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ABSTRACT: The shear response of polymer brushes is explored as a function of grafting surface curvature
using the Alexander-deGennes ansatz, where the free ends of the chains are localized at the tip of the
brush and all tethered chains in the brush are stretched equally. Brushes adsorbed onto the concave
and convex surfaces of a cylinder are found to swell to a maximum of 35% of their nonsheared brush
height in good solvent, larger than the predicted maximum shear swelling of planar brushes of the same
grafting density. For significantly convex surfaces, increased surface curvature increases the maximum
amount of shear swelling. In contrast, brushes grafted onto concave surfaces with the same grafting
density show diminished shear swelling as the grafting surface becomes more concave. The shear response
of nonplanar brushes is important in a variety of possible applications, including the fabrication of
pressure-sensitive microvalves and dynamic membranes and an understanding of the rheological behavior
of hairy-rod polymers or molecular bottlebrushes.

I. Introduction

The physical properties of polymer brushes grafted
onto surfaces is important in the modification of surfaces
and the stabilization of colloidal suspensions. A polymer
brush consists of a high density of polymers end-grafted
onto a surface. The polymers are grafted so densely that
they overlap strongly and are forced to stretch away
from the surface, forming an elastic layer. Recently,
experiment1,2 and theory3-5 have focused on the re-
sponse of such brushes to an applied tangential surface
force. Klein et al.1,2 demonstrated that a pair of
opposing brushes, when slid past one another in the
presence of a good solvent, experience a repulsive
normal force and interpreted this as brush swelling
under shear. This novel shear response has spurred
speculation on new applications of polymer brushes,
beyond the usual application of colloidal stabilization.
Pressure-sensitive microvalves constructed from brush-
lined conduits were proposed:6,7 the brush senses the
shear force, responds by swelling, and thereby readjusts
the shear and flow, much like a system of sensors and
valves. A porous substrate lined with polymer brush
has also been proposed for modulation of flow-through
porous media.8,9 The shear response of brushes may
also be important to the rheological behavior of hairy-
rod polymers10,11 or molecular bottlebrushes:12,13 these
bottlebrush molecules consist of a relatively stiff main
chain from which flexible side chains emanate. We
predict that these molecules swell when sheared, mak-
ing the molecule larger in shearing fields. To investi-
gate these and other potential applications, we need to
determine the shear response of brushes tethered not
only to planar surfaces but also to convex and concave
ones. How does the shear response of the brush depend
on the curvature of the grafting surface?
In the absence of shear, the height of brushes grafted

onto planar and convex surfaces is understood from
theory, simulation, and experiment to be a result of the
balance between the osmotic pressure (which tends to
swell the layer) and the elasticity of the tethered chains
(which opposes swelling). The simplest description,

using the Alexander-deGennes ansatz,14 shows that the
height of a planar brush scales as H0 ∝ Nd-2/3, where
N is the degree if polymerization and 1/d2 is the grafting
density or d the distance between grafting points.
Daoud and Cotton15 extended the free energy scaling
approach to polymers end-tethered onto a spherical
grafting surface with vanishing radius, and Birshtein
et al.16 considered grafting onto a convex surfaces,
predicting the brush height, H0 to scale as

where D ) 0, 1, or 2 for planar, cylindrical, or spherical
surfaces, respectively, with the brushes adsorbed onto
a convex surface of radius R. These scaling treatments
used the Alexander-deGennes ansatz, which restricted
all free chain ends to be located at the edge of the brush
and all tethered chains to be stretched identically. More
detailed treatment of chains tethered to both planar and
curved surfaces indicates that the free ends are distrib-
uted within a brush and that the distribution depends
on the curvature of the surface. These advanced
theoretical methods, applied to curved surfaces, include
Monte Carlo and molecular dynamics simulations17,18
and self-consistent field (SCF) calculations.19,22 Neutron
reflectivity measurements23 and small-angle neutron
scattering24 verify the predictions of chain end and
monomer density profiles within planar brushes. While
these analyses provide detailed descriptions of the brush
profile, all demonstrate that the Alexander-de Gennes
ansatz correctly describes the scaling of the most readily
measured feature of planar and convex brushes: their
height.
In contrast, the height of a polymer brush upon

