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Westudy the problem of an isolated end-grafted polymer chain confined under a finite-sized flat obstacle
in a Θ solvent. For obstacles that are not too large this chain can undergo an escape transition where
part of the chain remains trapped and the remainder escapes from under the obstacle. The spinodals of
this system are influenced by the presence of a three-body term. We also study the problem of a chain
under a tilted obstacle. We show that in this case there are two different escape possibilities. The system
can then undergo the following series of transitions C f E f C f E as the chain is compressed, where
C ) confined and E ) escaped.

Introduction

The deformation of single polymer chains is a classical
problem in polymer science.1-4 Polymer deformation can
be induced by hydrodynamic flow, but in the majority of
practical cases, the deformation occurs by interaction of
a chain or chainswith a surface. For a collection of chains
end-grafted to a surface, i.e., a polymer brush,5,6 the
crowding of the chains at the surface causes chain
stretching. In the case of polymer adsorption, the at-
traction of chains for a surface causes polymer compres-
sion.7 Bothof thesesituationshave importantapplications
in colloidal stabilisation.8 In recent years it has become
possible to observe and control the deformation of indi-
vidual polymer chains. There are two methods of doing
this. One canuse a large biologicalmolecule suchasDNA
which is capable of being stained and viewed directly in
anopticalmicroscope.9-11 The chain can thenbedistorted
using either a flow field or amagnetic or optical trap. The
secondmethod involves using an atomic forcemicroscope
to stretch individual chains.12,13 AFM tips can also be
used to squash an individual chain. This possibility
recently inspired a study on how polymer chains behave
when squashedby finite-size obstacles.14-16 Although the

behavior of polymers compressed by infinite obstacles is
well-understood it turns out that compression under a
finite obstacle produces a series of surprises. One of these
is that at a critical compression the chainpartially escapes
from under the obstacle. This escape transition has been
studied previously for polymers in good solvents.14-16 It
is important to examine the role of solvent quality in this
system. In this paper we study the case of a theta (Θ)
solvent,where thebinary interactionsbetweenmonomers
vanish. The previous studies have focused on the case of
flatperfectlyalignedobstacles14,15 or on curvedobstacles.16
A flat obstacle is the simplestpossiblegeometry toanalyze,
and in practice it is possible to make such an obstacle by
polishing an AFM tip. However, in any real experiment
the AFM tip and the grafting surface will not be aligned
exactly parallel, and moreover, the tip cannot be exactly
centered over the grafting point. It is thus important to
consider misalignment of the compressing surfaces. We
do this here and show that thismisalignment, rather than
being just a technical matter, can lead to some novel
physics. In particular in themisaligned system there can
be distinct left and right escapes with confined situations
in between.

Squashing with a Finite-Sized, Flat Disk

We consider a chain with monomer size a and degree
of polymerization N. In a Θ solvent such a chain has a
natural size aN1/2, where here and throughout the
remainder of the paper we have ignored unimportant
numerical prefactors. The compression of such a chain
between two parallel plates separated by a distance H
involves a free-energy penalty (in units of kBT)

This free energy can be derived in a simple way4 by
using a collisional argument. Under compression, only
thosemonomers at the platewalls can see the effect of the
plates. Theremainingmonomersundergoanunrestricted
randomwalk. Each collisionwith thewalls costs of order
kBT entropy, since the chainmust reverse direction at the
wall. Between collisions, the chains traverse a distance
of orderHwhichmust equal an1/2, where n is the number
of monomer used. By counting monomers, we find there
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areNa2/H2 collisions, thus leading to eq 1. Since the free-
energy penalty for confinement increases as H-2, the
energy penalty can become many kBT even for moderate
confinement.
Now consider a finite-sized parallel disk, of radius L,

larger than the natural size of the chain, L > aN1/2, but
smaller than the fully elongated dimension of the chain,
L < aN (Figure 1a). For weak compressions, the chain
does not see the edge of the disk and behaves as if it were
compressed under an infinite plate. However, at inter-
mediate separations, where the compression energy is
fairly large, the overall energy can be minimized by the
chain forming an umbilical tether from the grafting point
to the edge of the disk, at distance L. The remaining
monomers escape from under the obstacle (Figure 1b).
The escapedportion of the chain is unconfined and suffers
no free-energypenalty. However, thosemonomerswithin
the tether suffer not only compression energy but also a
stretching penalty. The stretching energy for a tether of
mmonomers is given by the standard Gaussian penalty:

and theconfinementpenalty for the tether isma2/H2.Thus,
the free energy of an escaped conformation in units of kBT
is

