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ABSTRACT: We describe the compression of a water-soluble polymer brush which undergoes compression-
induced phase transitions. The solution behavior of the polymer comprising the brush is described using
the de Gennes “n-cluster” model which predicts a region of coexistence between dense and dilute phases.
We show that compression of the brush can induce the formation of a dense coexisting phase or the
elimination of a dilute phase. These compression-induced transitions give rise to discontinuites in
compression force profiles, which can be measured experimentally using the surface force apparatus or
the atomic force microscope.

I. Introduction

Surfaces which are modified by the adsorption or
attachment of a water-soluble polymer are important
to many applications. These applications include sta-
bilization of aqueous colloidal dispersions and imparting
biocompatibility to in vivo objects such as implants and
drug delivery systems. Water-soluble polymers have
been known to exhibit unusual bulk solution behavior;
however, it is only in recent years that solution models
have been proposed specifically for these polymers.1-4

One of the recent theories which we focus upon in this
paper is the “n-cluster” solution model of de Gennes,1
which was proposed for aqueous solutions of PEO or
poly(ethylene oxide). In this paper, we study the
compression of a layer of end-tethered polymers which
are described by the n-cluster theory and show that
compression can induce a phase transition within the
brush. We predict, to within scaling constants, the force
required to compress such a brush from its natural
(free) height, Huncompressed to an arbitrary height, H <
Huncompressed. These force profiles predict signatures of
compression-induced phase transitions within the brush.
Such force profiles are measurable by surface force
apparatus (SFA) or atomic force microscopy (AFM). The
compressive forces predicted here are directly relevant
to colloidal stabilization in aqueous solution.5 While the
n-cluster solution theory was originally motivated by
PEO experiments, it may well extend to other hydrogen
bonding polymers such as poly(N-isopropylacrylamide)
in water6 or polyacrylates in apolar solvents.7 Other
solution theories may also be used within the formalism
of this paper. A comparison of the theoretical predic-
tions and the experimental force profiles might also be
used to discriminate among solution models.
The de Gennes n-cluster model1 describes the solution

thermodynamics of a polymer-solvent mixture where
the pairwise interaction of monomers is repulsive (i.e.,
the solvent is a good solvent) but where interactions
among a larger group or cluster of n > 2 monomers is
attractive. These attractive n-cluster interactions may
reflect the formation of helices among two more or
strands or the microaggregates detected in light scat-
tering experiments on an aqueous solution of dilute
PEO.8,9 The n-cluster theory consists of an interaction
(mixing) free energy, Fint, in units of kT per unit volume,

cast as

where the mixing entropy is taken for chains of infinite
degree of polymerization. The attractive interactions
contribute -F (F > 0) enthalpy per n-cluster, or -Fφn to
the free energy, and the Fφ term recovers zero mixing
enthalpy when φ ) 1, as dictated by convention. For F
> Fc ≡ n-1[(n - 1)/(n - 2)]n-2, Fint exhibits a concave,
unstable region, and demixing results in two bulk
phases, one concentrated at φ+ and another dilute at
φ-. The values of φ+ and φ- at coexistence are deter-
mined by the equilibrium conditions:10 (i) equality of
chemical potentials, µ(φ+) ) µ(φ-) where µ ) dFint/dφ,
and (ii) equality of osmotic pressures, π(φ+) ) π(φ-)
where π ) φdFint/dφ - Fint. These conditions prescribe
constructions, either Maxwell’s equal area construction
on the µ-φ surface or the common tangent construction
on the Fint-φ surface, which can be used to determine
φ+ and φ-.
The bulk demixing predicted for n-cluster chains in

solution also occurs for chains which are end-tethered
to a surface and gives rise to a discontinuity in the
concentration profile of the brush. A theoretical de-
scription of uncompressed (or free) water-soluble brushes
in the n-cluster model was explored by Wagner et al.7
using the self-consistent field (SCF) approach.11,12 Mis-
ra et al.13 studied planar polyelectrolyte brushes in poor
solvents and Birshtein et al.14 studied brushes made of
polymers with mesogenic units. Both theoretical studies
showed phase separation within the body of the brush.
In this paper we use the same rigorous method to
construct concentration profiles for n-cluster brushes,
and we extend the method to calculate the compression
phase diagram and free energy and force-compression
profiles.
The remainder of the paper is organized in the

following manner. In the next section we review the
theoretical methods which provide the monomer con-
centration profile of a brush comprised of a polymer
whose solution behavior follows a prescribed model.
Using the n-cluster model and SCF predictions of
concentration profiles, we predict the regions of phase
coexistence for brushes of arbitrary grafting density and
compression. We also show that while the simple