subjecting the brush to a tangential shearing force is a
subject only recently investigated, starting with the
surface force measurements of Klein et al.1,2 Using a
free energy model originally proposed by Rabin and
Alexander,4 Barrat3 considered an Alexander-
deGennes brush and showed theoretically that the
swelling can be the result of an imbalance in the osmotic
and elastic components of the free energy caused by the
shear-induced stretching of the tethered chains. Bar-
rat’s analysis predicted a planar brush swelling which
grows smoothly with surface shearing force from 0% to
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H0 ≡ aN3/(3+D)d-2/(3+D)(R/a)D/(3+D) (1)
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a maximum of 25% of the no-shear brush height, which
reasonably describes the brush expansion in the experi-
ments.1,2 However, computer simulation studies of
sheared, grafted chains do not recover the shear swell-
ing of experiment and scaling theory. Lai and Binder25
used nonequilibrium Monte Carlo simulation with a
bond fluctuation model and solvent flow profile calcu-
lated using Gaussian chains, and Peters and Tildesley26
reported on nonequilibrium molecular dynamics simu-
lation of tethered 20-mer chains surrounded by solvent
molecules. While neither simulation study reproduced
brush swelling, it is not evident that the simulations
provide definitive evidence against brush swelling. This
is essentially because each simulation used a small
number of monomers per chain.
In this article, we study the shear behavior of a brush

adsorbed onto the interior or exterior surface of a
cylinder with an imposed tangential shear force acting
at the brush tips (Figure 1). Our description is limited
to the case of good solvents where brush swelling, rather
than brush compression, occurs with shear.27 The
simplest model of brush structure is adopted in the free
energy analysis: that of a brush whose free ends are
localized at the tip of the brush and where all chains
possess the same stretching profile. This approximation
is analogous to the Alexander-deGennes approximation
of a step function profile for planar brushes; conse-
quently, we will hereafter refer to it as an Alexander-
deGennes ansatz. The Alexander-deGennes assump-
tion is good for brushes grafted onto convex surfaces but
becomes increasingly poor for concave brushes. We find
that the brush response to shear depends on the
convexity of the grafting surface, exhibiting an increased
response to shear with an increase in convexity. In
contrast, concave brushes swell nonmonotonically with
shearing force and become insensitive to shear in highly
concave geometries. The remainder of the paper is
organized in the following manner. In section II, the
free energy analysis3,4 is briefly reviewed and extended
to account for grafting surface curvature. The resulting
free energy equation is then used to predict no-shear
brush height as a function of grafting surface convexity
and concavity, which is compared with previous predic-
tions. In section III, we describe the results of the free
energy scaling with an imposed shearing force, predict-
ing swelling behavior as a function of applied shearing
force and grafting surface curvature. Section IV con-
cludes with a discussion of results and a comparison of
the results with the free energy gradients of a simplified
model from which the nonmonotonic swelling of concave
brushes and monotonic swelling of planar and convex
brushes can be easily understood.

II. Free Energy Model

To construct the free energy for a brush grafted to a
cylindrical surface, we first consider a planar brush.3,4
The grafting density of chains in the brush is 1/d2, where
d is the distance between grafting sites, and there are
Nc chains in the brush. Each chain in the planar brush
can be pictured as a connected sequence of Pincus
blobs.28,29 The blobs are of radius ê ) RF

5/2/L3/2, where
RF ) aN3/5 is the Flory radius and L is the end-to-end
distance of the chain or, equivalently, the height of the
brush. Within each blob, the monomers are locally
correlated as in a Flory excluded-volume chain, but for
larger length scales of ê, the blobs behave as hard
spheres. The number density of blobs per chain is Nb
) (L/RF)5/2. The height, H0 ) L, is found by minimiza-

tion of the chain energy per chain, F, given by the
Gaussian stretching penalty of a chain of blobs and the
excluded volume interactions between blobs, each of
which are uniform within the brush:

where c ) Nb/V is the concentration of blobs and V )
d2L is the volume per chain.

