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We present a scheme for coarse-graining hydrodynamic interactions in an isolated flexible homopolymer
molecule in solution. In contrast to the conventional bead-spring model that employs spherical beads of fixed
radii to represent the hydrodynamic characteristics of coarse-grained segments, we show that our procedure
leads naturally to a discrete model of a polymer molecule as a chain of orientable and stretchable Gaussian
blobs. This model accounts for both intrablob and interblob hydrodynamic interactions, which depend on the
instantaneous shapes of the blobs. In Brownian dynamics simulations of initially stretched chains relaxing
under quiescent conditions, the transient evolution of the mean-square end-to-end distance and first normal
stress difference obtained with the Gaussian-blob model are found to be less sensitive to the degree of coarse
graining, in comparison with the conventional bead-spring model with Rotne-Prager-Yamakawa hydrodynamic
interactions.

DOI: 10.1103/PhysRevE.76.011809 PACS number�s�: 61.25.Hq, 83.80.Rs, 83.10.Mj

I. INTRODUCTION

A long, flexible polymer molecule typically consists of
thousands of monomeric units, and detailed atomistic simu-
lations of such a molecule and its surrounding solvent mol-
ecules are not practical for those interested in predicting the
behavior of dilute polymer solutions at large time scales.
However, for the purpose of modeling those dynamical fea-
tures of a solution that depend on the cooperative motion of
the polymer molecule as a whole, it is usually sufficient to
represent an isolated polymer chain as a continuous space
curve. In this basic structural representation of the polymer,
the hydrodynamic characteristics of the space curve of con-
tour length L are modeled by giving it a hydrodynamic thick-
ness of 2a0 �“level 0” in Fig. 1�. It is further necessary to
incorporate hydrodynamic interactions �HI� between all the
points on the polymer contour to accurately predict the dy-
namical behavior of dilute polymer solutions. Although the
continuous space-curve representation of flexible polymers is
widely used in analytical theories, computer simulations de-
mand some form of discretization. A first level of discretiza-
tion consists of representing the chain as a “pearl-necklace”
model consisting of a line distribution of touching beads,
each of radius a0 �“level I” in Fig. 1�. Since a0 is typically
much smaller than the contour length for long polymer mol-
ecules and the number of beads required in this representa-
tion is large, it is often desirable from a computational point
of view to coarse grain further.

The basic motivation behind such coarse graining is one
of efficiency: we wish to study the dynamics of the system in
terms of a fewer number of variables characterizing the
coarser description, without having to first numerically re-
solve the motion of the chain at the fine-scale description.
The formal procedure of coarse graining uses projection op-

erators to eliminate fast degrees of freedom and obtain an
equation for the probability distribution of slower variables
in the system �1,2�. The final Fokker-Planck equation ob-
tained in this formal approach contains complicated memory
integrals that are difficult to implement directly in simula-
tions.

In contrast, coarse graining in the popular bead-spring
chain model of dilute polymer solutions �3� is achieved
through postulation of a completely new structural model,
and hydrodynamic interactions between spherical beads in
the chain are introduced “by hand.” This creates two prob-
lems �4–6�. First, the radius of the beads in this model is a
new parameter, and its relation to the more fundamental pa-
rameter a0 is a priori unknown. In fact, this connection is
typically not made explicitly, and the bead radius is used as a
tunable parameter whose value is chosen carefully such that
the bead-spring model reproduces observed dynamical be-
havior under certain conditions, for instance, in the linear-
response regime. The second problem is that spherically iso-
tropic beads do not accurately model the hydrodynamic
characteristics of the large molecular subchains they repre-
sent in situations where macromolecules are likely to take up
highly stretched configurations. In such conditions, it is
found that a large number of beads are required to ensure
convergence of predictions with respect to the degree of
coarse graining.

The primary objective of the present work is to lay down
the theoretical framework for an approach that strikes out an
alternative middle path between the extremes of the formal
method based on projection operators, and the postulational
approach of the standard bead-spring model. We derive equa-
tions for a coarser description starting from the Fokker-
Planck equation �FPE� for the finer pearl-necklace represen-
tation �“level I” in Fig. 1� of the polymer molecule. We thus
achieve a more refined treatment of HI than in the conven-
tional bead-spring model by accounting for local structural
anisotropy in the molecule, but without introducing new free
parameters. On the other hand, we use a series of*Corresponding author; prabhakar@rsc.anu.edu.au

PHYSICAL REVIEW E 76, 011809 �2007�

1539-3755/2007/76�1�/011809�12� ©2007 The American Physical Society011809-1

http://dx.doi.org/10.1103/PhysRevE.76.011809


approximations—some inspired by techniques commonly
used in self-consistent mean-field theories for complex flu-
ids, and others guided by intuition—to arrive at a final set of
equations that are relatively straightforward to implement in
the Brownian dynamics �BD� simulations than those ob-
tained with projection operator methods.

A detailed derivation of the equations of the new coarse-
grained model is presented in the following section. The
implementation of this model in BD simulations is summa-
rized in Sec. III, and a preliminary comparison of the new
model with the conventional bead-spring model is made in
Sec. IV.

II. COARSE-GRAINED FOKKER-PLANCK EQUATION

As mentioned earlier, a basic structural representation of
an isolated linear homopolymer molecule in solution is that
of a space curve of contour length L suspended in a con-
tinuum Newtonian solvent characterized by its temperature
T, and its shear viscosity �s. We do not consider in this study
excluded volume effects and restrict our attention to phantom
chains. In a dilute polymer solution at equilibrium, the mean-
squared end-to-end distance Re,eq

2 of isolated long, flexible
phantom chains is proportional to L, and the ratio bK
�Re,eq

2 /L is defined as the length of a single Kuhn segment
in the chain. We are interested here in modeling highly flex-
ible chains in which the number of Kuhn segments NK
�L2 /Re,eq

2 is very large.
At the first level of discretization as a line distribution of

beads of radius a0—which we will henceforth refer to as the
“level I” representation �Fig. 1�—the number of discrete el-
ements in the model is NI=L / �2a0�. A single configuration of
the polymer chain is completely specified at the level I de-
scription by the set of position vectors of the bead centers,
CI= �ri � i=1, . . . ,NI�. At the “level II” representation of the
polymer molecule �Fig. 1�, we coarse grain the polymer by
partitioning the contour length into NII�NI subchains. The
�th subchain, �=1, . . . ,NII, has a contour length L�, such
that 	�=1

NII L�=L. We do not, for the present, constrain our-
selves to partitioning into subchains of equal contour lengths.
The �th subchain thus contains n�=L� / �2a0� of level I
beads. As a matter of convention, we will use italic �i, j, etc.�

and greek ��. �, etc.� subscripts to identify level I and level
II quantities, respectively. In the level II description, local
degrees of freedom are eliminated, and the chain configura-
tion is specified by the set of position vectors of the centers
of masses of the subchains, CII= �r� ��=1, . . . ,NII�.