Fint ) F(φ - φ
n) + (1 - φ)ln(1 - φ) (1)
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Alexander-de Gennes step profile model is unable to
predict force proiles, this simple model still captures the
scaling behavior of critical compression at which phases
appear and disappear. In the next section we construct
free energy and force-compression profiles which sig-
nature the compression-induced phase changes. These
force predictions should relate directly to experimental
measurements obtained with the surface force ap-
paratus or atomic force microscope using polymers
whose solution behavior is described by the n-cluster
model.

II. The Compression Phase Diagram of an
n-Cluster Brush
The polymer brush is modeled as follows. Each chain

has an equal degree of polymerization,N, and monomer
size a ) 1 and is tethered uniformly on an inert planar
surface with density σ. All distances in our problem are
scaled with N: z ) Z/(Na) where Z is the perpendicular
distance measured from the grafting plane and the
scaled brush height is h ) H/(Na) whereH is the actual
height of the brush. The distance between closest tether
points is always taken to be less than the natural radius
of a chain; consequently, we investigate brushes with
grafting densities in the range 0 < σ < 1 where σ-1 <
N.
A rigorous scheme for determining the monomer

concentration profile of any brush whose interaction
energy is given by Fint ) f(φ) is the self-consistent field
approach,11,12 which is described briefly in this para-
graph. Consider a single chain in an existing brush
whose trajectory, z(n) for n ) 1, 2, ..., N, is the scaled
distance from the grafting plane to each of the indexed
monomers. The free energy of that chain is the local
energy integrated over the monomers of the chain:

where the first term in the integrand is the local
stretching energy and the second term is the interaction
energy of the monomer with the local concentration,
φ(z). The trajectory, z(n), which minimizes the free
energy of the chain is the solution to

with the boundary conditions z(n ) 0) ) 0 and dz(N)/
dn ) 0, corresponding to the tethering of one end of the
chain and the absence of stretch at the free end of the
chain. These energies hold for any chain in the brush,
and consequently, each chain in the brush must have a
trajectory which satisfies eq 3 and its boundary condi-
tions. Furthermore, irrespective of the position of the
free end of the chain 0 < z(N) < h, the tethered end
must reside at the grafting surface. In this way, the
trajectory of the chain is analogous to the trajectory of
a particle moving in a harmonic potential of the form V
) λ - Bz2, given by

where the polymerization index n is equivalent to the
time of flight t, and the harmonic potential is identified
with the local monomer chemical potential:

The constant B is π2/8 by the equal time constraint of
trajectories. Implicit to this treatment is the absence
of “dead zones”, i.e., regions within the brush where free
ends are prohibited. From this equation, we can see
that λ is the monomer chemical potential at the root of
the brush, λ ) µ(0), and that the monomer chemical
potential follows

Since the chemical potential is a function of the local
concentration only, eq 6 provides the form of the
concentration profile for a brush with specified h and
concentration at the brush tip, φh ) φ(h). The normal-
ized brush height, h, is determined by the conservation
of monomers

for a specified grafting density. For uncompressed
brushes, the monomer concentration at the tip of the
brush is zero, φh ) 0, while for compressed brushes, the
concentration at the tip is nonzero and grows with the
degree of compression.
Equations 6 and 7 are sufficient for determination of