Figure 1. Schematic of polymer brush grafted onto (A) a
planar surface, (B) the concave (or interior) surface of a
cylinder, and (C) the convex (or exterior) surface of a cylinder.
All chains are depicted in accord with the Alexander-
deGennes description, where all chains in the brush are
stretched identically, and the free ends of the tethered chain
detail the no shear height of the brush,Ho. In the planar case,
the chains are uniformly stretched, and the monomers are
distributed in a step profile. In the curved surfaces, each
tethered chain is stretched nonuniformly, as indicated by the
variation in blob size along the contour of each tethered chain.
Concave tethered chains are more locally stretched at the tip
of the brush; chains tethered to a convex surface are more
locally stretched at the root of the brush. Also depicted is an
isolated chain in the brush subjected to a shearing force at
the tip of the brush, due possibly to flow (A) over the planar
brush, (B) inside the cylinder lined with a concave brush, and
(C) outside the cylinder lined with a convex brush. In this
paper, the effect of grafting surface convexity/concavity upon
the shear-induced brush swelling and maximum swelling is
described.

F ) kt(L2/Nbε
2) + 2kTε3c2V (2)
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Equation 2 may be recast for nonplanar grafting
surfaces by noting the variation in stretching and
excluded volume energies along the contour of a teth-
ered chain. To account for these variations, the chain
is discretized into monomers, labeled 0 through N,
where the 0th monomer is equated with the free end
and theNth monomer labels the tethered end. Let r(m)
be the location of themth monomer, measured radially
from the center of the cylinder, and s(m) the location of
the mth monomer along the chain contour measured
from the m ) 0 free end of the chain. In this notation,
r(0) is the location of the tip of the brush measured from
the cylinder center, and |r(N) - r(0)| is the brush height,
H. The blob size, ê(s), changes from ê ) a5/2N3/2L-3/2

for a uniformly stretched chain to ê(s) ) a5/2(dm/ds)3/2
for the blob located s(m) along the chain contour.
Likewise, the number of blobs along a portion of the
contour length s to s + ds is dNb(s) ) a-5/2(ds/dm)3/2ds.
The free energy per chain of the brush is comprised of
stretching, excluded volume, and shearing components.
The stretching energy of the tethered chains is given
by the usual Gaussian energy associated with a chain
of blobs,

where the integral is over the contour of the chain. The
excluded volume energy is

where c ) NcNb/V is the local concentration of blobs and
the integral is over the volume of the brush, and the
shearing energy is

where dy is the displacement of the free end in the
direction of the applied shear, Fparallel, and the shear-
induced local tilt angle is dr(m)/ds(m) ) cos θ(m), as
detailed in Figure 2.
We now make two approximations. First, we adopt

the Alexander-deGennes ansatz for the nonplanar
brush such that the position of the free end, r(0), yields
the brush height. The second approximation made in
this analysis is that the chain maintains a linear profile,
i.e., the tile angle is constant over the chain profile: θ(m)
) θ for 1 < m < N. The expression for the free energy
per chain reduces to

where W ) 2Ra/d2 and the brush profile is given in units
of monomer size, a, such that x(m) ) r(m)/a. The chain
stretching, dx/dm, is expressed as an absolute value so
as to permit the use of chains tethered to either concave
or convex surfaces without relabeling the monomers.
The free energy expression, eq 6, recovers the previous

scaling predictions for nonsheared brushes (f ) 0, cos θ
) 1) grafted (1) to a planar surface and (2) to a cylinder
with a radius that is small compared with the brush
height. The first case, the planar case, occurs in the
limit R f ∞ or R/r(m) f 1 for 0 < m < N, so thatW/x(m)
) (a/d)2R/r(m) ) (a/d)2. As the stretching profile
becomes uniform with less curvature of the grafting

surface, d(ax)/dm f H/N, and minimization of F yields
H0 ∼ Nd-2/3, or eq 1 with D ) 0. The height of a brush
grafted onto the exterior of a cylinder with R/H f 0 (the
second case) is recovered by using the simple replace-
ments dx(m)/dm ) H/N and x ) a-1(R ( H/2). Mini-
mizing over H yields H0 ∼ N3/4(a/d)1/2(R/a)1/4, or eq 1
with D ) 1.
Figure 3 shows the results of the minimization of eq