The starting point for our analysis is the FPE for the prob-
ability distribution function for the level I configuration,
�I�CI , t�. For the sake of notational simplicity, we will hence-
forth not explicitly mention the time dependence of func-
tions. All our knowledge of level I dynamics is contained in
the FPE for �I�CI�, which we take as given. From this level
I FPE, we wish to generate the FPE for the level II configu-
rational probability distribution, �II�CII�. The level II FPE
thus obtained for �II�CII� must only involve other known
functions of the variables CII. Moreover, the evaluation of
these functions should not require any prior knowledge of
the level I distribution �I. Ideally, deriving the level II FPE
should require no further modeling assumptions. If we must
make simplifying assumptions, care should be taken not to
introduce any new parameters.

We first recall the basic steps in deriving the Fokker-
Planck equation for a phenomenological model at the level I
representation of the system �3�. It must be recognized that
even at this fundamental level, we are already working with
a coarse-grained model, since we have replaced all the sol-
vent molecules with a continuum, and have also eliminated
all the momentum coordinates of the level I beads. The equa-
tion of continuity in level I configuration space for �I is

�� I

�t
= − 	

i=1

NI �

�ri
· �vi�

I� , �1�

where vi is the momentum-space averaged velocity of the ith
bead. To express the velocity vi in terms of ri, we invoke the
“Stokes-law empiricism” �3�, which relates the hydrody-
namic frictional drag force Fi

h exerted on the polymer mol-
ecule at ri by the Newtonian solvent, to vi,

Fi
h = − �0
vi − � · ri + 	

j=1

NI

��ri,r j� · F j
h� . �2�

Here, the Newtonian solvent velocity field vs�r� has been
assumed to be homogeneous, that is, vs�r�=v0+� ·r, where
�= ��vs�† is the transpose of the velocity gradient, and v0 is
the solvent velocity at the origin, which we take to be zero
without loss of generality. The friction coefficient of any
level I bead is �0=6�a0�s, and ��ri ,r j� is the tensor de-
scribing the hydrodynamic interaction �HI� between the
beads at ri and r j. At this stage, we leave the form of the HI
tensor ��ri ,r j� unspecified, except to note that if we wish to
neglect HI completely in the level I model, then ��ri ,r j�
=0 for all i and j.

Equation �2� above is rearranged as

vi = � · ri − 	
j=1

NI

Dij · F j
h, �3�

where

FIG. 1. Coarse graining a continuous chain into a discrete chain
of Gaussian blobs. A basic representation of the polymer molecule
is that of a continuous space curve �level 0�. A first level of discreti-
zation leads to the “pearl-necklace” model �level I�, which can be
further coarse grained as a chain of soft “blobs” �level II�.
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Dij �
1

�0
� + ��ri,r j� �4�

is a diffusion tensor, and forms the �ij�th block of D, the
3NI�3NI mobility matrix for the level I model. The hydro-
dynamic drag forces Fi

h are eliminated from the equations
above by invoking the force balance,

Fi
h + Fi

B + Fi
U = 0 , �5�

which expresses the fact that inertia is negligible at the
length scales under consideration. The Brownian force on the
polymer chain at ri is

Fi
B = − kBT

�

�ri
ln � I , �6�

where kB is the Boltzmann constant. The intramolecular
force Fi

U�CI�=−�U�CI� /�ri is a function of the chain con-
figuration and is the resultant force at ri due to conservative
interactions described by the intramolecular potential U. As
already mentioned, we ignore excluded volume interactions
in this study, and Fi

U is the resultant of chain tensions respon-
sible for ensuring the connectivity of the polymer molecule
and keeping its total length constant at L, while maintaining
its flexibility such that its equilibrium mean-squared end-to-
end distance is Re,eq

2 . Using Eqs. �3� and �5� to eliminate vi
and Fi

h, and using Eq. �6� for the Brownian force, the Fokker-
Planck equation governing the time evolution of �I is ob-
tained from the continuity equation �1� as

�� I

�t
= − 	

i=1

NI �

�ri
· 
� · ri + 	

j=1

NI

Dij · F j
U�� I

+ kBT 	
i,j=1

NI �

�ri
· Dij ·

�� I

�r j
. �7�

To derive the Fokker-Planck equation for the coarse-
grained level II description of the system, we next define the
phase function,

	�CI;CII� = �
�=1

NII


�c� − r�� , �8�

where c�= �1/n��	i�=1
n� ri�

, is the location of the center of
mass of the �th subchain when the molecule has a level I
configuration specified by CI. It may be noted that we will
switch between “local” indices i�=1, . . . ,n� and “global” in-
dices i=1, . . . ,NI whenever necessary. The distribution func-
tion �II�CII� is thus obtained as a contracted distribution,

�II�CII� = 	�CI;CII��I�CI�dCI . �9�

We can therefore define the conditional probability
�I�II�CI �CII� that the level I configuration of the chain is CI,
given that the centers of masses of the subchains are located
at the set of vectors specified by CII:

�I�II�CI�CII�dCI�II =
�I�CI�	�CI;CII�dCI

�II�CII�
, �10�

with “dCI�II” indicating that the probability measure �I�II is
defined on the submanifold in level I configuration space on
which c��CI�=r�, �=1, . . . ,NII. We will henceforth refer to
this submanifold as “the submanifold c�=r�.” The distribu-
tions �II and �I�II satisfy the normalization conditions,
��IIdCII=1 and ��I�IIdCI�II=1.