the brush concentration profile, φ ) φ(z), for any
φ-dependent bulk interaction energy, Fint. In the case
of a pairwise excluded volume solution model, e.g., Fint
) νφ2/2, an analytic solution of eqs 6 and 7 yields the
free brush profile, e.g., φ(z) ) B(h2 - z2)/ν. However,
for arbitrary forms of Fint ) f(φ), a simple analytic
determination of φ(z) is not always possible and a
numerical solution is required, as in the case of the
n-cluster model. The numerical solution method follows
that of Wagner et al.7 and is simply an integration of
tabulated values from the solution model, Fint, as shown
in Figure 1. From Fint, we numerically tabulate (φ,µ)
for given model parameters, replacing regions of un-
stable mixing with a phase boundary which straddles
concentrations φ+ and φ- according to Maxwell’s con-
struction. Next, we translate the µ tabulation by a
constant δ where δ > 0 is identified with the chemical
potential at the brush tip, µh. According to eq 6, the
tabulation (φ, µ - µh) is also the tabulation (φ, B(h2 -
z2)), i.e., a form of the concentration profile which is valid
for a brush with tip concentration φh and arbitrary
height. The magnitude of the translation, δ ) µh, can
be related to the osmotic pressure or force exerted on
the tip of the brush, φh µh - Fint(φh). The concentration
profile is made specific by (a) specification of brush
height, h, or by (b) specification of grafting density and
determination of brush height according to the numer-
ical integration of eq 7.
This construction demonstrates that when demixing

occurs within the body of the brush (i.e., when F > Fc),
the concentrations which straddle the demixing bound-
ary are the same as those in the bulk, φ+ and φ-. The
location of the demixing boundary is changed when the
brush is compressed or the grafting density is increased,
but the values of φ+ and φ- remain unchanged. For an
uncompressed brush, Wagner et al.7 found the minimal
grafting density required for the brush to exhibit a
demixing boundary: σc is that grafting density at which
the root concentration exceeds φ-. Uncompressed or

V ) λ - Bz2 )
dFint

dφ
) µ(z) (5)

µ(z) - µ(h) ) B(h2 - z2) (6)

Nσ ) ∫0H dz φ(z) (7)

F ) ∫0N dn [12(dzdn)2 +
dFint

dφ ] (2)

d2z
dn2

) d
dz[dFint

dφ ] (3)

d2z
dt2

) d
dz
(V) (4)
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free brushes with grafting density below σc are com-
prised of a single phase with φ(z) < φ-. For free brushes
with grafting densities above σc, a demixing boundary
separates a more dense phase near the root of the brush
from a dilute phase on the tip side of the brush. As σ
increases from σc, the location of the demixing boundary
advances from the root of the brush, however the more
dilute phase is always present at the tip for Fc < F< 1.
As demonstrated by Wagner et al.,7 at a sufficiently low
temperature at which F ) 1, the demixing concentration
vanishes, φ- ) 0. This corresponds to the disappearance
of the dilute (good-solvent) phase such that the dense
(poor-solvent) phase is in equilibrium with pure solvent
at all grafting densities. Figure 2 shows the scaled
brush height, h ) H/N, as a function of the grafting
density for characteristic model parameters which
provide a wide window of phase coexistence, F ) 0.4 and
n ) 10. Note that for grafting densities above σc, the
brush height grows more slowly with grafting density
as a growing fraction of monomers are incorporated into
the growing dense phase.

Using the above numerical scheme, we can describe
compression-induced demixing within brushes with
grafting density below σc. A schematic of the brush
compression is provided in Figure 3. The onset of the
dense phase occurs with compression as compression
increases the local concentration everywhere within the
brush. When the concentration of the root of the brush
exceeds φ(z ) 0) > φ-, then the dense phase results.
With further compression, this collapsed phase grows

Figure 1. Numerical solution of monomer concentration
profile for a brush comprised of polymer whose solution model
is Fint. Shown is the method applied to the n-cluster model
with F ) 0.4 and n ) 10. The chemical potential, µ ) dFint/dφ
is tabulated for monomer concentrations, φ (a). The unstable
mixing region is eliminated and replaced with a demixing
boundary straddling φ+ and φ- through Maxwell’s construc-
tion. The resulting tabulation (b) is translated by an amount
µh to obtain (c) which is identified with a monomer concentra-
tion profile (d) through eq 6. The tip of the brush (z ) h) is
found at h2 - z2 ) 0 and the root of the brush (z ) h) is
determined from eq 7 and are specified by the broken lines on
part d.