6 for the height of nonshear brushes grafted onto convex
and concave surfaces. The height is found from the
profile vector x(m) for 0 < m < N - 1, which minimizes
the objective function F with θ ) 0 using the quasi-
Newton minimization routine GQBFGS with the BFGS
Hessian updating scheme.30 Minimization results are
independent of discretization of the chain, 100 < N <
500, and the grafting density, 8 < d/a < 12. The concave
and convex brush heights are found for any chosen
cylindrical radius, R, by appropriate choice of the initial
estimate of x(m); i.e., minimization yields the concave
brush profile with an initial estimate of x(0) < x(1) < ...
< x(N - 1) < R/a, while a convex brush profile is
recovered if the initial estimate is R/a < x(N - 1) < x(N
- 2) < ... < x(1) < x(0). The height of the brush, H0, is
given by |R - ax(0)|. In Figure 3, the height of the brush
is scaled by the height of the brush for a planar surface
with the same grafting density, H/Hplanar, where the
subscript zero, denoting no-shear, has been dropped.
The radius of curvature is expressed as the radius of
the cylinder divided by the brush height, R/H.
There are clearly two regimes for the convex brush,

with crossover around R/H ) 1. The brush height in
highly convex geometries, R/H < 1, follows the scaling
relation of eq 1, while R/H > 1 recovers the planar
brush. A semi-log presentation of the same data, Figure
5, emphasizes that, at the crossover curvature, the
convex brush height is slightly larger than that of the
planar brush, exceeding Hplanar by only 2%. This slight
increase in brush height at small curvature, δH, follows

Fstretch ) Nc∫dskTa (1a ds
dm)3/2 (3)

Fexcluded ) 2kT∫dVε3c2 (4)

Fshear ) NcFparallel dy (5)

F
LkT

) 2πR
d2
∫0N dm(cos-5/2 θ| dxdm|5/2 +

W
x
cos-1/2 θ| dxdm|-1/2 - fa sin θ| dxdm|) (6)

Figure 2. Diagram of the discretization and geometric
parameters for a chain tethered to the interior surface of a
cylinder with an applied shearing force, Fparallel, acting at the
surface of the brush, distorting the brush profile. The chain
is discretized into monomers labeled N at the grafting plane
to 0 at the free end, and the location along the contour of the
mth monomer is given by s(m). The location of the mth
monomer measured radially from the center of the cylinder is
r(m), such that the brush height is |r(N) - r(0)|. The
displacement of the tip of the brush due to the shearing force
is dy, and the local tilt angle θ(m) is assumed in this work to
be constant over the contour of the chain, rendering a linear
chain profile.
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δH/Hplanar ∼ Hplanar/R and can be shown analytically
from the free energy expression eq 6.31 δH can be
attributed to an increase in the volume available to each
tethered chain upon stretching and is directly attributed
to the Alexander-deGennes ansatz that we employ.
This increase in brush height with small, convex
curvature disappears with self-consistent field calcula-
tions,20,22 where the free chain ends are not constrained
to lie at the brush tips. This prediction of nonzero δH
is small.
For concave grafting surfaces, there exists no com-

parable scaling regime for nonsheared brushes. Clearly,
R/H ) 1 is a physical bound for the problem and
corresponds to the interior of the cylinder being com-
pletely filled with brush. For R/H > 10, the brush is
essentially planar. With increased concavity, brush
height decreases to alleviate the excluded volume
penalty of the more crowded tips nearer the center of
the cylinder. This prediction of nonsheared concave
brush height is dramatically different from the self-
consistent field results, which predict the brush height
to increase with convexity.20 This is addressed later,
in section IV.

III. Shear Swelling of Convex and Concave
Brushes

Figure 4 shows characteristic swelling, given by the
ratio of sheared brush height to brush height in the
absence of shear, ∆ ) H/H0, as a function of the
dimensionless shear, f, for brushes grafted onto a planar
or convex (exterior) surface of a cylinder. Here, H0 is
the unsheared brush height. Note that the brush
expands sharply with low shear force, f > 0, but attains
a plateau swelling at large f. The plateau swelling,
∆max, in the planar case is 21/3, or about 125%, but varies

with convex curvature, according to Figure 5. Figure 5
displays the maximum shear swelling, ∆max, versus R/H
along with H/Hplanar for nonsheared convex brushes.
While the brush expands at all convex curvatures (R/H
< 1), the maximal swelling is smallest near the cross-
over, R/H f 1. This prediction of depressed swelling
near the crossover might be attributed to the ansatz-
related increase in the slightly convex, nonsheared
brush height. In the Alexander-deGennes treatment,
the chains in a nonsheared, slightly convex brush are
already stretched beyond the planar case; consequently,
the incremental stretching penalty is larger, and the
driving force for shear expansion is reduced. For more