The number of monomers in the tether is found as that
whichminimizes the energy (eq 3): m)HL/a2 andFescaped
) 2L/H. The state of the chain (i.e., confined or escaped)
at any given compression is determined as the state with
the lower free energy: if Fescaped < Fconfined or 2L/H < Na2/
H2, then the chain adopts an escaped conformation. The
separation at which the chain first escapes occurs at

Associated with this transition between confined and
escaped states there is sometimes an energy barrier. This
energy barrier is caused by the energy needed to stretch

the tether. It is equal to the energy needed to form a
tether of length L from N monomers, i.e., L2/(Na2). For
very strong compressions, this barrier candisappear.This
is because as the chain is compressed the three-body
interactions between monomers cause a swelling of the
chain in the lateral direction. Eventually this swelling
becomes so great that the chain radius, R, is larger than
the disk radius, L, and the chain can see the edge of the
disk without needing to stretch. The chain radius under
compression can be found by balancing a stretching force
against the three-body force. This gives a free energy

where V ) R2H is the volume occupied by the chain.
Minimizing this over R yields a chain radius

Setting R ) L gives the condition at which the energy
barrier disappears. This is

A similar energy barrier can occurwhenwedecompress
an escaped chain. In order for an escaped chain to become
imprisoned, it must remove all the monomers from the
outsideof the compressingdisk to the inside. This involves
an intermediate state which consists of the same tether
of Nmonomers discussed above. At very weak compres-
sions, this energy barrier disappears because the number
of monomers outside the disk falls to zero. This number,
N - m, was calculated above, so that settingm ) N gives
the following condition for the energy barrier to vanish:

It is simple to show that the chain makes a sudden
jump in radius uponundergoing the transition atH)H*.
Thus, in the language of phase transitions, this represents
a first-order transition. Ordinarily there is an energy
barrier to be overcome to undergo the escape or imprison-
ment transition atH)H*. For very strong compressions
H<H+ or for strong decompressionsH>H-, this energy
barrier disappears and the system becomes absolutely
unstable to the instability. These two values ofH are the
spinodals for the system.
These transitions and spinodals should be experimen-

tally accessible as adistinctive force-compressionprofile.
In the imprisoned state, the force, is

whereas in the escaped state the force is

Figure 2 shows the force versus displacement profile for
our chain between two parallel surfaces, where the tether
point of the chain corresponds to the center of the disk of
radius L. The dark line is the force profile predicted for
chains adopting only stable conformations, as opposed to
metastable ones, and is expected whenever the compress-
ing force is increased slowly over the experiment. At the
critical compression distance, H*, the chain undergoes a
transition to escapewhen compressed and to the confined
or imprisoned state when decompressed. The ratio of
forces is 2 at the critical compression. The dotted lines
of Figure 2 represent the forces experienced in the

Figure 1. (a) Compression of a chain under a disk of radius
L, with surface separation H. In this state, the chain is
imprisoned under the obstacle. (b) At stronger compressions,
the free energy of the system is lowered by the chain forming
a tether under the obstacle and partially escaping. Complete
escape is not possible because the chain is grafted permanently
to the lower surface.

Fstretch ) L2/(ma2) (2)

Fescaped ) L2/(ma2) + ma2/H2 (3)

H* ) Na2/(2L) (4)

F ) R2/(Na2) + a6(N/V)3V (5)

R ) aN2/3(a/H)1/3 (6)

H+ ) aN2(a/L)3 (7)

H- ) Na2/L (8)

fconfined ) -
∂Fconfined

∂H
) 2Na2/H3 (9)

fescaped ) -
∂Fescaped

∂H
) 2L/H2 (10)
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metastable states. The compression heights at which
escape occurs from metastable and stable trapped states
can be experimentally appreciable.

