33) does not result
in data collapse onto a single curve for various chain
sizes and field strengths. This is expected as unhooking
is no longer a dominant release mechanism. However,
we can show that if we remove from the collision time
the “slowing down” which results from the rolling-off
mechanism, then we are able to see scaling behavior
which is indicative of unhooking. To achieve this, we

Figure 6. Semilogarithmic plots of collision distance, zc,
versus collision time, tc, for chains of N ) 100 (prominent “S”-
shaped data bands) and N ) 20 (low-lying data bands)
impacted against an obstacle of radii R ) 3 over a full range
of impact parameters and at discrete field strengths E ) 20
(leftmost band), 10, 5, 1, 0.5, 0.1, 0.05, and 0.01 (rightmost
band). In high fields, distinguished by NEλa/kBT . 1, the data
are characteristic of unhooking from an obstacle: there is an
increase in collision distance with collision time and a plateau
in the collision distance at larger collision times. However,
when the field strength is low, the unhooking character is lost.
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must similarly reduce a portion of the collision time and
distance which results not only from the unimpeded
advance past the finite-sized obstacle but also from the
rolling. Consider a chain that impacts the obstacle at
impact parameter b and does not form a hook, but rolls
off. This chain’s measured collision time consists of a
collision time that is in three parts. The first is the time
that it takes for the center of mass to advance from z )
-(R + 〈l〉/2) until impact at z ) -b sin θ0 or s ) s0 and
occurs at unimpeded velocity ν0. From θ0 to θ ) π/2, the
chain rolls off of the obstacle taking time aη/λ(R/E)
ln(sin θ0/(1 - cos θ0)): this is the second component of
the collision time. And the final time portion occurs
during center of mass transit between from z ) 0 (θ )
π/2) to z ) H + 〈l〉, where the most upfield monomer is
at z ) H meeting the condition of release, at a velocity
ν0. This discount time depends upon the chain’s impact
parameter b and is subtracted from each tc measure-
ment. Similarly, the finite size of the obstacle is
subtracted from each collision distance zc to remove the
obstacle-size-dependent part of the chain’s center of
mass advance. These discounted times and distances are
then scaled according to the characteristic time and
length scales of unhooking, i.e., tunhook and Na, respec-
tively. The result is Figure 8, and it is very similar to
the scaled time/collision behavior of point posts, with
the exception that most chains are not significantly
retarded by hooking; i.e., most of the points lie on a
constant velocity, ν0*, line. Those chains that are
seriously impeded possess a range of collision distances,
indicating the chains range from fully stretched to
completely unperturbed at release. All field strengths
explored were âN > a/R such that diffusion did not
dominate the release time.

VI. Conclusions

In this paper we have used a Brownian dynamics
simulation to study the field-driven collision of a poly-
mer chain with a circular, ionically conductive obsta-
cle of radius R described by a dimensionless size γ )
R/(axN/6). We have demonstrated that there are two
separable, field-driven modes of release from circular
obstacles with dimensionless field strengths âN > a/R.
The first is the unhooking mode of release which occurs
on a chain-length-dependent time scale, tunhook ) aη/
λ(N/E). It was shown that the release mechanism mode
permits the universal scaling of collision time over a
range of strong field strengths and chain sizes for
collisions with point posts. In this paper, where we have
included thermal motion and considered finite obstacles,
we find that this universal scaling behavior is retained,
particularly for small obstacles. When the obstacle is
increased in size, γ > 1, a second mode of release
becomes more likely than the unhooking mode. This
second mode consists of the chain rolling off of the
obstacle on a time scale troll ) (aη/λ)R/E, which is
independent of chain length but dependent upon the
obstacle size and the type of collision, that is, whether
it is direct or glancing impact. As such, stochastic
collisions with large obstacles do not segregate the
chains according to size, but rather impart a distribution
to the downfield advance which reflects the size of the
obstacles. While important at small time scales, diffu-

Figure 7. Scaled and reduced collision distance, zc*, versus
scaled and reduced collision time, tc*, for chains of N ) 100
and 20 at field strengths E ) 10, 5, 1, 0.5, 0.1, and 0.05 and
obstacle size R ) 3, corresponding to small obstacles of
dimensionless size γ ) 0.74 and γ ) 1.6. Each point in the
graph represents one of the 13 800 collisions simulated.
Collectively these points show that the collisions with small
but finite obstacles scale similarly with noiseless (kBT ) 0)
collisions on a point obstacle (inset).11 Collisions with finite,
but small, obstacles and with point obstacles gives rise to
hooking (A) as well as multiple hooking (B), although thermal
motion does give rise to some scatter in the points about the
universal line.

Figure 8. Scaled and reduced collision distance, zc*, versus
scaled and reduced collision time, tc*, for chains of N ) 100,
50, and 20 at field strengths E ) 20 and 10 and obstacle sizes
ranging from R ) 30 to 120, corresponding to large obstacles
of dimensionless size 7.4 < γ < 33. These obstacles are large,
and a significant fraction of the collision time will be dependent
upon a chain size independent roll-off time which is dependent
upon the impact parameter. The data reduction removes the
effect of simple roll-off such that chains which are impeded
by the obstacle are represented by points to the right of the
constant velocity, νo*, line. Note that seriously impeded chains
have scaled collision distances which span from zc* ) 0.5,
indicating that the chain is stretched out along the obstacle
surface (possibly through hooking) toward zc* ) 0, indicating
near natural chain dimensions at release. This range of
stretching occurs with the different dimensionless field
strengths, âN, explored: larger dimensionless fields stretch
the chain more while smaller fields do not significantly perturb
chain dimensions.
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sion does not occur on the time scale of the release
kinetics when the obstacle is circular, regardless of the
large size of the obstacle and when the field is âN >
a/R. Diffusion is important on the collision time scale
only for completely flat obstacles, as for example,
perforated barriers. Our study of chain-obstacle colli-
sions is currently being extended to the case of noncon-
ductive obstacles which distort the local electric field.
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