For any function f�CI� defined on the level I configuration
space, the average of f is �f�=�f�CI��I�CI�dCI, while the
average of any function of level II variables, g�CII�, is �g�
=�g�CII��II�CII�dCII. The constrained mean of f over the
submanifold c�=r� is

f̄ = f�CI��I�II�CI�CII�dCI�II

=
1

�II�CII�  f�CI�	�CI;CII��I�CI�dCI . �11�

For instance, the constrained mean position of the center of
mass of the �th subchain is obtained trivially as

c̄� = c��CI��I�II�CI�CII�dCI�II

=
1

�II�CII�  c��CI�	�CI;CII��I�CI�dCI = r�. �12�

Similarly, the constrained mean momentum-space averaged
velocity of the �th subchain is

v̄� = 
 1

n�
	
i�=1

n�

vi�
�CI���I�II�CI�CII�dCI�II

=
1

�II�CII�  
 1

n�
	
i�=1

n�

vi�
�CI��	�CI;CII��I�CI�dCI .

�13�

Henceforth, we will omit explicitly stating the dependencies
of the functions wherever obvious. Noting that �	 /�ri�
=−�1/n���	 /�r�, and multiplying Eq. �1� with 	 and inte-
grating over all level I configuration space, we obtain the
continuity equation for the level II probability field,

��II

�t
= − 	

�=1

NII �

�r�

· �v̄��II� . �14�

Next, we sum the force balance Eq. �5� over all i�

=1, . . . ,n�, and take the constrained mean of both sides of
that equation to obtain the force balance for the �th sub-
chain,

F̄�
h + F̄�

B + F̄�
U = 0 , �15�

where the constrained mean hydrodynamic, Brownian or in-
tramolecular potential forces on the �th subchain are given
by
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F̄�
. . . = 
	

i�=1

n�

Fi�
. . .��I�IIdCI�II =

1

�II  
	
i�=1

n�

Fi�
. . .�	�IdCI .

�16�

We define here for subsequent use a constrained mean seg-
mental density of the �th subchain at some arbitrary location
r,

�̄��r;CII� �  
 1

n�
	
i�=1

n�


�r − ri�
���I�IIdCI�II. �17�

The density field above is normalized in the sense that
��̄��r ;CII�dr=1. In defining this density field, we begin to
picture the polymer molecule as a chain of NII smoothed
density fields, or “blobs,” whose centers of masses are lo-
cated at r1 , . . . ,rNII

. Corresponding to the density field �̄�

above, is a hydrodynamic-force density field,

h̄��r;CII� �  
	
i�=1

n�


�r − ri�
�Fi�

h ��I�IIdCI�II, �18�

such that �h̄��r�dr= F̄�
h . We will also encounter later the

two-point correlation function,

j̄���r,r�;CII� �  
 1

n�
	
i�=1

n�


�r − ri�
��

�
	
j�=1

n�


�r� − r j�
�F j�

h ��I�IIdCI�II, �19�

for which ��j̄��drdr�= F̄�
h.

We now apply the definitions above to derive expressions
for coarse-grained Brownian, intramolecular potential, and
hydrodynamic forces.

A. Coarse-graining Brownian and intramolecular forces

Substituting from Eq. �6� for Fi�
B in Eq. �16� above, we

obtain the constrained-mean Brownian force on the �th sub-
chain as

F̄�
B = − kBT

�

�r�

ln �II�CII� . �20�

Further, noting that Fi�
U �CI�=−�U�CI� /�ri�

, and that the total
intramolecular potential U�CI�=−kBT ln �eq

I �CI� �modulo an
additive constant� where �eq

I is the equilibrium level I distri-
bution, we obtain the constrained-mean intramolecular force
on subchain � due to the potential U,

F̄�
U = kBT 	

i�=1

n�  � ln �eq
I

�ri�

�I�IIdCI�II

= kBT 	
i�=1

n� 1

�II  � ln �eq
I

�ri�

	�IdCI . �21�

At equilibrium, the expression above reduces to F̄�,eq
U

=kBT� ln �eq
II /�r�.

B. Coarse-graining hydrodynamic drag forces

Substituting from Eq. �2� for Fi�
h in the definition for the

constrained-mean hydrodynamic force on the �th subchain,
we obtain

F̄�
h = − n��0�v̄� − � · r��

− �0 	
i�=1

n�

	
�=1

NII

	
j�=1

n�  ��ri�
,r j�

� · F j�
h �I�IIdCI�II, �22�

which can be combined with the definition of the two-point
correlation function in Eq. �19� to yield

F̄�
h = − n��0
v̄� − � · r� + 	

�=1

NII   ��r,r�� · j̄��drdr�� .

�23�

We note here that in the second term on the right-hand side,
the summation over all � includes �=�. In the absence of

HI, we simply have F̄�
h =−n��0�v̄�−� ·r��.

Thus far, we have made no approximations. In order to
simplify further, we now assume that

j̄���r,r�;CII� � �̄�r;CII�h̄��r�;CII� . �24�

In other words, two-point correlations in the fluctuations in
the segmental and hydrodynamic force densities in the blobs
are assumed to be negligible. We further assume that the
spatial variation of the blob density and hydrodynamic force
density fields are similar in the sense that

h̄��r;CII� = F̄�
h �CII��̄��r;CII� . �25�

With these assumptions, the double-integral on the right-
hand side of Eq. �23� can now be simplified as

  ��r,r�� · j̄��drdr� = �̄�� · F̄�
h, �26�

where the tensor �̄�� describing HI between the �th and �th
blobs is defined as

�̄���CII� �   �̄��r;CII���r,r���̄��r�;CII�drdr�.

�27�

Substituting from the equations above in Eq. �23�, and rear-
ranging, we obtain

v̄� = � · r� − 	
�=1

NII

D̄�� · F̄�
h, �28�

where the diffusion tensor,

D̄�� �

��

n��0
� + �̄��, �29�

is the �� ,��th block of the 3NII�3NII mobility matrix for the
level II description.

In the complete absence of HI between all the NI seg-
ments of the level I description, since �=0, one would ob-
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tain D̄��=
���n��0�−1�. From Eq. �27�, we see that �̄��

=�̄��
† =�̄��, and therefore the overall level II mobility ma-

trix is symmetric, irrespective of whether or not the chain is
partitioned into subchains of equal contour lengths.