Squashing with a Finite-Sized, Step Disk: A
Model of a Finite Wedge

As mentioned in the Introduction, in any real experi-
ment it would be difficult to align the obstacle and the
grafting surface to be exactly parallel or to exactly center
the obstacle over the chain grafting point. It is thus
necessary to consider the problem of a chain in a finite
wedge. This problem is tractable but involves many
mathematical complicationswhich obscure the physics of
the system. Here we examine a stepped system. This
models a finite wedge and includes the essential physics
of a wedge. The step model simplifies the analysis
considerably, in the manner of the “monoblock” picture
presented in the work of Brochard-Wyart et al.17 In one
direction the compressing object has a step. In the other
(out of the page in Figure 3), it is infinite and planar.
Figure 3 is a schematic of the geometrical parameters
describing the step in this problem: D represents the
height of the step and P and Q are the lengths from step
to edge which are constrained by Q + P ) 2L. The chain
end is tethered directly underneath the step. Under
compression, the chainhasanumber of choices. Forweak
compression, it will choose to lie entirely under the wide
step. For stronger compressions it can escape. There are
two choices for escape. It can escape to the left or to the
right. The case of most interest occurs when P < Q. In
this case, there is a competition between escape to the
left, with a large compression penalty but a short tether,
and escape to the right, with a weak compression penalty
but a long tether.
Free-energy expressions for each characteristic con-

formation, i.e., the fully imprisoned state, and the small
and large escaped states, are constructed from the
compression and stretching energies (eqs 1, 2). We must
account for the difference in compression energy under
stepsofheightHandH+Dandthedifference instretching
along the lateral dimension, where the polymer has to

stretch distances P and Q. The energy in units of kBT of
a polymer compressed by a step disk is given by

wherewehaveassumed thatallNof the chain’smonomers
are preferentially located underneath the larger gap as
monomers under the more narrow gap would be more
energetically penalized. This assumption (that partition-
ing of monomers between the large and small gaps is
absent) is reasonable forD>H,where there isa significant
difference in compression energy per monomer between
confinement in the narrow and large gaps. However our
free-energy expression (eq 11) is also valid in the limit D
, H, since in that limit the confinement energy is the
same under both steps. Thus expression 11 can be
considered as universal.
If escape occurs through thenarrowgap, the free energy

of the escaped state can be calculated using the results
for the flat plate for the previous section (eq 3) by the
transformation L f P. The number of monomers in the

(17) Brochard-Wyart,F.;Hervert,H.;Pincus,P.Europhys.Lett.1994,
26, 511.

Figure 2. Force, in units of kTL3/(N2a4), versus separation
distance,H, in units ofNa2/L, for a chain compressed by a disk
of radius L in a Θ solvent. The full line is the force profile for
the globally stable states, showing a discontinuity at the
transition between escaped and trapped states atH ) H*. The
dotted lines show the force profile for the metastable (locally
stable) states. The trapped chain becomes supercompressed
until the spinodal at H ) H+, and the escaped chain becomes
super decompressed until the spinodal at H ) H-.

Figure 3. Geometry for the chain compressed under a wedge
(a) and under our step approximation to a wedge (b). In both
cases, two distinct types of escape are possible: escape to the
left through the narrow passage (shown in b) and escape to the
right through the wide passage.

Figure 4. Free energy, F, in units of kTNa2/L2 versus
separation distance, h, for confined (full line), narrow escape
(dotted line), andwideescape (dashed line) for the stepgeometry
with d ) 0.1 and ε ) 0.3. The confined to narrow escape
transition occurs at h ) h*cTn and the narrow to wide escape
occurs at h ) h*nTw.

