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Abstract. – We study the long-lived states which occur when a field-driven polymer chain
collides with two or more fixed obstacles. For two obstacles we show that below a critical
separation distance there are two catenary states, whereas beyond this there are no such states.
We further show that for the two long-lived states one is stable and the other is unstable. We
introduce a simple model for the dynamics for which many exact results can be obtained. In
particular we show that the long-lived states can have two very different ways of unhooking,
depending sensitively on the initial conditions.

The dynamics of polymers is a well-developed field of study. However, there are still several
problems of fundamental importance which have not been fully explored. Surprisingly, many
of these are in the area of single-chain dynamics [1–4]. Interest in single-chain problems has
been spurred in recent years by the advent of new experimental techniques that allow one
to see and to manipulate individual polymer chains; namely optical/magnetic tweezers and
atomic force and fluorescence microscopy. The particular problem presented in this paper is
the dynamics of a polymer which collides with two or more fixed obstacles. This problem has
applications in the size separation of polyelectrolytes such as DNA using electrophoresis. In
electrophoresis, charged chains are driven through an array of obstacles by an applied electric
field of magnitude E. These obstacles, sometimes gel fibres and sometimes “man-made”
obstacles etched onto a silicon chip [5], impede the chain dynamics in a way that depends
upon the degree of polymerisation or contour length, L, of the chain. The degree to which
the chains are held up by these obstacles imparts size dependence to the chain mobility.

The simplest scenario involves a chain impacting against a single point frictionless ob-
stacle. Such collisions have been created and filmed in experiment [5], simulated [6–9], and
modeled analytically [10, 11]. The assumption of zero friction is apparently enough to give
good agreement with the experiments. Simulation has shown that most interactions of a chain
with a single obstacle or post are glancing blows, where the chain is barely slowed down by
c© EDP Sciences
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Fig. 1 – Left: The long-lived hairpin state for a chain colliding with one obstacle. Middle and right:
The long-lived catenary states for a chain colliding with two obstacles. The equilibrium states only
exist if the obstacles are close together.

Fig. 2 – A graph of obstacle half-separation D/L against catenary parameter c/L. For D/L > 1/(2e)
there are no solutions, while for D/L < 1/(2e) there are two solutions, one taut and one flaccid.

the obstacle. However, occasionally a chain will strongly interact with the obstacle and spend
a considerable time in collision. The chain is then in a long-lived state. For a single obstacle
these states are the U-shaped or hairpin states, fig. 1. These hairpin states are long-lived for
two reasons. First, they are states which are at, or close to, static mechanical equilibrium
for the system. In fact the equilibrium is unstable, but what is important is that close to
equilibrium the potential energy surface is flat and thus the force driving the unhooking of
the chain is small and the time correspondingly long. The second reason for the long colli-
sion time for these states is that the chain is stretched to perhaps half its length before the
unhooking process begins.

Can we characterise the long-lived states for chains colliding with more than one obstacle
and predict their dynamics? We do this here, by calculating the equilibrium states for a chain
colliding with two point frictionless obstacles. This problem is mathematically more involved
than the one-obstacle case; however, we are aided by some very useful results of early applied
mathematics and mechanics. In particular the problem of heavy strings or ropes resting on
smooth pulleys in a gravitational field is exactly analogous to our problem [12–14], at least
as far as statics is concerned. We will show that the equilibrium conformation about two
or more obstacles can be described by classical catenaries. Furthermore, we can describe
the dynamics of the unraveling process using a simple exactly soluble model based upon the
catenary solution. A description of the dynamics of a chain near obstacles is important in
applications other than electrophoresis, as, for example, the flow of a dilute solution of chains
through finely divided porous media. Apart from these and other applications, the interaction
of a chain with fixed obstacles is a fundamental problem in polymer physics, in many ways
analogous to the scattering problems encountered in atomic and nuclear physics.

The equilibrium states. – In this section we calculate the equilibrium states for a chain
hanging over two frictionless point obstacles. The obstacles lie on the x-axis at x = ±D so
they are a distance 2D apart. We consider a chain of arc length L with effective charge per
unit length λ placed in a uniform electric field E in the −y or downward direction. We model
the chain as being inextensible and we assume that the field is sufficiently high that Brownian
noise can be neglected. As far as the statics of this chain are concerned, the lowest-energy
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chain conformation is identical to that of a heavy inextensible rope of weight w = λE per unit
length. The statics for this problem is dealt with extensively in the book by Routh [13, 14],
from which we take some preliminary results.