Following the steps summarized earlier for deriving the
level I FPE, we obtain starting from the level II continuity
equation, Eq. �14�, using Eq. �28�, and the force balance Eq.
�15�, and substituting from Eq. �20�, the level II FPE,

��II

�t
= − 	

�=1

NII �

�r�

· 
� · r� + 	
�=1

NII

D̄�� · F̄�
U��II

+ kBT 	
�,�=1

NII �

�r�

· D̄�� ·
��II

�r�

�30�

in which the diffusion tensors D̄�� are given by Eqs. �29� and
�27�.

We consider next the effect of coarse graining on the
equations for measurable macroscopic observables in the di-
lute polymer solution.

C. Macroscopic observables

Macroscopic observables—such as the mean-squared
end-to-end distance of a polymer molecule or the polymer
contribution to the total fluid stress tensor—are physical
quantities of interest which are obtained as expectations of
functions of the configurational variables. For instance, the
mean-square end-to-end distance of the polymer in terms of
level I variables is

Re
2 = ��r1,I − rNI

�2� . �31�

Here, we use r1,I to distinguish the level I variable denoting
the bead at the chain end from the variable r1,II denoting the
center of mass of the first blob in the coarser level II descrip-
tion. On coarse graining to level II, we can write the equation
above as

Re
2 = �r1,I

2 − 2�r1,I · rNI
� + rNI

2 � , �32�

where r1,I
2 , �r1,I ·rNI

�, and rNI
2 are constrained averages and

hence are functions of level II variables. The dependence of
quantities such as r1,I

2 on the level II variables is in general
unknown a priori. To overcome this problem, we need to
first assume that fluctuations in r1,I and rNI

about their con-
strained averages, and their cross correlations, are negligible,
so that r1,I

2 =r1,I
2, rNI

2 =rNI
2, and r1,I ·rNI

=r1,I ·rNI
. Thus we

obtain for the coarse-grained model,

Re
2 = ��r1,I − rNI

�2� . �33�

The function r1,I, which is the constrained-mean position of
the chain end, is clearly different from r1,II, the center of
mass of the first blob. To relate the unknown functions r1,I
and rNI

simply to level II variables, we define a level II
connector vector as

Q� � r�+1 − r�, � = 1, . . . ,NII − 1. �34�

For chains without excluded volume interactions, we esti-

mate the constrained mean positions of the ends of the mol-
ecule as �7�

r1,I = r1,II − 1
2Q1 and rNI

= rNII
+ 1

2QNII−1. �35�

We hence obtain

Re
2 = ���r1,II − rNII

� + 1
2 �Q1 + QNII−1��2� . �36�

Similarly, starting with the modified Kramers’ equation
�3� for the polymer contribution to the nonequilibrium extra
stress tensor at level I,

1

npkBT
�p = −

1

kBT
	
i=1

NI

��ri − rc�Fi
h� , �37�

where rc= �1/NI�	 j=1
NI r j is the polymer center of mass, we

can show that it is necessary to use the assumption postu-
lated in Eq. �24� to obtain the modified Kramers’ equation at
level II for �p,

1

npkBT
�p = −

1

kBT
	
�=1

NII

��r� − rc�F̄�
h � . �38�

In terms of the level II variables, rc= �1/NI�	�=1
NII n�r�. Sub-

stituting for F̄�
h in the equation above from the force balance

in Eq. �15�, and using Eq. �20� leads to the Kramers’ equa-
tion �3�,

1

npkBT
�p =

1

kBT
	
�=1

NII

��r� − rc�F̄�
U� + �NII − 1�� . �39�

In Eq. �39� above, as well as in the level II FPE in Eq.

�30�, we encounter the functions F̄�
U and D̄�� which are for-

mally related to the level II configuration through Eq. �21�,
and Eqs. �27� and �29�, respectively. Their computation how-
ever requires the knowledge of the level I distribution �I, or
at least the conditional probability �I�II, for its evaluation. As
a first step in overcoming this hurdle, we consider below an
approximation to obtain a more explicit relation connecting
the interblob HI tensor in Eq. �27� to the level II configura-
tion variables.

D. Gaussian blobs

We define the constrained-mean gyration tensor of the �th
subchain as

���CII� �
1

n�
	
i�=1

n�  �ri�
− c���ri�

− c���I�IIdCI�II, �40�

where we recall c�= �1/n��	i�=1
n� ri�

. Using the definition of
the blob density field �̄� in Eq. �17�, we can show that the
tensor ���CI� is the second �central� moment of the �th blob
density field,

���CII� = �r − r���r − r���̄��r;CII�dr . �41�

In what follows, the tensors �� are referred to as the “blob
shape” tensors. Let us now assume that we are somehow able
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to calculate exactly �� for any blob, given any level II con-
figuration CII. We now approximate the blob density field �̄�

as a Gaussian distribution with a second moment equal to the
exactly calculated ��. That is, we assume

�̄��r;r�,��� =
exp�− �1/2��r − r�� · ��

−1 · �r − r���
��2��3 det����

.

�42�

For the function ��r ,r�� in the integrand on the right-hand
side of Eq. �27�, we use the Oseen-Burgers tensor,

�OB�r,r�� =
1

8��s��r�
� +
�r�r

��r�2 � , �43�

with �r=r−r�. Using a method described by Zylka and Öt-
tinger �8� in a somewhat different context, we obtain after
some straightforward algebraic manipulation an expression
describing HI between a pair of Gaussian blobs,

�̄���r��,��,��� =
1

4�2��3/2�s


0



�� + ���� + r��r���

· A−1�u� − A−1�u� · ���� · r��r��� · A−1�u��

�
exp�− 1

2A−1�u�:r��r���
�det A�u�

du , �44�

where r��=r�−r� is the displacement between the centers of
the �th and �th blobs, ���=��+��, and A�u�=���+u�. We

will henceforth refer to �̄�� calculated using the equation
above as the Gaussian-blob HI �GB-HI� tensor.

We summarize below some salient features of the GB-HI
tensor. First, Eq. �44� shows that the interblob HI tensor de-
pends on r�� the separation of two blobs, as well as the sizes
and orientations of the blobs, which enter the description
through the shape tensors, �� and ��. Second, the GB-HI

tensor satisfies the symmetry relations, �̄��=�̄��
† , and

�̄��=�̄��. Further, it can be shown that the function

�̄���r�� ,�� ,��� is homogeneous, with

�̄����r��,�2��,�2��� = �−1�̄���r��,��,��� . �45�

This property has its origin in the 1/r decay of the Oseen-
Burgers tensor.