Figure 3. Reduction in brush height, H/Hplanar, as a function
of curvature, R/H, for a nonshear brush with fixed grafting
density 8 < d/a < 12 and degree of polymerization 100 < N <
500, found from minimization of eq 6 with θ ) 0. (A) Brush
grafted onto the exterior or convex surface of a cylinder. Two
distinct regimes are evident: a convex regime with H/Hplanar
∼ (R/H)1/3, in accord with eq 1, and a planar regime with
H/Hplanar ) 1. The crossover between the regimes occurs
sharply around R/H ∼ 1. A semi-log plot of no-shear convex
brush height, Figure 5, more clearly demonstrates that the
brush expands slight, H/Hplanar f 1.02, near the crossover. (B)
Brush grafted onto the interior of concave surface of a cylinder.
For R/H > 10, the brush is effectively planar as H/Hplanar ∼ 1.
For the region R/H < 10 bounded physically at R/H ) 1, the
the brush shrinks with more curvature, R/H f 1.

Figure 4. Characteristic shear swelling of planar brush, ∆,
as a function of dimensionless shearing force, f. For small
values of an applied shearing force, the shear swelling
increases as the square of the force, and at large forces, the
brush sustains a maximum, plateau swelling of ∆max ) 125%.
Convex brushes show similar ∆ versus f behavior; however,
the maximal plateau swelling, ∆max, differs depending on the
convex curvature, R/H.

Figure 5. Convex brush height as a function of curvature,
R/H, found from minimization of eq 6 with discretization 100
< N < 500 and grafting density 8 < d/a < 12. (A) Maximal
swelling of convex brush, ∆max, versus curvature, R/H. Note
that the convex brush is least shear sensitive at R/H ) 1.
Maximum swelling, ∆max, increases with an increase in
convexity over a range of 10-15% of the nonsheared brush
height. (B) Reduction in nonsheared brush height, H/Hplanar,
with curvature R/H. The semi-log plot more clearly shows that
the no-shear brush height is approximately 2-3% larger than
the planar brush near R/H ) 1.
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convex grafting surfaces, where the Alexander-
deGennes ansatz and the self-consistent field calcula-
tions predict identical scaling behavior, the brush swells
appreciably with shear, exceeding 35% maximum swell-
ing. Consequently, we can expect that the maximum
swelling of brushes, ∆max, increases with grafting sur-
face convexity, H/R.
The concave brush behaves differently under shear.

Figure 6 shows the effect of an increasing dimensionless
shear, f, upon brush expansion, ∆ ) H/H0, for brushes
grafted within cylinders of various radii, R. At large

R, the effect of shear is similar to that found in convex
and planar brushes, i.e., swelling increases rapidly with
shear and reaches a plateau swelling, ∆max. However,
at smaller cylinder radii, the plateau turns into a
maximum, beyond which the brush height decreases
with increasing shear. The maximum in the swelling
corresponds with a minimum R/H, which ranges from
0.50 to 1.5. Figure 7 displays the shear swelling at
dimensionless shear of f ) 2.0, ∆f)2.0 versus R/H, along
with the nonshear height dependence on concavity. Note
that the maximum swelling increases from its planar
case of 125% to 135% at R/H ) 2.3. As curvatures
increase, or R/H decreases from 2.3, the shear expansion
falls to zero, and highly concave brushes show little
response to shear. An increase in concavity crowds the
Nc number of chain ends onto a perimeter of decreasing
r(0) until excluded volume energy no longer favors
brushes swelling but suppresses further swelling.