The simplest equilibrium configuration consists of two vertically dangling arms and a
central curved portion, fig. 1. We know that [13], irrespective of how many obstacles the
chain passes over and whatever the position of the obstacles, the ends of the chain always lie
at the same level, and that this level is always below (or equal to) the other parts of the chain.
We also know that the local tension in the chain depends only upon the downfield distance,
y. This tells us at once that the arms have equal length and that the central curved portion is
symmetrical about the y-axis. In fact the central portion is in the shape of a catenary which
is described by

y = c[cosh(x/c) − cosh(D/c)] . (1)

Each catenary is specified by a catenary parameter c (a length), which is always positive.
Large c’s imply a very shallow or “taut” catenary, whereas small c’s give a dangling or “flaccid”
catenary. We should note that the physical forces involved, be they electrical or gravitational,
do not enter into this equation and the shape of the catenary depends only upon geometry.
The only important factor is that the force per unit arc length is constant.

It is often convenient to express the shape of the catenary in terms of the arc length, s,
measured from the center of the curve,

s = c sinh(x/c) . (2)

Setting x = D gives us the arc length used in the catenary dangling between the obstacles:
2P = 2c sinh(D/c). Alternatively, we can find an expression for the vertical displacement y in
terms of the arc length s:

y = c
[√

1 + (s/c)2 − cosh(D/c)
]
. (3)

The total tension in the chain at any point is T = w(y + c cosh(D/c)) and in particular
the tension at the obstacles is T = wc cosh(D/c). Since the total arc length of the catenary
is 2P , each arm has a length (L − 2P )/2. The tension at the obstacle must support the
weight of each arm, (L/2 − P )w, hence we have L/2 − P = c cosh(D/c). This equation
is the force balance equation for the catenary. Substituting P = c sinh(D/c) gives L/2 =
c cosh(D/c) + c sinh(D/c). This can also be written as

D

L
=

c

L
sinh−1

(
1
4

L

c
− c

L

)
. (4)

This equation relates the catenary shape, in terms of the catenary parameter c, to chain length
L and obstacle separation 2D. A general closed solution for c in terms of L and D cannot be
found. However, a plot of the rhs of the equation vs. catenary parameter, fig. 2, shows the
range of obstacle separations, D/L, over which catenaries can be found. First, D/L is only
positive for 0 ≤ c/L ≤ 1/2 and has a maximum value of 1/(2e) at c/L = 1/(2e). Consequently,
there are two solutions for c for D/L < 1/(2e) ≈ 0.184, i.e. there exist two catenaries for
obstacles which are slightly separated. Second, for larger obstacle separations, D/L > 1/(2e),
there are no catenaries. This means that there are no equilibrium chain configurations for
obstacles whose separation 2D exceeds 0.378L. The reason for this is clear: when the obstacles
are too far apart there would be insufficient weight in the arms to balance the force imposed
by the catenary.

The two catenaries at a given D/L correspond to two different ways of balancing the forces.
The system can either have long arms and a shallow catenary, or short arms and a flaccid
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Fig. 3 – The height of the catenary Y/L vs. half-distance between the obstacles D/L. The two
different heights correspond to the flaccid and taut catenaries.

Fig. 4 – The scaled characteristic frequency for the equilibrium states ωµL/w vs. the half-distance
D/L between the obstacles.

catenary. We can demonstrate this by plotting the downfield location of the catenary midpoint
Y/L = c[cosh(D/c) − 1]L−1 for different obstacle separations, D/L, fig. 3. We should note
here that the distinction between the flaccid and taut catenaries can be made quantitative by
delineating them according to which part of the nose they belong to in the Y vs. D graph.
Thus, those which have 0 < c/L < 1/(2e) are flaccid and always have α < Y/L < 1

4 , where
α = 1/4

(√
2 e−2 + 1 + e−4e1 − 2

)
e−1 ≈ 0.1. Those that have 1/(2e) < c < 1/2 are taut and

always have 0 < Y/L < α. Moreover, as we shall see when we study the dynamics, the taut
configurations are stable against symmetrical perturbations, whereas the flaccid catenaries
are not.