It is useful to consider the case where both the �th and
�th blobs are isotropic, and hence ���=����. In this case,
we obtain from Eq. �44�,

�̄�� =
1

8�2�3/2�s���
1/2�
��1/2,��

�1/2 +
��3/2,��

�3/2 ��

+ 2�
��3/2,��
�3/2 −

��5/2,��
�5/2 � r��r��

r��
2 � , �46�

where �=r��
2 /2���, and

��a,x� = 
0

x

ta−1e−tdt , �47�

is the incomplete gamma function. As the distance between
the blobs becomes very large compared to their dimensions,

and �→, ��1/2 ,��→��1/2 ,�=��, and ��3/2 ,��
→��3/2 ,�=�� /2. Thus, in the limit of large separations,
we see that interblob GB-HI tensor approaches the Oseen-
Burgers tensor.

We also need to consider what happens when the distance
between a pair of blobs r��=0. In this case, Eq. �44� reduces
to

�̄�� =
1

4�2��3/2�s


0



�� + ��� · A−1�u��
1

�det A�u�
du .

�48�

Zylka �9� showed that the integral on the right-hand side can
be efficiently evaluated using standard routines for elliptic
integrals. This result further shows that the GB-HI tensor
remains well behaved even when blobs fully overlap. It is
well known that if the Oseen-Burgers tensor were to be used
to model HI between spherical particles, the 1/r singularity
in the Oseen-Burgers tensor will result in the overall mobil-
ity matrix of the system becoming nonpositive definite for
those configurations where the distance between any pair of
particles becomes much smaller than their radii. However,
the singularity of 1 /r at r=0 poses no problems when it
appears as ��1/r�dr in an integration in three dimensions.
This fact has been exploited previously in preaveraged treat-
ments of HI such as the Zimm �10�, consistent averaging
�11�, and Gaussian approximations �12�, all of which use
Gaussian averages of the Oseen-Burgers tensor. Similarly,
the GB-HI tensor also eliminates the effect of the singularity
in the Oseen-Burgers tensor, and the overall level II mobility
matrix consequently remains positive definite even when
blobs overlap. The Gaussian-blob HI is thus similar in this
respect to the Rotne-Prager-Yamakawa HI tensor �13,14�
which is commonly used in simulations of bead-spring chain
models of dilute polymer solutions to ensure positive defi-
niteness of the mobility matrix for all chain configurations.

Equation �48� above is necessary for the calculation of the

diffusion tensors D̄��, which are in fact the mobility tensors
of the individual Gaussian blobs. In the complete absence of
any HI between the beads of the level I representation of the

polymer chain, the “bare” mobility of the �th blob is D̄��

= �n�0�−1�. The inclusion of HI between different segments
of the same subchain leads to “dressed” blob mobilities

D̄��= �n��0�−1�+�̄��. The tensor �̄�� accounts for the con-
tribution of intrablob HI to the mobility of the blob, and is
obtained by substituting 2�� in place of ��� in Eq. �48�
above, and

�̄�� =
1

4�2��3/2�s


0



�� + 2�� · A−1�u��
1

�det A�u�
du ,

�49�

where A�u�=2��+u�. Thus, �̄�� is a function of the shape
tensor �� alone. If the shape tensors are axisymmetric, and
��=��

���−u�u��+��
� u�u�, where u� is a unit vector speci-

fying the orientation of the principal axis of the �th blob,

�̄�� is also of the form �̄�
���−u�u��+�̄�

� u�u�. In this case,

PRABHAKAR, SEVICK, AND WILLIAMS PHYSICAL REVIEW E 76, 011809 �2007�

011809-6



the integral in Eq. �49� above can be reduced analytically �7�.
If a blob is spherically isotropic, and ��=���, we obtain
from Eq. �49�,

�̄�� =
�1/�

6��s��
1/2� . �50�

We note here that as NII→NI, and n�→1, �� must ap-
proach �3a0

2 /5�� �the second central moment of a spherically
uniform particle of radius a0�, and in principle the mobilities
of the individual blobs should approach �0

−1�. However, set-

ting n�=1, and ��=3a0
2 /5 in Eq. �50� instead leads to D̄��

=�0
−1�1+�5/ �3����. The additional �5/ �3��� term arises

because, in deriving Eq. �44� starting from Eq. �27�, we did
not explicitly prevent level I beads from overlapping. In ad-
dition, by using the Oseen-Burgers tensor to simplify the
integral in Eq. �44�, we have neglected details of short-range
interactions between segments at the level I description of
the polymer chain. Although one could use a more accurate
description of HI at level I instead of the Oseen-Burgers
tensor, we anticipate that the additional detail will only lead
to correction terms to the already complicated expression for
the GB-HI tensor in Eq. �44�. The use of the simple Oseen-
Burgers tensor is justified as long as one is interested in
using the coarse-grained model to explore universal features
of the dynamics of dilute polymer solutions.

E. Local equilibrium ansatz

The assumption of a Gaussian-blob density has enabled us

to obtain an explicit functional form for the HI tensor �̄��,
which depends on r��=r�−r� and the shape tensors �� and
��. In order to perform computations, we need to know the
dependence of the shape tensors �� on the level II configu-
ration. An exact calculation using the definition in Eq. �41�
with the true �non-Gaussian, in general� blob density re-
quires knowledge of the unknown instantaneous conditional
probability �I�II. We face a similar problem with respect to

the coarse-grained intramolecular force F̄�
U, as mentioned

earlier. To break free from these constraints, we take recourse
to the following local equilibrium ansatz:

�I�II�CI�CII� � �eq
I�II�CI�CII� . �51�

This is a reasonable assumption when the characteristic re-
laxation time scales of the slower level II variables and the
faster level I variables are widely separated, and the solvent
flow field is weak enough so that the individual level I sub-
chain configurations are always equilibrated with the con-
straints specified by CII.

Substituting the local equilibrium ansatz above in the

definition of F̄�
U in Eq. �21�, we directly obtain for the

coarse-grained intermolecular potential force,

F̄�
U�CII� = F̄�,eq

U �CII� = kBT
� ln �eq

II

�r�

. �52�

This expression now permits us to calculate the functional

dependence of F̄�
U on CII variables using equilibrium statis-

tical mechanics, since the equilibrium distribution �eq
II can be

in principle calculated exactly according to

�eq
II �CII� =

 	e−U/kBTdCI

 e−U/kBTdCI

. �53�

Since we can also—again, in principle—calculate the condi-
tional probability distribution �eq

I�II, we can use the gyration
tensors obtained from

���CII� =
1

n�
	
i�=1

n�  �ri�
− c���ri�

− c���eq
I�IIdCI�II, �54�

as the shape tensors in Eq. �27� for evaluating the GB-HI
tensors.