IV. Discussion
The difference in shear response of concave and

convex brushes can be understood from the component
gradients of a more simplified form of eq 6,

where the stretching, excluded volume, and shearing
energy are expressed approximately using a uniform
stretching profile |dx(m)/dm| f H/N:

Table 1 summarizes the components of the free energy
gradient, dF/dH, for convex and concave brushes.
Clearly, the elastic energy, Fstretch, favors small brush
heights as dFstretch/dH > 0. The shearing energy, Fshear,
favors larger brush heights. In the convex brush,
dFexcluded/dH is negative for all values of R/H, so that
the excluded volume and energy always promote brush
swelling, in opposition to the chain stretching energy.
However, the concave brush is different in that gradient
of the excluded volume energy,

Figure 6. Shear swelling of concave brush, ∆, as a function
of the dimensionless shearing force, f, for various cylindrical
radii, R/H0. For large values of R/H0, the swelling versus force
curves are similar to those of convex and planar brushes;
however, as the cylindrical radius is decreased, the brush
height becomes maximum at smaller applied force, beyond
which the brush height decreases with increased shearing
force. Along the contour of each line, the ratio R/H is
varying: for large values of R/H0, the value of R/H decreased
asymptotically, attaining its minimum at the plateau swelling,
while for smaller values of R/H0, the value of R/H attains
minimal values in the range 1.2-1.5.

Figure 7. Concave brush height as a function of curvature,
R/H, found from minimization of eq 6 with discretization 100
< N < 500 and grafting density 8 < d/a < 12. (A) Maximal
swelling of concave brush, ∆max, versus curvature, R/H. Note
that the maximum swelling is nonmonotonic with curvature,
exhibiting maximum swelling at R/H ) 2.3 and decreased
shear sensitivity for larger more concave surfaces. (B) Reduc-
tion in no-shear brush height, H/Hplanar, with curvature, R/H,
predicted using the Alexander-deGennes ansatz. SCF cal-
culations suggest H0/Hplanar > 1 for concave surfaces.

Table 1. Table of Component Gradients of the Free
Energy of a Grafted Brush, dFj/dHa

surface dFstretch/dH dFexcluded/dH dFshear/dH

planar + - -
convex + - -
concave
R/H < 3/2 + + -
R/H > 3/2 + - -

a The index j represents the stretching, excluded volume, and
shearing components (j ) stretch, excluded, or shear). A + sign
indicates dFj/dH > 0, i.e., the jth component of the free energy
favors a decrease in brush height. A - sign indicates that the
component of the energy favors increased brush height. The
excluded volume component of the free energy of a concave brush
favors a decrease in brush height at large curvatuve (R/H < 3/2)
and an increase in brush height at small curvature (R/H > 3/2).

F ) N(Fstretch + Fexcluded + Fshear) (7)

Fstretch ) cos-5/2 θ (H/N)5/2 (8)

Fexcluded ) W/(R + H/2)(H/N)-1/2 convex

) W/(R - H/2)(H/N)-1/2 concave

Fshear ) -fa sin θ H/N (9)

dFexcluded/dH ) -WxN R - 3/2H

H3/2(R - H/2)2
(10)
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can be either positive or negative, favoring either
smaller or larger brush heights, depending on the
curvature. For R/H > 3/2, dFexcluded/dH < 0, indicating
that the excluded volume interactions favor larger brush
heights, while for R/H < 3/2, dFexcluded/dH > 0, and
smaller brush heights are favored. Moreover, the
magnitude of this component of the free energy gradient
grows as R/H diminishes from 3/2 toward 1.
The nonmonotonic response of sheared, concave

brushes can be explained by the changing sign of the
gradient Fexcluded. Consider a brush, subjected to a
constant shearing force, but whose grafting surface
concavity is variable. From the gradients in Table 1,
one might expect a critical concavity, R/Hc smaller than
3/2, for which the gradients of Fstretch and Fexcluded balance
Fshear, and neither shear expansion nor shear shrinkage
of the brush is favored. Below R/Hc, the gradient
dFexcluded/dH will be sufficiently large and positive,
rendering dF/dH > 0 so that the brush height will
decrease in height. Our detailed minimization, which
accounts for nonuniform chain stretching, eq 6, shows
this nonmonotonic shear response where R/Hc ) 2.3
(Figure 7). The more practical situation is a brush
grafted to a surface of fixed concavity, where the
shearing force is varied from no-shear to maximum
response. If the no-shear R/H is not too much greater
than 3/2, application of a small shearing force will result
in brush expansion, reducing the value of R/H. If shear
results in R/Hwell below 3/2, where dFexcluded/dH is large
and positive, rendering dF/dH > 0, then further shear
will bring about brush shrinkage and an increase in
R/H. The minimum in R/H as dimensionless shear f is
increased should occur, according to the uniform stretch-
ing profile model, Table 1, at some value of R/H less
than 3/2. The detailed minimization, which accounts for
nonuniform stretching, Figure 6, shows the maximum
shear swelling to occur at minimium values of 0.5 < R/H
< 1.5.
The approximations that we have made in this