Fconfined ) Na2/(D + H)2 (11)
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tether is m ) HP/a2 and the free energy is

Similarly, we can calculate the number of monomers in
the tether for escape to the right,m ) Q(D + H)/a2. The
free energy is

We now need to compare the free energies of the three
states (eqs 11-13). We will investigate these states as a
function of the geometry of the object and the object
distance fromthegraftingsurface,using thedimensionless
separation distanceh≡HL/(Na2) and dimensionless step
size d ≡ DL/(Na2). We need one other variable, ε, which
controls the relative length of each step, so that P )
L(1 - ε), Q ) L(1 + ε), and -1 < ε < 1. ε measures the
displacement of the grafting point from the center of the
obstacle and is thus referred to as the “offset.”
Figure 4 shows a characteristic plot of the free energy

for different states of the tethered chain as a function of
compression or scaled height h, for d ) 0.10 and ε ) 0.3.
The actual state of the tethered chain at any compression,

h, corresponds to the state of lowest free energy. Con-
sequently, from Figure 4, we predict that, as the chain is
compressed, h f 0, the chain is initially in the confined
state until h*cTn, where the chain escapes through the
narrowpassage. Thenath*nTw, the chainescapes through
the wide passage. The chain passes from trapped to
narrow escape to wide escape, the intermediate narrow
escape being preferable at moderate compressions as the
chain suffers less of a stretching over the distance 0.7L
than the stretching over 1.3L, which is necessary forwide
escape. However, as the chain is compressed further, the
compression penalty of the tether under the region of

Figure 5. Separation distance, h, versus step size, d, phase
diagram for a tethered chain underneath a step at fixed offest,
ε ) 0.5. The three regions of the phase diagram are shown in
the insets: c ) confined; n ) narrow escaped; and w ) wide
escaped. Note that for fixed d near 0.23 by steadily decreasing
h we can go through transitions from an imprisoned state to
a narrow escape to imprisoned and finally to awide escape; i.e.,
the phase diagram is re-entrant.

Figure 6. Separation distance, h, versus step size, d, diagram
with ε ) 0.1. The regions are labeled as in Figure 5. Note that
in this diagram there is no re-entrant transition.

c

a

b

Figure 7. Three separation distance, h versus offset, ε, phase
diagrams for different values of the step size, d. In (a) we have
d ) 0 (i.e., no step) and the diagram is symmetrical about ε )
0. The chain undergoes a transition from a confined to an
escaped state. In (b) d ) 0.2, and we thus have a step and the
phase diagram is no longer symmetrical. In (c) d ) 0.3 and
re-entrant transitions are possible.

Fescaped
narrow ) 2P/H (12)

Fescaped
wide ) 2Q/(H + D) (13)
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height h is greater than the difference in stretching
energies and the chain escapes through to the wider
passage of height, h + d, to reduce the total free energy.
The critical compression at which the tethered chain

adoptsadifferent state,h*iTj, is found fromthe intersection
of the lowest free energy curves, Fi ) Fj. Three different
critical compressions occur: h*cTn represents the com-
pression distance for the transition of a confined chain to
one that has escaped through the narrow portion of the
wedge; h*cTw represents the transition compression from
compressed to escape through the wider section of the
wedge; and h*nTw represents the compression transition
from narrow escape to wide escape. The expressions for
the compression transitions are expressed in the geo-
metrical parameters ε and d as

These transition lines coupled with the condition of
lowest free-energy yield the phase diagram for the system
(Figure 5). Sincewehave three parameters in our system
h, d, and ε, it is convenient to draw two kinds of phase
diagrams. In the first kind we plot h versus d for fixed

ε and in the second we plot h versus ε for fixed d. In
Figure 5 we see a typical example of the diagram for a
tether offest of ε ) 0.5. For large d ≈ 0.4 the system is
always in the confined state no matter what the compres-
sion. For smaller step sizes,d)0.3, the systemundergoes
a transition from the confined state to escape through the
wide step. For smaller d still, we get a complicated re-
entrant behavior where the chain is first confined, then
escapes through the narrow step, is then confined again,
and finally escapes through thewide slit. At still smaller
step sizes, d ) 0.1, compression results in a transition
from a confined state to escape through the narrow step
and finally escape through the wide step. We note that
the re-entrant behavior is not universal and depends on
ε. For ε)0.1 (Figure 6),wedonot see re-entrant behavior
and the phase diagram is slightly simpler. Indeed, by
solving eqs 14-16 simultaneously it is possible to show
that re-entrance occurs only in the range