Figure 2. Scaled brush height, h ) H/N, vs grafting density,
σ, for an uncompressed (free) n-cluster brush with F ) 0.40
and n ) 10. σc ) 0.37 is the smallest grafting density at which
a coexisting dense (poor-solvent) phase is present. For grafting
densities larger than σc, the brush height grows less strongly
with grafting density. This is due to a growing fraction of
monomers which are incorporated into the dense phase of the
two-phase brush.

Figure 3. Monomer concentration profiles of an n-cluster
brush which are compressed to 100 (free), 70, 60, and 40% of
the free brush height. The profiles are provided as plots of the
scaled distance from the grafting surface, z ) Z/N, vs monomer
volume fraction, φ, and were calculated using n-cluster pa-
rameters F ) 0.40 and n ) 10 with a grafting density of σ )
0.30 < σc ) 0.37. Pictured opposite each profile is a schematic
of the brush showing the proportion of dilute (light) and dense
(dark) phases under compression.
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in height, incorporating polymer monomers from the
dilute phase. At strong compressions when φh ) φ-, all
monomers have been incorporated into the collapsed
root, and the brush is again in a single mixed phase,
albeit a more dense, collapsed state. For brushes with
grafting density above σc where phases coexist, com-
pression causes the demixing boundary to advance
toward the tip of the brush until the brush is wholly in
the dense phase.
Figure 4 provides the loci of critical compressions

which bound the phase coexistences at any grafting
density ranging from 0 < σ < 1. Compression is given
as the ratio of heights in the compressed and free states,
0 < H/Huncompressed < 1 and the critical compressions,
∆1 and ∆2, correspond to compressions H/Huncompressed
at which a coexisting phase appears and disappears,
respectively. The compression profile of a brush of fixed
grafting density corresponds to a vertical trace in Figure
4. For grafting densities σ < σc, compression transforms
a brush (one phase) to a partially collapsed brush (two
phase) and, with further compression, to a completely
collapsed brush (one phase). For σ > σc, compression
of the partially collapsed brush (two phase) reduces the
number of monomers which are in the dilute phase until
the volume of this phase disappears and the brush is
completely collapsed (one phase). The character of the
compressed phase diagram remains unchanged with
different values of model parameters (F, n) as long as
the interaction magnitude is larger than Fc and less than
1. With an increase in the interaction magnitude, F,
the compression behavior occurs at lower grafting
densities, as one would expect. Likewise, the attractive
n-clustering leads to collapse regions at lower grafting
densities for smaller values of n. Thus, weak attractive
n-clustering, where n is large, provides a significant
window of grafting densities and compression where
phases coexist.

The compression phase diagram was constructed
rigorously for the n-cluster solution model; however, we
can understand the scaling behavior of the critical
compressions ∆1 and ∆2 with grafting density using
simple physical arguments based upon the Alexander-
de Gennes model.15 The Alexander-de Gennes model
describes a simply solvated brush where the detailed
concentration profile is replaced with a simple average
monomer concentration. In simply solvated brushes,
the SCF treatment reconstructs the same scaling laws
as the simple Alexander-de Gennes picture. However,
as pointed out by Wagner,7 this simpler treatment is
inappropriate for brushes in which there exists more
than one solvation state or phase. In such brushes, the
Alexander-de Gennes model predicts an unphysical
discontinuity in pressure across the demixing boundary,
and it is therefore necessary to use the full SCF
treatment. However, the Alexander-de Gennes treat-
ment should still be valid for n-cluster brushes under
conditions where there is no internal demixing or under
conditions of incipient demixing. Consequently, for
uncompressed n-cluster brushes with grafting density
below σc, where there exists only one phase, the height
follows the well-known scaling formHuncompressed≈ σ1/3N.
In the Alexander-de Gennes method, the critical com-
pression, ∆1, would correspond to that compression at
which the average concentration of the brush is in-
creased to φ-. Beyond this average concentration, a
coexisting phase is created and the simpler scaling laws
cannot be adopted. Since the brush volume per chain
is V ) H/σ and the height is H ≈ Vσ ≈ Nσ/φ-, then the
critical compression follows ∆1 ) H/Huncompressed ≈ σ2/3/
φ-. Likewise, the critical compression, ∆2, corresponds
to the maximum decompression at which the brush is
not longer in the single, dense phase and the average
concentration becomes less less than φ+. This height
is H ≈ Vσ ≈ Nσ/φ+ and the critical compression is ∆2 )
H/Huncompressed ≈ σ2/3/φ+. Both of these scaling forms are
reproduced in the detailed SCF predictions at grafting
densities lower than σc, Figure 4b. While the Alex-
ander-de Gennes description, the simplest and least
detailed model, captures the scaling of critical compres-
sions with grafting density in single-phase brushes, it
does not provide a physical description of compression
within the coexistence region, and it cannot be used to
predict force profiles. For these, SCF results are neces-
sary.