analysis deserve comment. We assumed that the free
ends of all tethered chains are localized at the brush
surface and that all chains are stretched equally but
not necessarily uniformly along the chain’s contour. The
Alexander-deGennes ansatz has been relaxed recently
for the case of planar brushes32 under shear, and much
the same results were obtained with and without this
assumption. Thus, the Alexander-deGennes approach
simplifies the analysis of planar brushes and still
recovers the salient features of brush height with and
without shear. However, for nonplanar brushes, the
effect of curvature on the distribution of free ends of
the chains is an important consideration in assessing
our results. Consider an unsheared brush grafted onto
a flexible surface which can be made convex, planar, or
concave. Clearly, in the planar brush, there exists a
distribution of free ends. As the surface is made more
convex, the free ends become more localized toward the
tip of the brush, and the approximation made in the free
energy analysis becomes more appropriate. In contrast,
if the surface were to be made concave, we would expect
a wider distribution of free ends throughout the brush
height, and the approximation would be most poor in
highly concave geometries. Consequently, we can ex-
pect that the incorporation of free end distribution into
the energy analysis will affect mostly our predictions
of concave brushes and will minimally affect our predic-
tions for convex brushes. While the distribution of free
ends can be measured in nonsheared planar brushes

using neutron reflectometry, or calculated for non-
sheared convex and planar brushes using self-consistent
field approach, there exists no exact calculation of the
free end distribution in concave geometries or, more
importantly, no experimental determination of how
shearing of the brush affects the distribution of free
ends.

V. Conclusions

In summary, we have performed the first free energy
analysis for the shear response of brushes on nonplanar
surfaces using the ansatz that all chains possess the
same nonuniform stretching profile with chain ends
localized at the brush surface. Our results predict that
the response of a brush to shear in a good solvent
depends on the curvature of the grafting surface.
Convex brushes expand with an applied shear, swelling
upwards of 35% of their nonsheared brush height, with
maximal swelling increasing as convexity increases, for
H/R < 1. Thus, highly convex brushes are predicted to
swell more than planar brushes (25%) of the same
grafting density. In contrast, highly concave brushes
exhibit nonmonotonic swelling with shear: they swell
to a maximal value, followed by a reduction of brush
height with increased shear. Brushes which are slightly
concave exhibit a higher maximum shear swelling than
planar brushes of the same grafting density; however,
with increased concavity, the predicted response of the
brush to shear is much reduced.
The response of nonplanar brushes can be important

to a number of applications. The shear response of a
concave brush is an important feature in porous flow
applications. According to the shear response described
here, membrane pores lined with a polymer brush will
possess a range of effective diameters, depending on the
prevailing shear at the brush or the applied pressure
drop. Consequently, a membrane whose pores are lined
with a polymer brush will be dynamic, showing filtration
and flow control that depends on the applied pressure
drop. Indeed, for slitlike pores, nonlinear volumetric
flow rates with applied pressure are predicted,6 indicat-
ing the potential for polymer brush microvalves which
require no mechanical parts or control loops. The
response of a convex brush to shear is important in the
rheology of, for example, hairy-rod polymers, molecular
bottlebrushes, or brush-covered particulates. The size
of the molecule with brushlike architecture depends on
the expansion of the brush lining the surface that is in
shear.

Acknowledgment. E.M.S. thanks David Williams
for discussions and acknowledges financial support from
the National Science Foundation NSF-CAREER Award
while at the Department of Chemical Engineering,
University of Colorado at Boulder.