Dynamics. – We introduce the dynamics of the catenoid states by first revisiting the
dynamics of the simpler hairpin states, which occur for a chain hooked over one obstacle
[5, 6, 10, 11]. On these small length scales inertia plays no role and the only forces acting
upon the chain are viscous drag and the electric force. We will assume that the chain is free
draining so that the viscous drag on a segment of length ds moving with velocity v is −µvds,
where µ is a friction constant. One approach to calculating the motion of the hairpin is just
to equate all the forces to zero. Here we use a different approach, which is very useful in
dissipative systems. It is based on the fact that all the energy dissipated through drag must
come from a change in internal energy of the system. In other words, all the heat produced
by the motion must come from a change in the electrical energy. In its more sophisticated
form this idea was developed by Rayleigh [15, 16] in his Rayleighian dynamics of dissipative
systems, but we do not need to use the full formalism of that method here. Let us call the
length of the longest arm L1, then the length of the other arm is L−L1. The electrical energy
of this configuration is

U = −1
2
wL2

1 −
1
2
w(L − L1)2 . (5)

If L1 now moves a distance dL1 in time dt, then the rate of change in electrical energy is

dU

dt
= −w(2L1 − L)

dL1

dt
. (6)

The speed of each segment of the chain is dL1/dt so that the drag force on the whole chain is
µLdL1/dt and the power dissipation is force multiplied by velocity, or
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H = µL

(
dL1

dt

)2

. (7)

Equating the sum of the power dissipation and the rate of energy change to zero, H + dU
dt = 0

gives the equation of motion
dL1

dt
=

w

µL
(2L1 − L) , (8)

which can be integrated at once to yield L1 = L
2 +(L10 − L

2 ) exp[2wt
µL ], where L10 = L1(t = 0).

From this we can obtain the time taken for the hairpin to unwind Tunwind = µL
2w ln( L

2L10−L ).
We should note that the above calculation is only an approximation for many reasons,

one being that only one mode of motion is allowed. Thus, we have ignored the fact that the
hairpin may start off with some lateral motion and the arms may not be totally straight.
However, the idea of approximating the system by one coordinate gives great simplicity, and
seems to be in good agreement with experiments [5, 10].

We will now use this dissipative approach to study the motion of the catenary states.
This is an intrinsically more complicated system than a simple hairpin. Once a catenary is
perturbed, it is not obvious what the shape of the chain will be. We know the equilibrium
states are catenaries, but all other dynamical states are at present unknown. In principle
we could solve this problem by discretizing the chain into many segments and numerically
integrating the equation of motion subject to appropriate constraints. Here we prefer to use
a simpler approach. Rather than modeling the chain by an infinite number of coordinates we
simply use a single variable. We assume that the state of the chain can always be described
as a catenary and use the parameter c as our coordinate. This is clearly an approximation,
but one which is very accurate close to the equilibrium states. Fortuitously, it also allows us
to write down the equation of motion analytically, and hence give some “exact” results for
the initial motion of perturbed equilibrium states.

We begin by calculating the energy for a catenary solution with parameter c. This consists
of the energy of the catenary section itself, plus the energy of the two equal arms. If the
catenary uses up a length 2P of chain, then each arm has length 1

2 (L − 2P ) and the total
energy of the arms is

−1
4
w(L − 2P )2 = −1

4
w(L − 2c sinh(D/c))2 . (9)

The total energy of the catenary section is

2w

∫ P

0

dsy(s) = 2wc

∫ D

0

dx cosh(x/c)[cosh(x/c) − cosh(x/D)]

= wc[D − c cosh(D/c) sinh(D/c)] . (10)

The total energy of the whole systems is then

U = −1
4
w(L − 2c sinh(D/c))2 + wc(D − c cosh(D/c) sinh(D/c)) . (11)

The reader can check that this function has the properties expected from the equilibrium
behaviour. Thus, for D > L/(2e) it shows no maxima or minima, so there are no equilibrium
states. For D < L/(2e) there are two equilibrium states. That at low c (i.e. a flaccid catenary)
gives a maximum in U and is hence unstable. That at large c (the taut catenary) gives a
minimum in U and is thus stable against moving equal amounts of chain to both the arms.

We now need the dissipation of energy per unit time. A segment of length ds moving at
velocity v dissipates a power H = µv2ds. Integrating along the catenary gives
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Hcat = 2µ

∫ P

0

ds

(
∂x(s, c)

∂t

)2

+
(

∂y(s, c)
∂t

)2

. (12)

The portion of the chain located at s and of length ds changes position only by virtue of
the change in the catenary parameter c. We can thus write ∂x

∂t = ∂x
∂c ċ, where ċ means the

derivative of c with respect to time. This means we can write the rate of heat generation as

Hcat = 2µċ2

∫ P

0

ds(
∂x(s, c)

∂c
)2 +

(
∂y(s, c)

∂c

)2

. (13)

This integral can be evaluated exactly by first carrying out the derivatives, and then
converting the integral over s to one over x. The result is