The local equilibrium ansatz can be made irrespective of
whether or not excluded volume interactions are included.
For highly flexible chains with no excluded volume or other
nonlocal interactions, subchains are statistically uncorrelated
at equilibrium in the sense that �eq

II and �eq
I�II are both factor-

izable as

�eq
II �CII� = �

�=1

NII

��,eq
II �CII� �55a�

and

�eq
I�II�CI�CII� = �

�=1

NII

��,eq
I�II �C�

I �CII� , �55b�

where C�
I is the subset of CI containing the position vectors

of the beads of the �th subchain alone. In this special case,
further simplifications can be anticipated. For example, the
shape tensor for the �-blob �� is independent of the orien-
tations and dimensions of the other blobs in the chain.

With the assumption of local equilibrium, both the coarse-

grained intramolecular potential forces F̄� and the blob-
shape tensors �� can be calculated for any given level II
configuration CII without requiring any further knowledge of
either the level I configuration variables or the instantaneous
nonequilibrium conditional probability distribution �I�II.

Once the tensors �� are known, the GB-HI tensors �̄�� can
be calculated using Eq. �44�, and all the diffusion tensors

D̄�� can next be obtained, substituting in the level II FPE,
Eq. �30�.

Unfortunately, detailed expressions even in the simple no-
excluded-volume case are unavailable for the equilibrium
distributions �eq

II and �eq
I�II, especially when the centers of

masses of subchains are constrained to fixed locations in
space. For the preliminary simulations in this study, we have

used approximate expressions for F̄�
U and �� which are dis-

cussed in the following sections.

1. Entropic spring force

If we ignore excluded volume and other such nonlocal
interactions, and the total level I intramolecular potential ac-
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counts for those interactions along the polymer backbone
that are responsible for maintaining its connectivity, flexibil-
ity and total length, we assume that the mean intramolecular

force on the �th blob F̄�
U is of the form

F̄�
U = �F̄1

c if � = 1,

F̄�
c − F̄�−1

c if � = 2, . . . ,NII − 1,

− F̄NII−1
c if � = NII,

� �56�

where F̄�
c defined for �=1, . . . ,NII−1 is a “connector” force

that depends solely on the corresponding connector vector
Q�. We further assume that the connector force function

F̄�
c �Q�� has a form identical to the mean entropic resistance

exerted at equilibrium when the subchain end-to-end vector
is held fixed at Q�. Recently, Underhill and Doyle �15� have

derived force laws relating F̄�
c to Q� for coarse-grained de-

scriptions of semiflexible wormlike chains. In this study, we
however restrict our attention to simulations of flexible sub-
chains �L��bK�, in which case the entropic resistance is
given by the inverse Langevin force law �3,16�. Since the
inverse Langevin function is difficult to implement in simu-
lations, we use the following “finitely extensible nonlinear
elastic” �FENE� force law which is widely regarded as a
good approximation to the inverse Langevin expression
�3,17�,

F̄�
c =

H�

1 − Q�
2 /L�

2 Q�. �57�

The constants H� are phenomenological spring constants,
whose values are fixed typically by requiring that the equi-
librium mean-squared end-to-end distance predicted with the
FENE force at the level II description match Re,eq

2 =bK
2 NK at

the level I description �7�.

2. Blob-shape tensors

We assume that in the absence of excluded volume inter-
actions, individual blobs are axisymmetric, and the shape
tensor �� is solely dependent on the constrained-mean end-
to-end vector of the �th subchain, which is estimated to be
�Fig. 2; �7��

T� = �
Q1 if � = 1,

1

2
�Q� + Q�−1� if 2 � � � NII − 1,

QNII−1 if � = NII.
� �58�

We will refer to the magnitude T�= �T�� as the blob stretch,
and to the unit vector u�= �1/T��T� as the blob orientation
vector. It may be noted that with this definition of T�, the
Gaussian-blob model does not consist of touching axisym-
metric ellipsoids in general. Given a subchain contour
length, L�, the axisymmetric shape tensor is

�� = ��
��� − u�u�� + ��

� u�u�, �59�

where the longitudinal and transverse eigenvalues of ��, ��
� ,

and ��
� are functions of the blob stretch T�. As in the case of

the entropic spring force, we further assume that the depen-
dence of ��

� and ��
� on the blob stretch T� is the same as that

of the gyration tensor eigenvalues of a subchain whose ends
are held apart by a distance T� at equilibrium.

To the best of our knowledge, there are no general ana-
lytical results available describing the complete dependence
of the constrained equilibrium gyration tensor on the end-to-
end stretch, even for flexible chains. We have therefore ob-
tained the functions ��

� �T�� and ��
��T�� for a wide range of

NK/S=NKNII values using BD simulations �7�. The shape ten-
sors thus obtained serve as inputs for the calculation of the

GB-HI tensors ��� and the diffusion tensors D̄��.
In short, the local equilibrium ansatz allows us to calcu-

late the forces F̄�
U and the diffusion tensors D̄�� for any given

level II configuration CII= �r1 , . . . ,rNII
� of the dissolved poly-

mer chain. These functions of the configuration can be sub-
stituted in the level II FPE to obtain the time evolution of the
probability distribution �II. In addition, the coarse-graining
procedure described above introduces no new undetermined
constants. The only parameters in the coarse-grained model
are the following: T and �s are properties of the solvent
continuum, L, NK, and a0 are parameters that characterize the
continuous-chain model of the dissolved polymer, and NII

and the set �L� ��=1, . . . ,NII� of partitions of the chain con-
tour define the coarse graining of the polymer chain. The
time evolution of macroscopic observables such as the poly-
mer stress tensor �p can be obtained by the technique of BD
simulations which is described shortly.