III. The Free Energy and Force Profiles of
Brush Compression
In this section we construct free energies and forces

of an n-cluster brush over a continuous range of
compression, H/Huncompressed, following the SCF develop-
ment put forth by Milner, Witten and Cates.11 The free
energy of a brush is the energy of chain addition, ∆F(σ),
accumulated from zero grafting density to σ: F ) ∫0σ dσ′
∆F. For a brush compressed to height h, the chains
added at low grafting density will not “feel” the upper
compression plane. Only when the grafting density
reaches σ*, the grafting density of a natural or uncom-
pressed brush whose height is equivalent to the plate
spacing, h, will the chains begin to feel compressed.
Every chain added above σ* is added under the con-
straint that the height is constant at the plate spacing
and is less than the natural height of a free brush.
Consequently, the tip concentration increases from φh
) 0 as the grafting density increases beyond σ*. The
free energy of the compressed brush is thus

Figure 4. Locus of critical compressions for n-cluster brushes
(F ) 0.40, n ) 10) with grafting densities between 0 and 1
plotted on linear (a) and log scales (b). The critical compression
is the ratio H/Huncompressed associated with the onset of a
coexisting, collapsed (poor-solvent) phase (∆1) and the disap-
pearance of the dilute (good-solvent) region leaving a single,
dense (poor-solvent) brush, (∆2).
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The first term is the free energy of an uncompressed
brush of height h; the second term is the accumulated
energy of chain addition where tip concentration grows
from 0 to φh. The free energy of addition of a tethered
chain to an n-cluster brush is found from eq 2 and the
harmonic potential equivalence, eq 6:

The chain trajectory, z(n), which minimizes eq 9, satis-
fies the differential equation d2z/dn2 - 2Bz ) 0 with
the solution z(n) ) Q sin(πn/(2N)). Replacing this
energy minimizing trajectory into eq 9 yields ∆F )
∫0N dn λ ) Nλ ) Nµ(0). Equation 8 reduces to

where it is understood that h in the first integrand is a
function of σ′ and that µ(0) in the second integrand is
also a function of σ′ and fixed height, h. Again, for
simple Fint models, the right-hand side of eq 10 can be
solved analytically; however the more general forms of
Fint ) f(φ) require numerical solution of the (φ, µ - µ-
(h)) or the (φ, B(h2 - z2)) tabulations of the previous
section. The arguments of the first integrand on the
right-hand side of eq 10 are found from a numerical
integration of the tabulation which is translated by δ
) µ(φ ) 0), i.e., Figure 1b, using eq 7 to determine h(σ′)
and σ′. The arguments of the second integrand are
found from (φ, µ - δ) tabulations translated by succes-
sive increments δ > µ(φ ) 0); each tabulation is
numerically integrated according to eq 7 with fixed h
to determine µ(0) and σ′. The numerical values of F(σ,h)
are sensitive to the level of discretization of the (φ, µ)
tabulations as double integrations are required.
Figure 5 shows the free energy profile of an n-cluster