Hcat = 2µċ2[S(3D2c−1 + 6c) − 6DC + S3(c + D2c−1) − 2DCS2] , (14)

where C ≡ cosh(D/c) and S ≡ sinh(D/c). The remaining dissipation arises from the straight
arms on either side of the catenary. They are each of length Larm = 1

2 (L − 2P ) = 1
2 (L −

2c sinh(D/c)) and they are each moving at a speed v = dLarm
dc ċ, giving a total dissipation for

the two arms of µ(L − 2P )v2 or

Harms = µċ2(L − 2cS)(S − DCc−1)2 . (15)

The total dissipation for the entire system is F , where F = Hcat + Harms. The sum of the
dissipation and the energy lost must be zero, F + dU

dt = F + ċdU
dc = 0. This yields the equation

of motion for c:
ċ = − 1

Fµ

dU

dc
. (16)

Here it is clear that −dU/dc is a generalised force and the term 1/(µF ) is a friction fac-
tor, which is a function of c. Simple numerical quadrature of this equation gives the time
dependence of c. Here we look at the behaviour of the equilibrium states as they undergo
small perturbations. Suppose we take an equilibrium state ceq and perturb it slightly so
that c = ceq + ε. The equation of motion for the perturbation is then ε̇ = −ωε, where
ω = (Fµ)−1 d2U

dc2 and where everything is evaluated at c = ceq. The frequencies ω give us
information about the time response of each mode. We should note that this is the character-
istic time for each mode, so that, for instance, the same equation Ẏ = −ωY would hold for
the catenary height. If ω is positive the mode is stable and any perturbation decays back to
the equilibrium state. If ω is negative the perturbation grows. Moreover, the absolute value
of ω gives the rapidity of the growth or decay. A parametric plot of ω vs. D, fig. 4 gives
several pieces of information. First, all the taut solutions are stable and in fact those at small
D are very stable. Second, all the flaccid solutions are unstable, but not very unstable. It is
instructive to compare this symmetric mode with the asymmetric mode for hairpin unwinding.
For that mode ωhairpin = 2w

µL whereas for a very flaccid catenary ωflaccid = 4w
µL . This gives us

two possible life histories for a chain which develops a flaccid catenary. These depend on the
initial conditions:

i) If the catenary is perturbed downward it will rapidly grow at the expense of the arms.
In general, one of the arms will fall off first and a hairpin will be left on one of the obstacles.

ii) If the catenary is perturbed upward it rapidly approaches the stable catenary solution.
The system then behaves as a hairpin state, draped over both obstacles. It can then evolve
more-or-less as a hairpin wrapped over one obstacle.

We should note that, since ωflaccid = 2ωhairpin, in general a system started in a flaccid
catenary state and perturbed downward will decay first by increasing the material in the
catenary, rather than through swapping length between the two hairpin arms.
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In this letter we have examined the statics and dynamics of the interaction of a field-driven
polymer with two obstacles. For the statics of this problem we are initially helped by some
classical results. Starting from these results, we have shown that there is a critical distance
between the posts above which there are no equilibrium solutions. Below this distance there
are two kinds of equilibrium solutions, which act as long-lived states. We would thus expect
very different dynamical behaviour for different values of the separation distance. For the
dynamics we have assumed that the motion occurs through states which are close to the
equilibrium solutions. This procedure has allowed us to obtain simple analytic results for
the motion. There are some long-lived states we have not considered, for instance where
the chain passes over each obstacle more than once. These kinds of states occur even for
the single-obstacle case [6], where they are multiple hairpin configurations. Their dynamics is
however analogous to those considered here. We note in passing that just as the static problem
is one of heavy ropes hung over frictionless posts, the dynamic problem is one of the same
system immersed in a very viscous liquid and then perturbed. Although we have described
the dynamics of the long-lived states, this is only a partial solution to the problem. In fact,
when a random coil collides with two obstacles the motion is obviously very complicated, and
it seems likely that a full understanding can only be achieved by using a computer simulation
akin to that available for a single obstacle [6].

We conclude by saying something about the case of many obstacles in the same plane. This
problem is analogous to, but more complicated than the two-obstacle case. Much is known of
the statics [13], and in particular all the equilibrium solutions are catenaries. If, for instance,
we consider three equi-spaced obstacles, all in the same line perpendicular to the field, there
are only two equilibrium states —two taut catenaries or two flaccid catenaries. The flaccid
catenaries are clearly unstable and will decay rapidly. However, as with the two-obstacle case
the history will depend very much on the initial conditions.
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