F. Conventional bead-spring model

We close this discussion of coarse-graining of intramo-
lecular HI in dilute polymer solutions with a summary of the
commonly used bead-spring chain model with Rotne-Prager-
Yamakawa �RPY� HI. The conventional bead-spring model
is also a level II coarse-grained representation of the polymer
molecule, typically into equal-sized segments. The hydrody-
namic characteristics of a segment are lumped into a single
“bead” friction coefficient, �BSM=6�aBSM�s, where aBSM

FIG. 2. Schematic showing the relationship of the blob
shape.
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isthe bead radius. Thus, in the conventional model, spherical
beads of fixed radii take the place of the Gaussian blobs
proposed in this study. The beads are further connected by
entropic FENE springs. Using RPY-HI between the beads
leads to a Fokker-Planck equation for this bead-spring model
that has the same form as Eq. �30�, but with the following

diffusion tensors in place of D̄��:

D��
BSM =


��

�BSM� + ���
RPY, �60a�

where

���
RPY = 0 , �60b�

and, when ���,

���
RPY =

1

8��sr����1 +
2

3

aBSM

r��
�2�� + �1 − 2
aBSM

r��
�2� r��r��

r��
2 if r�� � 2aBSM,

r��

2aBSM�
8

3
−

3r��

4aBSM�� + 
 r��

4aBSM� r��r��

r��
2 � if r�� � 2aBSM.� �60c�

The bead radius aBSM has no direct connection with the
level I parameter a0 which no longer appears in the equa-
tions. The parameter aBSM is thus a free parameter whose
value must be specified as an input. It is customary to do this
in terms of the dimensionless hydrodynamic interaction pa-
rameter defined as

h* �� 3

�

aBSM

�Q2�eq
1/2 , �61�

where �Q2�eq is the equilibrium mean-square connector
length in the absence of excluded volume interactions. From
studies on the universal scaling behavior of theta solutions, it
is known that a choice of h*�0.25 is particularly effective in
reproducing the near-equilibrium dynamics of long mol-
ecules even with bead-spring chains with small ��O�10��
values of NII �18�. In situations where molecules experience
stretching and are highly anisotropic, one must either choose
a different value of h* in order to accurately describe the
behavior of long molecules with a low value of NII �5�, or
choose larger values of NII while retaining h*�0.25 �4�.

For the level I representation of the polymer molecule as
a chain of touching beads, �Q2�eq=L /NI=2a0, and hence h*

=��3/���1/2�=0.49 for that representation. Therefore, with
a choice of h*=0.49, one expects that simulation results ob-
tained with coarser bead-spring representations should con-
verge as NII→NI to results that would have been obtained
with a level I structural representation but with RPY-HI be-
tween the touching beads. If, on the other hand, one keeps h*

fixed at 0.25, simulation results converge as NII→NI to those
corresponding to a model consisting of NI nontouching
beads. Those features of the results that remain sensitive to
the value of h* chosen even as NII→NI�1 can then be said
to depend strongly on the local details in the modeling of HI.

We now turn to a summary of the simulation algorithms
used in this study.

III. BROWNIAN DYNAMICS SIMULATIONS

In BD simulations, an ensemble of stochastic trajectories
is generated by several independent integrations of the fol-

lowing set of NII coupled Itô stochastic differential equations
�SDE’s� that is equivalent to the FPE in Eq. �30� �19�,

dr� = 
� · r� + 	
�=1

NII

D̄�� · F̄�
U + kBT	

�=1

NII �

�r�

· D̄���dt

+ �2kBT	
�=1

NII

B̄�� · dW�. �62�

Starting with a known initial level II configuration CII

= �r1 , . . . ,rNII
� at t=0, the set of SDE’s represented by the

equation above can be integrated forward in time, and a sto-
chastic trajectory can be generated. In Eq. �62� above, W� is
a vector each of whose three components is an independent

Wiener process. The forces F̄�
U are calculated using Eqs. �57�

and �56�. To calculate the diffusion tensors D̄��, we first
obtain the blob orientation vectors, u� and blob stretches, T�,
using Eq. �58�. The transverse and longitudinal components
of the shape tensors, �� are then calculated using the proce-
dure described in Sec. II E 2 above. The blob mobility ten-

sors D̄�� are next obtained using Eq. �29� with �=�, and the
expressions for the transverse and longitudinal eigenvalues

of the tensors �̄�� �7�. For ���, the diffusion tensors D̄��

require evaluation of the integral in Eq. �44�, which is per-
formed numerically in our simulations. In the absence of HI,

D̄��= �n��0�−1
���. The dimensionless matrices B̄�� are cho-
sen such that they satisfy the fluctuation-dissipation theorem,

	�=1
NII B̄�� · B̄��

† = D̄��. The Chebyshev polynomial approxima-
tion method is used to obtain the diffusion term �S�

=	�=1
NII B̄�� ·�W� �18,20,21�, where �W� are the Wiener in-

crements corresponding to a time-step size of �t.
Although the Oseen-Burgers tensor itself is divergence

free, the contribution to the drift term �in large parentheses
in Eq. �62� above� stemming from the divergence

	�=1
NII � /�r� · D̄�� is not zero. This is a consequence of both the

anisotropy and configuration dependence of the blob-shape
tensors. It can be shown that if the blob shapes are forced to
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be spherical with constant radii, the divergence term van-
ishes for the GB-HI model as well. In contrast, the diver-
gence term is zero in the conventional model with RPY-HI,
which greatly simplifies computation with that model. How-
ever, this simplification comes at the expense of the inability
of the model to account for the effect of subchain anisotropy
on HI. As soon as the assumption of spherical beads is re-
laxed, and/or if the bead radius becomes configuration de-
pendent, the divergence term is nonzero, as observed even in
a one-dimensional dumbbell model with a variable drag co-
efficient �22�.

Since the direct implementation of the analytical calcula-
tion of the divergence term is tedious, we use the following
numerical estimate. If R is the 3NII-dimensional vector com-
posed of the components of all the position vectors r� at
some time t, and �W is the 3NII-dimensional vector com-
posed of the components of the Wiener increments �W�,
then it can be shown that

1
2 ��D̄�R + �W� − D̄�R − �W�� · �W� = ��R · D̄��t + O��t2� .