brush under compression and at grafting density σ <
σc where the free brush is in the single, good-solvent
phase. In this figure, the compression free energy of a
simple pairwise excluded volume model, Fint≈ f 2, scaled
to be equivalent to the n-cluster model under no
compression, is included for comparison. With compres-
sion, the brush free energy always increases; however
the n-cluster model exhibits discontinuities in slope, (dF/
dH), which occur at the critical compressions which
bound phase coexistence (Figure 4). Note that with
initial compression, 1 < H/Huncompressed < ∆1, where the
brush consists of a single good-solvent phase, the free
energy increases in a manner similar to that for the
simple, excluded-volume model. After the appearance
of the dense, poor-solvent phase, the increase in free
energy with compression is diminished; i.e., dFint/dH is
smaller, in comparison to that of the simple excluded-
volume model. Indeed, Figure 5 shows that for com-
pressions between ∆1 and ∆2, the free energy is almost
linear with compression. More dense brushes, but with
grafting densities still less than σc, also exhibit the
diminished change in free energy with compression
when the dense and dilute phases coexist. Noting that
the dense phase is less compressible than the dilute,
we may understand the compression free energy to be
a result of the dilute, good-solvent phase alone: the
dilute phase is continually being depleted of monomer
as compression advances from ∆1 to ∆2, and conse-

quently, compression of the remaining solvated mono-
mers is energetically easier. When the dilute, good-
solvent phase completely disappears at ∆2, further
compression of the dense, poor-solvent phase requires
significantly larger energy.
We have found the force vs compression curves that

one could measure by compressing an n-cluster brush
in the SFA or a specialized tip of an AFM. The
compression force is equivalent to the osmotic pressure
at the tip of the brush, which can be found from

given the tip concentration, φh. Alternatively, the
compression force can be determined as the derivative
of the free energy with respect to brush height. How-
ever, one finds that the excessively fine discretization
of the (φ, µ) tabulation which is required to eliminate
numerical error in dF/dH ) f makes this latter method
unattractivesexcept to provide a cross-check for calcu-
lation consistency. Figure 6 shows the force vs com-
pression for n-cluster brushes of fixed grafting densities,
both above and below σc. The critical compressions at
which phases appear and disappear are marked on the
force profiles and correspond to those on the compres-
sion phase diagram, Figure 4, at the appropriate graft-
ing density. The discontinuities in the slope of Figure
5, discussed in the previous section, are more clearly
visible in the force profile for σ ) 0.1. Note that the
brush becomes significantly more compliant (df/dH is
smaller) when phases coexist and is incompressible for
compression beyond ∆2 where the brush is comprised
of a single, dense, poor-solvent phase. At a slightly
larger grafting density, σ ) 0.3, which is still less than
σc, the force profile is similar except that the span of
compressions over which phases coexist is greater and
except that the brush is less compliant in this region
but still more pliable than the single, good-solvent
region, 1 < H/Huncompressed < ∆1. At σ ) 0.5, i.e., where
the grafting density is above σc, the dense and dilute
phases coexist in the free brush. Compression depletes
the dilute phase until ∆2, beyond which the brush
becomes more incompressible. Note that the force
required to compress and to deplete completely the
dilute phase is independent of grafting density as one
would expect from the invariant φ+ and φ-.

IV. Discussion
In this paper we have discussed the compression of

brushes comprised of polymers which are water-soluble,

Figure 5. Free energy, F, vs compression, H/Huncompressed for
an n-cluster brush (F ) 0.40, n ) 10) with grafting density, σ
) 0.1 (full line) and for a simple pairwise excluded volume
brush (dashed line). The n-cluster brush exhibits a nearly
constant free energy slope for compressions between ∆1 and
∆2.