References and Notes

(1) Klein, J.; Perahai, D.; Warburg, S. Nature 1991, 352, 143.
(2) Klein, J. Colloids Surf. A 1994, 86, 63.
(3) Barrat, J.-L. Macromolecules 1992, 25, 832.
(4) Rabin, Y.; Alexander, S. Europhys. Lett. 1980, 13, 1069.
(5) Kumaran, V. Macromolecules 1993, 26, 2464.
(6) Sevick, E. M.; Williams, D. R. M. Macromolecules 1994, 27,

5285.
(7) Sevick, E. M.; Williams, D. R. M. Porous membranes with

grafted polymers: valves and sensors. InMaterials for Smart
Systems; George, E. P., Takahashi ,S., Trolier-McKinstry, S.,
Ulchino, K., Wun-Fogle, M., Eds.; MRS Symposia Proceedings
360; Materials Research Society: Pittsburgh, PA, 1995.

Macromolecules, Vol. 29, No. 21, 1996 Shear Swelling of Grafted Polymer Brushes 6957



(8) Sevick, E. M.; Williams, D. R. M. Pressure-sensitive micro-
valves made from polymer brushes. In Advances in Porous
Materials; Komarneni, S., Smith, D. M., Beck, J. S., Eds.;
MRS Symposia Proceedings 316; Materials Research Soci-
ety: Pittsburgh PA, 1995.

(9) Harden, J. L.; Cates, M. E. J Phys. II 1995, 5, 1093.
(10) Schmidt, A.; Lehmann, S.; Georgelin, M.; Katana, G.; et al.

Macromolecules 1995, 28, 5487.
(11) Fredrickson, G. H. Macromolecules 1993, 26, 2825.
(12) Tsukahara, Y.; Tsutsumi, K.; Yamashita, Y.; Shimada, S.

Macromolecules 1990, 22, 1546.
(13) Wintermantel, M.; Gerle, M.; Fischer, K.; Schmidt, M.;

Wataoka, I.; Urakawa, H.; Kajiwara, K.; Tsukahara, Y.
Macromolecules 1996, 29, 978.

(14) Alexander, S. J. Phys. (Paris) 1977, 38, 983; deGennes P.-G.
J. Phys. (Paris), 1976, 37, 1443.

(15) Daoud, M.; Cotton, J. J. Phys. 1982, 43, 531.
(16) Birshtein, T. M.; Borisov, O. V.; Zhulina, Y. B.; Khokhlov, A.

R.; Yurasov, T. A. Polym. Sci. USSR 1987, 29, 1293.
(17) Toral, R.; Chakrabarti, A. Phys. Rev. E 1993, 47, 4240.
(18) Murat, M.; Grest, G. S. Macromolecules 1991, 24, 704.
(19) Semenov, A. N. Sov. Phys. JETP 1985, 61, 733.

(20) Milner, S. T.; Witten, T. A. J. Phys. (Paris) 1988, 49, 1951.
(21) Ball, R. C.; Marko, J. F.; Milner, S. T.; Witten, T. A.

Macromolecules 1991, 24, 693.
(22) Dan, N.; Tirrell, M. Macromolecules 1992, 25, 2890.
(23) Karim, A.; Satija, S. K.; Douglas, J. F.; Ankner, J. F.; Fetters,

L. J. Phys. Rev. Lett. 1994, 73, 3407.
(24) Auroy, P.; Mir, Y.; Auvray, L. Phys. Rev. Lett. 1992, 69, 93.
(25) Lai, P.-Y.; Binder, K. J. Chem. Phys. 1993, 98, 2366.
(26) Peters, G. H.; Tildesley, D. H. Phys. Rev. E 1995, 52, 1882.
(27) Williams, D. R. M. Macromolecules 1993, 26, 373.
(28) Pincus, P. A. Macromolecules 1976, 9, 386.
(29) de Gennes, P. G. Scaling Concepts in Polymer Physics; Cornell

University Press: Ithica, NY, 1979.
(30) Hillstron, K. Nonlinear Optimization Routines in AMDLIB.

Technical Memorandum No. 297; Applied Mathematics Divi-
sion, Argonne National Laboratory, Argonne, IL, 1976;
Subroutine GQBFGS in AMDLIB.

(31) Sevick, E. M.; Williams, D. R. M. Submitted to J. Chem.
Phys.

(32) Harden, J. L., personal communication.

MA9604552

6958 Sevick Macromolecules, Vol. 29, No. 21, 1996