This range is only nonzero for ε > 1/3 so that for ε < 1/3
there is no re-entrance.
In Figure 7, we see examples of the h versus offest, ε,

phase diagrams for fixed values of the step size d. For d
) 0 (Figure 7a), we have a symmetrical phase diagram
with transitions from confined to escaped states as the
system is compressed. Naturally the critical height h*)
1/(2(1 - |ε|)) gets larger as ε f 1 and the tether is placed
very close to the edge of the obstacle. For d ) 0.2, the
phase diagram is no longer symmetrical (Figure 7b) and
escape via the wide step becomes favored. For d ) 0.3
(Figure 7c), re-entrant transitions are possible for ε≈ 0.6.
It is also of interest to examine the force versus

compression curves for this system, since these can be
directly measured using an atomic force microscope. In
the confined, narrow escape, and wide escape situations
these are respectively

As in the simple case of no step, at the critical
compressions the force will show a discontinuous change.
Sample force curves are shown in Figure 8.

Conclusion
In this paper we have discussed the compression of a

chain in a Θ solvent by a finite-sized obstacle or disk. As
in the previous studies14-16 for the case of a good solvent,
we findanescape transition fromaconfinedor imprisoned
state to an escaped state. For the Θ solvent case, the
critical compression distance is Na2/(2L), which is ap-
proximately the ratio of the unperturbed chain size
squared to the disk diameter. The system shows regions
of metastability where there are two minima in the free
energy, one escaped and one imprisoned. The limits of
these regions of metastability are given by the two
spinodals. These spinodals are governed in one case by
the chain swelling via three-body interactions and in the
other case by the finite number of monomers in a chain.

a

b

Figure 8. Two force (in units of kTL3/(N2a4)) compression
profiles for a chain compressed by a step. In (a) we have d )
0.1 and ε ) 0.3. In (b) d ) 0.26 and ε ) 0.5. The transitions
between the confined, c, narrow escaped, n, and wide escaped,
w, states are shown by the arrows.

h*cTn ) 1
4(1 - ε)

(1 ( x1 - 8d(1 - ε)) - d (14)

h*cTw ) 1
2(1 + ε)

- d (15)

h*nTw ) 1
2ε
(1 - ε)d (16)

ε

(1 + ε)2
< d < 1

8(1 - ε)
(17)

fconfined ) 2 L3

N2a4
(d + h)-3 (18)

f esc
narrow ) 2 L3

N2a4
(1 - ε)h-2 (19)

f esc
wide ) 2 L3

N2a4
(1 + ε)(d + h)-2 (20)
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TheΘ solvent problemyields similar behavior to the good
solvent case, suggesting that theescape transitionsstudied
previously may well be a fairly universal phenomenon.
In the second part of this paper, we have studied the

confinement of a chain under a finite wedge. This is an
experimentally important problem since in practice the
two confining surfaceswill not beparallel. In this system,
which we have approximated by a stepped surface, there
are two escape transitions possible and a relatively
complicated phase diagram. This complexity arises from
the competition between the three possible chain states.
For the stepped system, there are also metastable states.
The calculations for these states follow that for the simpler
no-step system and we will not discuss them here.
There are at least two ways of investigating the

transitions we have predicted here. The simplest is to
perform a computer simulation. This would enable the
full phase diagram for the system to be mapped out.

Experimentally the most straightforward experiment is
to use a polished AFM tip and measure the force profile.
The main prediction of this paper is that the force profile
will showdiscontinuities as the chain escapes fromunder
the tip. In the case of a poorly aligned tip, more than one
discontinuity will be present.
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