�63�

In other words, the distribution of stochastic trajectories ob-
tained after integration following Euler time-discrete SDE,

�r� = 
� · r� + 	
�=1

NII

D̄���R� · F̄�
U��t + �2kBT	

�=1

NII

B̄�� · �W�

+
kBT

2 	
�=1

NII

�D̄���R + �W� − D̄���R − �W�� · �W�,

�64�

converges in the limit of zero time-step size to the distribu-
tion that would have been obtained by integrating the SDE
in Eq. �62�. We use Eq. �64� in a predictor step, followed by
a corrector step in which the spring forces are treated
implicitly. This semi-implicit predictor-corrector integration
scheme has been described in detail elsewhere �5,23,24�.

IV. RESULTS AND DISCUSSION

In an ideal coarse-graining scheme, for a given fixed
value of NI, the time evolutions of macroscopic observables
obtained after solving the level II FPE would be independent
of the choice of NII�NI, and thus be identical to those ob-
tained by solving the level I FPE. The scheme developed in
this study however uses a number of approximations, as a
result of which simulation results obtained for any fixed
value of NI can be expected to vary with NII. We present here
a preliminary assessment of the efficacy of the Gaussian-blob
coarse-graining scheme, by comparing the NII variation in its
predictions with that observed with conventional coarse
graining as a bead-spring chain with RPY-HI between
spherical beads of fixed radii. The comparison is made for
the relaxation of the mean-squared end-to-end distance of a
molecule Re

2, and the polymer contribution to the first
normal-stress difference N1,p= ��p,xx−�p,yy� in simulations
where the initial ensemble consists of chains all stretched out
in the x direction to 90% their full extension. Chains subse-

quently relax under quiescent ��=0� conditions.
For the sake of simplicity, we choose a0=bk /2, which

means that NI=L / �2a0�=NK. Further, we use equal-sized
partitions in our coarse graining, and hence n�=n=NI /NII
=NK /NII=NK/S, where NK/S denotes the number of Kuhn seg-
ments per coarse-grained subchain. As mentioned earlier, the
calculation of the spring-constant H is shown in Ref. �7�. The
remaining free parameters, T, �s, and bK, can be removed
from the equations by appropriately rescaling all quantities
using a thermal energy scale �=kBT, a subchain length scale
�S=bK

2 NK/S /3, and a subchain diffusive time scale �S
=n�0�S

2 / �4kBT�. For the simulations in this study, we have
used NK=500, and values of NII ranging from 2 to 50 for the
conventional model, and 2 to 20 for the Gaussian-blob
model.

Results are presented below in Figs. 3 and 4 in terms of
the dimensionless ratios, Re

2 /bK
2 and N1,p / �npkBT�. The time

axis in the figures is in terms of the ratio t /�1, where

FIG. 3. Relaxation of the first-normal stress difference in an
ensemble of chains all stretched initially to 90% full extension in
the x direction.

FIG. 4. Relaxation of the mean-squared end-to-end distance in
an ensemble of chains all stretched initially to 90% full extension in
the x direction.
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�1 = 0.21
�sbk

3NK
3/2

kBT
, �65�

is an empirical estimate of the largest near-equilibrium relax-
ation time of the dissolved polymer molecule obtained in
recent simulations �4�.

Figure 3 compares the dependence of the results for
N1,p / �npkBT� on NII in the Gaussian-blob and conventional
bead-spring models. When the whole range of NII, starting
from NII=2 �dumbbells� to NII=20 is considered, it is appar-
ent that the results of the Gaussian-blob model show a
smaller degree of variation with respect to NII. This is par-
ticularly true during the initial relaxation of the stress, when
chains are still highly anisotropic. However, the results of the
conventional model appear to have converged with respect to
NII by a value of NII=10, whereas the difference between the
data obtained for NII=10 and NII=20 with the Gaussian-blob
model becomes significant towards the later stages of the
relaxation. The reason for this is currently not clearly under-
stood.

It is worthwhile to ask whether the results obtained with
the Gaussian-blob model converge to the same values as
those of the conventional model with RPY-HI, NII→NI. Fig-
ure 4 compares the results of the two models for the relax-
ation of Re

2.
For the conventional bead-spring model, we show results

for NII=50, for two different values of h*. As we may recall
from the discussion in Sec. II F, h*=0.49 is the choice that,
as NII→NI, leads to results obtained with a level I touching
bead chain and RPY-HI. Figure 4 also shows results obtained
with the conventional model with h*=0.25. The large differ-
ence in Fig. 4 between the results for the two different h*

values indicates that the relaxation of Re
2 and N1,p for a chain

with NK=500 can depend considerably on local hydrody-
namic detail. Hence, we cannot expect too close an agree-
ment between the results of the two different models even
with large values of NII since the models differ in their han-
dling of near-field HI.

It must be recognized that for any given choice of NII,
simulations with GB-HI are necessarily more computation-
ally expensive than those with RPY-HI due to the additional
contribution to the drift arising from the non-divergence-free
nature of the mobility matrix. Moreover, the expressions for
the HI tensor in the RPY model �Eq. �60�� are undoubtedly

much easier to implement in computer code than Eq. �44� for
interblob and intrablob HI in the Gaussian-blob model,
which requires in addition the prior �albeit one-time� compu-
tation of the dependence of the shape tensors on the chain
configuration. These difficulties are the price that one may be
willing to pay in return for a more refined treatment of HI, if
the NII convergence of model independent features of results
is achieved with lesser overall computational expense in the
new model than in the conventional model. A clear answer to
this question of overall efficiency is not possible with the
preliminary results presented in Figs. 3 and 4 which are
clearly model dependent �as evidenced by the strong h* de-
pendence of the RPY-HI predictions�, and requires a more
detailed investigation which is beyond the scope of the
present work. Nevertheless, the qualitative agreement be-
tween the two models, coupled with the smaller variation of
the results of the Gaussian-blob model with respect to NII
observed in Figs. 3 and 4 suggest that the Gaussian-blob
model could provide a useful alternative for coarse-graining
HI in polymer solutions.

V. SUMMARY AND CONCLUSIONS

In this study, we have developed a systematic framework
for coarse-graining hydrodynamic interactions in an isolated
polymer molecule in solution. The Gaussian-blob model ac-
counts for the effect of the variation in the instantaneous
shapes of the subchains in the coarse-grained representation,
on the hydrodynamic interaction within and between sub-
chains. Preliminary results obtained with BD simulations in-
dicate that the Gaussian-blob model achieves a significant
reduction in the dependence of results on the degree of
coarse graining, when compared to the conventional bead-
spring model with Rotne-Prager-Yamakawa hydrodynamic
interaction.
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