F(σ,h) ) ∫0σ* dσ′ ∆F + ∫σ*σ dσ′ ∆F (8)

∆F ) ∫0N dn [12(dzdn)
2

+ λ - Bz2] (9)

F(σ,h) ) B ∫0σ* dσ′ h2 + ∫σ*σ dσ′ µ(z ) 0) (10)

f ) -φh(dFint/dφ)|φh + Fint|φh (11)
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using the de Gennes n-cluster model. We find that
compression in brushes with grafting density smaller
than σc can induce a coexisting dense phase at the root
of the brush. With further compression, the phase
boundary separating the phases advances from the root
of the brush to the tip of the brush until the entire brush
is comprised of the dense phase. The force required to
compress the brush at grafting densities σ < σc signals
the appearance and disappearance of coexisting phases.
At zero to small compressions, before the dense phase
is induced, the force profile appears similar to that of a
good solvent; i.e., the brush becomes less compliant with
compression. However at the critical compression at
which the coexisting dense phase appears, there is a
discontinuity in the force profile and the brush becomes
more compliant, particularly at smaller grafting densi-
ties. We understand this reduced growth in the force
with compression as a result of the removal of mono-
mers from the dilute phase to the coexisting dense phase
which is less compressible. Indeed, when the second
critical compression is attained, i.e., the compression at
which all of the monomers reside in the dense phase,
there is another discontinuity in the slope of the force.
The force becomes very large with further compression,
signifying the comparative incompressibility of the
dense phase. For brushes of grafting density larger
than σc, the free brush is comprised of coexisting phases
and compression serves to eliminate the dilute phase

at the tip of the brush. This compression behavior,
shown in this paper for model parameters (F, n) ) (0.4,
10) is characteristic of the n-cluster model for a range
of parameters (F > Fc, n). For (F, n) ) (0.4, 10), the
coexisting phase at the brush root is very dense, i.e., φ+
exceeds 0.90, giving rise to sharply incompressible
regions in the force profiles. Other interaction param-
eters (F smaller and closer to Fc) yield smaller values of
φ+ and consequently the incompressibility of the brush
forH/Hunocmpressed < ∆2 can be significantly reduced, but
the discontinuities in the force profiles remain.
While the predictions of this paper focus upon the

compression of one brush-lined plane with a bare,
noninteracting plane, the results are also relevant to
the compression between two brush-lined surfaces. The
compression force profiles are relatively unchanged by
the presence of the second brush whenever the brushes
retain their dilute phases near the tip, i.e., whenever
H/Huncompressed > ∆2 (Figure 4), and whenever F < 1.7
Under these conditions, the brushes are repulsive and
oppose compression due to the lack of interpenetration
of the solvated brush tip. However, whenever the dilute
phase at the tip of the brush is absent, either through
low temperature (F > 1) or large compression (H/
Huncompressed < ∆2), the brushes become less repulsive
due to the attractive interactions of n-clusters that form
between the two brushes. However, the binary interac-
tions between brushes remain repulsive, and conse-
quently, this effect may give rise only to a slight
decrease in the repulsion between the brush-lined
surfaces.
This paper focused upon polymers whose solution

thermodynamics is modeled by de Gennes’ n-cluster
theory. However, the approach demonstrated here may
be used in conjunction with other solution models, and
comparison with experimental compression profiles
from SFA or AFM may be used to discriminate among
solution models. Indeed, the results of Misra et al.13
and Birshtein14 may also be viewed as tests for solution
models of polyelectrolytes and mesogenic polymers,
respectively. It is important to note, however, that SCF
treatment used here implicitly assumes that there is
no dead zone within the planar brush, either a free or
compressed brush. It is unreasonable to rule out the
possibility of dead zones, or regions of constant monomer
composition, for general solution models. In addition,
the SCF treatment also assumes lateral invariance; i.e.,
the monomer concentration varies only in the z -direc-
tion. However, evidence exists for lateral structure of
tethered chains. For example, polymers weakly grafted
and immersed in a poor solvent may form surface
globules, referred to as “octopus” micelles.16-18 Diblocks
tethered over a range of grafting densities have been
predicted to microphase separate to form surface mi-
celles which might be used to laterally stripe or pattern
a surface.19,20 In cases where lateral microphase-
separation or dead zones occur, the treatment used here
is inappropriate and detailed SCF calculations21 are
required.
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